ASBESTOS, LEAD-BASED PAINT, AND HAZARDOUS MATERIALS SURVEY

PERFORMED AT

NASA - STENNIS SPACE CENTER
 B-2 TEST STAND
 BUILDING 4221
 MISSISSIPPI 39529

PREPARED FOR

HARRY PEPPER AND ASSOCIATES 9000 REGENCY SQUARE BOULEVARD, SUITE 100 JACKSONVILLE, FLORIDA 32211

PREPARED by

TAMPA, FLORIDA 33609
PHONE: (813) 626-8156
PROJECT NO: 140063-AL

PREPARED ON

Apri/ 4, 2014

April 4, 2014

Harry Pepper and Associates
9000 Regency Square Boulevard, Suite 100
Jacksonville, Florida 32211
Re: Asbestos, Lead-Based Paint, and Hazardous Materials Survey NASA - Stennis Space Center
B- 2 Test Stand
Mississippi 39529
OHC Project No.: 140063-ALH
Dear
OHC Environmental Engineering, Inc. (OHC) is pleased to present the report for the Asbestos, LeadBased Paint, and Hazardous Materials Survey that was performed on March 17-20, 2014. These services were conducted in support of the B2 Test Stand Restoration Building 4221 project at NASA's Stennis Space Center in Mississippi.

If you should have any questions, please do not hesitate to contact us.
Sincerely,

ASBESTOS, LEAD-BASED PAINT, AND HAZARDOUS MATERIALS SURVEY

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 1
1.1 Scope of Work 1
1.2 Asbestos Survey Results 1
1.3 Lead-Based Paint Survey Results 2
1.4 PCB Sample Results 2
1.5 RCRA 8 Metals Results 2
2.0 INTRODUCTION 3
2.1 Building Description 3
2.2 Limitations 3
3.0 ASBESTOS SURVEY 4
3.1 Homogeneous Areas 4
3.2 Conclusion 5
3.3 Regulatory Requirements. 5
3.4 Statutory Requirements 6
4.0 LEAD SURVEY 7
4.1 Lead Sample Analysis 7
4.2 Conclusion 8
$5.0 \quad$ PCB SAMPLES 8
6.0 RCRA 8 METALS SAMPLES 12
7.0 SAMPLING METHODS. 13
7.1 Asbestos Sampling Protocol 15
7.2 Lead Sampling Protocol 15
8.0 DOCUMENT CONTENT 15
9.0 DOCUMENT USE 15
10.0 LABORATORY ANALYTICAL DATA

1.0 EXECUTIVE SUMMARY

1.1 Scope of Work

OHC Environmental Engineering scope of work for Phase III Work Package of the B2 Test Stand, Building 4221, at NASA Stennis Space Center in Mississippi included the following:

- A hazardous materials assessment of all coatings scheduled for removal or demolition activities on this project. The hazardous material assessment included sampling for asbestos, lead-based paint (LBP), polychlorinated biphenyls (PCB), and the Resource Conservation and Recovery Act (RCRA) 8 metals.
- B-2 side from ground level to level 18 of the existing structure, extending form softcore over to the Piers and piping attached to the Piers on East side Including:
$>$ Deluge water system - Ground level to Level 7
$>$ Fire Suppression System- Level 7 to Level 18
$>$ Liquid Oxygen System
) Helium System
$>$ Hydrogen System
$>$ Supports for these systems
$>$ Structural Support
$>$ Stairs, Platforms and Landings
$>$ Flame Bucket
- Preparation of a comprehensive report documenting survey findings.

1.2 Asbestos Survey Results

Based on the results of the Polarized Light Microscopy (PLM) laboratory analysis, asbestos was not identified in samples collected of suspect ACM.

1.3 Lead-Based Paint Survey Results

Based on the results of the paint chip samples, lead was identified on most the paint collected as indicated in Table 1.

