Corrugated Two-dimensional Material Enabled Flexoelectricity for Cryogenic Actuator Technology

PI: **Dr. SungWoo Nam**, Assistant Professor Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Research Objectives

- <u>Converse flexoelectric effect</u> based on corrugated MoS₂ thinfilm to enable self-lubricating, high stroke actuation capability under cryogenic and vacuum conditions
- TRL1 (start): Fundamental understanding of flexoelectric cryogenic actuator technology (FCAT)

 TRL3 (end): Characterization & evaluation of FCAT in simulated settings at NASA

Potential Impact

 Support NASA's mission on future robotic science and deep space human

- Development of corrugated MoS₂-based FCAT for linear actuation
- Modular assembled FCAT with customizable stroke using stochastically assembled corrugated MoS₂

exploration needs based on radical improvements in performance and reliability of FCAT platform

Infusion of FCAT technology into NASA

Converse

Flexoelectric

Actuation

 Demonstration of converse flexoelectric actuation based on emerging material system

Approach

swnam@illinois.edu

Email:

Web:

 Fundamental piezoelectric force microscopy (PFM) study of converse flexoelectricity of corrugated MoS₂ thinfilms

http://nam.mechse.illinois.edu

Dry, Self-lubrication

of Corrugated MoS₂

FCAT based on corrugated MoS_2 thinfilm. (*left*) Corrugated MoS_2 enabled dry, self-lubrication. (*right*) FCAT actuation mechanism.