# Multi-Platform, Multi-Architecture Runtime Verification of Autonomous Space Systems

Asst. Prof. Kristin Y. Rozier PhD Student #1 PhD Student #2

Iowa State University
Depts of Aerospace Engineering and
Computer Science

# **Approach**

**Temporal Logic** runtime observers

- Stand-alone for runtime verification
- In combination with tiny Bayes Nets for System Health Management

Tiny Bayes Nets for real-time fault diagnosis

**Hardware & Software** Implementations for multi-platform reasoning



## **Research Objectives**

### Responsive

 Continuous monitoring, real-time safety reqs, mitigate off-nominal

#### Realizable

 FPGA, microcontroller, flight computer; software and sensor variables; timing guarantees

#### Unobtrusive

- No- or Low-overhead
- Respects functionality, certifiability, tolerances

## **Potential Impact**

- New, open tool: R2U2
- Adaptable, extensible, scalable framework
- Runtime Verification
- Real-time System Health Management
- Combination of hardware and software implementations for embedded optimization
- System-level reasoning combining sensor and software variables
- More **intelligent diagnostics** for autonomy