Table I				
Sample Number	Level	Location	Color	Results $\%$ wt
ST-2	19	Handrail	White	4.2
ST-4	19	Stairs	White	0.12
ST-8	18	East Side Paint on Flashing of Softcore	Grey	0.56
ST-9	18	East Side Paint on Flashing of Softcore	Grey	0.27
ST-10	18	East Side Softcore Wall	Grey	0.29
ST-11	18	E. side Paint on I-Beam	Grey	19
ST-12	17	E. side Paint on I-Beam	Grey	2.8
ST-20	16	Railing	White	0.29
ST-21	11	E. Side Sofcore P1-3801 Pipe	Grey	3.4
ST-23	11	Base column of corvette	Grey	0.3
ST-24	11	10" vertical pipe part of deluge system		1.7
ST-25	11	VA 3J01HA 2 1/2" pipe on Softcore		27
ST-26	11	3 " Helium Pipe		0.13
ST-27	11	Base column of corvette		0.13
ST-28	11	Railing	White	0.96
ST-29	11	Vertical fire line	White	2.2
ST-30	Ground	Deluge water system pipe	Beige	29
ST-31	Ground	Deluge water system pipe	Beige	41
ST-34	Ground	Bolt under flame bucket	Beige	0.098
ST-36	Ground	Under Flame bucket	Beige	1.7
ST-37	Ground	Bolts under flame bucket	Beige	0.21
ST-39	Elevated First Level	Deluge water system pipe S.E	Beige	47

ST-40	Elevated First Level	Vertical deluge water system S.E.	Beige	0.079
ST-41	11	Deck of battlefield	Beige	2.1
ST-42	11	VA3K67W Deluge water system S.E top of		
battleship				

ST-73	16	Fire Suppression system	White	4.4
ST-73A	1	Nitrogen line	White	0.36
ST-74	1	Helium line	White	0.42
ST-75	1	Air line	White	25
ST-76	1	Hydrogen GH	White	0.12
ST-77	1	helium HE	White	0.096
ST-78	1	Support Beam for pipes	White	2
ST-79	Ground	E. Pier Stair Railing	Beige	37
ST-80	Ground	E. Pier Stair Kick Plate	Beige	56
ST-81	Ground	E. Pier Stair Post	Beige	35
ST-82	Ground	Dock Support Beam	White	9.7
ST-83	Ground	Dock Support Beam	White	7.2
ST-84	3	E. Pier Stair Post	Beige	44
ST-85	3	E. Pier Stair Railing	Beige	29
ST-86	3	E. Pier Stair Plate	Beige	12
ST-88	18	Stair railing	White	13
ST-89	18	Stair Kick Plate	White	2.2
ST-90	16	E. Side Stair Railing	White	0.29
ST-91	16	E. Side Stair Post	White	0.76
ST-92	16	E. Side Kick Plate	White	3
ST-93	11	S. Side Stair Railing	White	1.1
ST-94	11	S. Side Stair Kick Plate	White	1.1
ST-95	11	S. Side Stair Post	White	2.2
ST-96	9	Walkway S. Side of Battleship- Railing	White	2
ST-97	9	Walkway S. Side of Battleship- Post	White	0.95
ST-98	9	Walkway S. Side of Battleship- Kick Plate	White	1.4

1.4 PCB Sample Results

The presence of PCBs was detected in the following areas:

Table 2				
Sample \#	Level	Location	PCB	Concentration
ST-PCB-1	16	Caulking on door on E. side of softcore	Aroclor 1254	2.6
ST-PCB-4		Grey Paint on support beam	Aroclor 1254	1.2
ST-PCB-8	Ground	Grey Paint on Structure under flame bucket	Aroclor 1254	16,000

Additional samples of PCB may be required.

1.5 RCRA 8 Metals Results

Based on the samples collected for RCRA 8 metals other heavy metals were identified in the paint. Heavy metals in the form of Barium, Chromium and Lead were identified as follow:

Soft Core Wall- Contains a medium concentration of Barium and Lead and low concentration of Chromium.

Structural Steel - Contains a medium concentration of Barium, Lead and Chromium and low concentration of Cadmium.

Coating on top of Corvette Adjacent to Softcore- Contains a low concentration of Arsenic, Barium, Cadmium, Chromium Lead and Silver.

Support Beam Under Flame Bucket- Contains a high concentration of Lead.

Structure Under Flame Bucket- Contains a high concentration of Lead and medium concentration of Chromium.

Inside Flame Bucket- Contains a high concentration of Lead.
Main Deluge Pipe- Contains a high concentration of Lead and medium concentration of Chromium.

Exterior Wall of Corvette- Contains a low concentration of Lead.
Interior Wall of Corvette- Contains a very high concentration of Lead and medium concentration of Chromium.

Structural Beam by Corvette- Contains a medium concentration of Lead.
E. Side Support Beam- Contains a very high concentration of Lead and high concentration of Chromium.

1.6 Ballsts, Light Bulbs and Receptacles

Mezzanine-
Receptacles are vinyl covering on the wiring. There is no suspect Asbestos wiring.
Ballasts listed below do not have any symbols indicating they do not contain PCB, therefore they have to be treated as PCB until we can prove otherwise.

