

 Richard E. Kowalski, richard.e.kowalski@ivv.nasa.gov, TASC Inc.

 NASA POC: Frank Huy, Frank.A.Huy@nasa.gov

NASA Independent

Verification and

Validation Facility

Fairmont, West

Virginia

Real-Time Operating Systems (RTOS) 101

Real-Time System Characteristics

• A real-time system is a computer system which is required by

its specification to adhere to:

– functional requirements (behavior)

– temporal requirements (timing constraints, deadlines)

• Specific deterministic timing (temporal) requirements

– “Deterministic" timing means that RTOS services consume only
known and expected amounts of time.

• Small size (footprint)

Types of Real-Time Systems

• A generic real-time system requires that results be produced
within a specified deadline period.

• An embedded system is a computing device that is part of a
larger system.

• A safety-critical system is a real-time system with catastro-
phic results in case of failure.

• A hard real-time system guarantees that real-time tasks be
completed within their required deadlines. Failure to meet
a single deadline may lead to a critical catastrophic system
failure such as physical damage or loss of life.

• A firm real-time system tolerates a low occurrence of missing
a deadline. A few missed deadlines will not lead to total
failure, but missing more than a few may lead to complete
and catastrophic system failure.

• A soft real-time system provides priority of real-time tasks
over non real-time tasks. Performance degradation is toler-
ated by failure to meet several deadline time constraints
with decreased service quality but no critical consequences.

Disciplines that Impact
 Real-Time Systems

• Real-time systems engineering is so multidisciplinary, it
stands out as a highly specialized area.

What is a RTOS?

• An RTOS is a preemptive multitasking operating system intended
for real-time applications.

• It must support a scheduling method that guarantees re-
sponse time
– Especially to critical tasks

• Tasks must be able to be given a priority
– Static or dynamic

• An RTOS has to support predictable task synchronization
mechanisms
– Shared memory mutexes / semaphores, etc.

• A system of priority inheritance has to exist

• Manages hardware and software resources.

• Deterministic: guarantees task completion at a set deadline.

– A system is deterministic if, for each possible state and each set of in-
puts, a unique set of outputs and next state of the system can be de-
termined.

• Behavior time constraints should be known and minimized
– Interrupt latency (i.e., time from interrupt to task run)
– Minimal task-switching time (context switching)

RTOS Task Services

• Scheduling and Dispatching
• Inter-task Communication
• Memory System Management
• Input / Output System Management
• Time Management & Timers
• Error Management
• Message Management

RTOS Architecture

VxWorks Architecture

Priority Inheritance

• Solution to priority inversion

• Temporarily increase task’s priority when it acquires
a lock

• Level to increase: highest priority of any task that
might want to acquire same lock

– High enough to prevent it from being preempted

• Danger: Low-priority task acquires lock, gets high
priority and hogs the processor

– So much for RMS

• Basic rule: low-priority tasks should acquire high-
priority locks only briefly!

Priority Inversion

• Lower-priority task effectively blocks a higher-
priority task

• Lower-priority task’s ownership of lock prevents
higher-priority task from running

• Nasty: makes high-priority task runtime unpredict-
able!

Earliest Deadline First (EDF)
Scheduling

• Priorities are assigned according to deadlines:

– the earlier the deadline, the higher the priority

– the later the deadline, the lower the priority

• Priorities are dynamically chosen

Rate Monotonic
 Scheduling (RMS)

• A priority is assigned based on the inverse of its pe-
riod

– Shorter execution periods = higher priority

– Longer execution periods = lower priority

• Common way to assign fixed priorities

– If there is a fixed-priority schedule that meets all dead-

lines, then RMS will produce a feasible schedule

• Simple to understand and implement

• P1 is assigned a higher priority than P2.

Priority-Based
 Preemptive Scheduling

• Problem: Multiple tasks at the same priority level?

• Solutions:

– Give each task a unique priority

– Time-slice tasks at the same priority
• Extra context-switch overhead

• No starvation dangers at that level

– Tasks at the same priority never preempt the other
• More efficient

• Still meets deadlines if possible

Task Control Block (TCB)

Controlling a Task

• dormant (idle): task has no need for computer time

• ready: task is ready to go active, but waiting for processor time

• active (running): task is executing associated activities

• waiting (blocked): task put on temporary hold to allow lower priority task

 chance to execute

• suspended: task is waiting for resource