- GE Ballast Code 72266 Electronic Ballast Ultralight
- GE Ultramax T-8 GE 232 Max Ultralight
- Universal Lighting Technology TRIAD B23IUNVHP-B

Some of the light fixtures has an old filter which was never replaced. These filters should be assumed to contain PCB.

Most of the fixtures in the Mezzanine contain the GE Ballasts.

Level 1

Ballasts- Sylvania Quiktronic QT 4X32/120 IS. Must be treated as PCB until we can prove
otherwise.
Receptacles- vinyl covering on wiring
E. Pier 11 Mercury Lamps

Level 3- E. Pier

Receptacles Vinyl wiring
Ballasts- Sylvania Ballasts. Some of the fixtures has the filters in them. Must be treated as PCB until we can prove otherwise.

Level 4- E. Pier

Old mercury type light bulbs and fixtures
Phillips F40CW-RS-EW-II
045677-107413
Receptacles - vinyl wiring
Ballast and filters are old and should be treated as PCB

Level 5- E. Pier

Old light fixtures except for the emergency light fixture. Contain the old ballasts and filters, must be treated as PCB.

Mercury light bulbs

Level Six

Old light fixtures except for the emergency light fixture. Contain the old ballasts and filters, must be treated as PCB.

Mercury light bulbs

Level 7-9

Old light fixtures except for the emergency light fixture. Contain the old ballasts and filters, must be treated as PCB. Total of eight fixtures

Mercury light bulbs

South Pier

Level 4-8

Old light fixtures except for the emergency light fixture. Contain the old ballasts and filters, must be treated as PCB. Five light fixtures on each level.

Mercury light bulbs

Level 8 and 9

Old light fixtures
Jelly jar light fixtures
Thomas \& Betts Hazlux 3/Hazlite M3
Type 4X
Hi Pressure sodium Bulbs

2.0 INTRODUCTION

OHC Environmental Engineering, Inc. (OHC) was contracted by of Harry Pepper and Associates to perform hazardous materials assessment of all coatings scheduled for removal or demolition activities on the B2 Test Stand Restoration Building 4221 project at NASA's Stennis Space Center in Mississippi. The survey was performed on March 17-20 by

2.2 Limitations

The scope of work under this contract is limited to work associated with phase III of the B2 test stand as listed above.

3.0 ASBESTOS SURVEY

The asbestos survey was conducted by an AHERA-Accredited Building Inspector.

Asbestos was not identified in samples of suspect asbestos-containing materials (ACM) as indicated in Table 3.

3.1 Homogeneous Areas

A Homogeneous Area (HA) is defined by the Environmental Protection Agency as "an area of surfacing material, thermal system insulation material, or miscellaneous material that is uniform in color, age, construction, use and texture."

Table 2 summarizes the number of samples collected, sample numbers, type of material, locations, and the quantity of material for each HA identified by the surveyor. The tables indicate if asbestos was identified in the samples collected within each HA.

Table 3				
Sample Number	HA	Level	Location	Results
ST-A-1A	1	18	Flashing on E. side of softcore	None Detected
ST-A-1B	1	18	Flashing on E. side of softcore	None Detected
ST-A-1C	1	13	Flashing on S. side of softcore	None Detected
ST-A-2A	2	16	Caulking around door on E. side	None Detected
ST-A-3A	3	16	Coating on top of Corvette	None Detected
ST-A- 3B	3	16	Coating on top of Corvette	None Detected
ST-A-3C	3	16	Coating on top of Corvette	None Detected
ST-A-4A	4	16	Caulking under door stop on E. Side	None Detected
ST-A-5A	5	16	Black foam pipe insulation on top of Corvette	None Detected
ST-A-6A	6	11	Gasket on end of pipe E. of softcore	None Detected
ST-A-7A	7	11	White wrapping on foam insulation	None Detected
ST-A-8A	8	Ground	Caulking on Hydrogen vent line	None Detected
ST-A-8B	8	Ground	Caulking on Hydrogen vent line	None Detected
ST-A-8C	8	Ground	Caulking on Hydrogen vent line	None Detected
ST-A-9A	9	Ground	insulation on Hydrogen vent line	None Detected
St-A-9B	9	Ground	Insulation on Hydrogen vent line	None Detected
ST-A-9C	9	Ground	Insulation on Hydrogen vent line	None Detected
ST-A- 1OA	10		Caulking on corrugated metal wall	None Detected
ST-A- 11A	11	Dock	Elbow insulation on Stainless Steel pipe	

3.2 Conclusion

Asbestos-containing materials were not identified in the samples collected of suspect ACM.

Notification to the Mississippi Department of Environmental Quality (MDEQ) is required Ten (10) working days prior to abatement, renovation or demolition.

3.3 Regulatory Requirements

Demolition

According to the MDEQ demolition means the wrecking or taking out of any loadsupporting structural member of a facility together with any related handling operations or the intentional burning of any facility.

Owners and operators of regulated demolition operations must provide demolition notifications to the MDEQ for all demolitions ten working days before demolition activity.

Renovation

According to the MDEQ, renovation means altering a facility or one or more facility components in any way, including the stripping or removal of regulated asbestos containing material from a facility component.

Owners and operators of regulated renovation operations must provide renovation notifications to the MDEQ ten working days before any renovation activity, including asbestos abatement, affecting at least 160 square feet, 260 linear feet, or 35 cubic feet of regulated asbestos containing material.

Notification

Notification is required to the local regulatory agency:

1. Ten (10) working days prior to a demolition. This includes buildings with no asbestos present.
2. Ten (10) working ciays prior to a renovation operation, if the amount of asbestos material removed or impacted is greater than 160 sq . ft . on all building components (i.e. floor tile, mastic, GWBS, etc.) or 260 ln . ft. on pipes.
3. One (1) day prior to demolition, if the building has been condemned and is structurally unsound as determined by the appropriate agency.

Notification should be sent by certified mail with return receipt or hand delivered to the Mississippi Department of Environmental Quality (MDEQ).

The demolition contractor must wait ten (10) working days (Monday - Friday) from the postmarked date of mailing or the date of hand delivery to commencement of demolition.

Any change to the start date of the demolition requires notification to the agency by phone, followed by a written revision to the Notification Form.

3.4 Statutory Requirements

The regulatory agency responsible for the oversight of the rules pertaining to asbestos-containing building materials (ACBM) is the Environmental Protection Agency (EPA). The regulations state that prior to demolition or renovation a facility survey must be conducted in accordance to section 40 CFR 61-M National Emission Standards for Hazardous Air Pollutants; Asbestos NESHAP Revisions, Final Rule.

Enforcement of these rules was passed on to the states. In the State of Mississippi, they are enforced by the Mississippi Department of Environmental Quality (MDEQ). Some counties have developed an enforcement division to carry out the responsibilities of the DEP and have developed environmental and asbestos ordinances with which compliance is required.

4.0 LEAD SURVEY

4.1 Lead Sample Analysis

Please refer to the following table for the results of the lead based paint analysis:

| Table 4 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sample | Level | Location | Color | Sample
 Results
 $\% \mathrm{wt}$ |
| ST-2 | 19 | Handrail | | |

ST-3	19	Stairs	White	0.024
ST-4	19	Stairs	White	0.12
ST-6	18	South Side Softcore Wall	Pink	0.036
ST-7	18	West Side Softcore	Pink	0.049
ST-8	18	East Side Paint on Flashing of Softcore	Grey	0.56
ST-9	18	East Side Paint on Flashing of Softcore	Grey	0.27
ST-10	18	East Side Softcore Wall	Grey	0.29
ST-11	18	E. side Paint on I-Beam	Grey	19
ST-12	17	E. side Paint on I-Beam	Grey	2.8
ST-13	17	E. Side Softcore Paint on Door	Grey	0.066
ST-18	16	S. Side White paint on Softcore	White	0.014
ST-19	16	S. Side Blue paint on Softcore wall	Blue	<0.010
ST-20	16	Railing	White	0.29
ST-21	11	E. Side Softcore P1-3801 Pipe	Grey	3.4
ST-23	11	Base column of corvette	Grey	0.3
ST-24	11	10" vertical pipe part of deluge system		1.7
ST-25	11	VA 3J01HA 2 1/2" pipe on Softcore		27
ST-26	11	3 "Helium Pipe		0.13
ST-27	11	Base column of corvette	Bhite	0.96
ST-28	11	Railing	White	2.2
ST-29	11	Vertical fire line	Beige	29
ST-30	Ground	Deluge water system pipe	Beige	41
ST-31	Ground	Deluge water system pipe	Beige	0.015
ST-32	Ground	Bolt angle support under flame bucket	Beige	0.098
ST-34	Ground	Bolt under flame bucket	Beige	1.7
ST-36	Ground	Under Flame bucket	Beige	0.21
ST-37	Ground	Bolts under flame bucket	0.028	
ST-38	Ground	Base plate under flame bucket		
			beige	

ST-46	11	Floor on top of battleship	Grey	0.2
ST-47	11	Bolts	Grey	0.063
ST-48	Ground	Bottom of flame bucket	Grey	0.01
ST-49	Ground	Bottom of flame bucket	Grey	0.053
ST-51	Ground	Inside of flame bucket	Yellow	0.52
ST-52	2	Support I-beam for deluge system	Grey	3.6
ST-53	2	Support I-beam for deluge system	Grey	6.4
ST-54	3	Bay 3 deluge pipe support box	Grey	35
ST-55	3	Bay 2 deluge pipe support box	Grey	24
ST-56	3	Bay 3 support I-beam	Grey	0.058
ST-59	3	Bay 2 Support l-beam	Grey	0.12
ST-60	11	Support hangers for firex and Helium pipes	S.	Pink
			0.074	
ST-61	11	Support hangers for firex pipes S. side	Pink	0.33
ST-62	11	Support hangers for firex pipes E. side	Grey	1.5
ST-63	11	Support hangers for firex system small pipes	Grey	0.23
ST-64	11	Support hangers for firex system	Grey	0.52
ST-65	Ground	Main Deluge pipe	Beige	0.33
ST-67	Ground	Support for deluge system	Beige	5.2
ST-68	16	Exterior wall of Corvette	White	0.088
ST-71	16	Interior wall of Corvette	White	6.8
ST-73	16	Fire suppression system	White	4.4
ST-73A	1	Nitrogen line	White	0.36
ST-74	1	Helium line	White	0.42
ST-75	1	Air line	White	25
ST-76	1	Hydrogen GH	White	0.12
ST-77	1	helium HE	White	0.096
ST-78	1	Support Beam for pipes	White	2
ST-79	Ground	E. Pier Stair Railing	Beige	37
ST-80	Ground	E. Pier Stair Kick Plate	Beige	56

ST-81	Ground	E. Pier Stair Post	Beige	35
ST-82	Ground	Dock Support Bearn	White	9.7
ST-83	Ground	Dock Support Beam	White	7.2
ST-84	3	E. Pier Stair Post	Beige	44
ST-85	3	E. Pier Stair Railing	Beige	29
ST-86	3	E. Pier Stair Plate	Beige	12
ST-88	18	Stair railing	White	13
ST-89	18	Stair Kick Plate	White	2.2
ST-90	16	E. Side Stair Railing	White	0.29
ST-91	16	E. Side Stair Post	White	0.76
ST-92	16	E. Side Kick Plate	White	3
ST-93	11	S. Side Stair Railing	White	1.1
ST-94	11	S. Side Stair Kick Plate	White	1.1
ST-95	11	S. Side Stair Post	White	2.2
ST-96	9	Walkway S. Side of Battleship- Railing	White	2
ST-97	9	Walkway S. Side of Battleship- Post	White	0.95
ST-98	9	Walkway S. Side of Battleship- Kick Plate	White	1.4

4.3 Conclusion

Based on the paint chip samples, lead based paint exists at this location as indicated in the table above.

There is presently no standard on the level of lead in paint other than the HUD guidelines of 0.5% or $1 \mathrm{mg} / \mathrm{cm}^{2}$, which is used as a threshold for remedial action. OSHA does not recognize these criteria. The consumer product safety commission has established a level of 0.06% as a threshold for lead-free paint. Any levels above the Consumer Product Safety Commission standard of 0.06 percent by weight are considered lead-containing paint. OSHA's standards for lead are based on the potential for human exposure by means of inhalation and ingestion; therefore, any substrate with any level of lead-based paint could cause health concerns when the paint is disturbed.

Any persons performing any Lead activities such as LBP renovation, repair, painting or maintenance that may disturb the paint must be certified by EPA to perform these activities in accordance with the Renovation, Repair and Painting (RRP) rule 40 CFR 745 Subpart E.

5.0 PCB SAMPLES

Samples were collected for laboratory analyses to identify PCB concentration. According to the results of the laboratory analysis, PCB was detected in the following areas:

Sample	Level	Location	Color	Test Results $\mathrm{mg} / \mathrm{Kg}$
			Grey	
ST-PCB-1	16	Caulking on door on E. side of softcore		Aroclor 1254- 2.6
ST-PCB-2	16	Paint on E. side of softcore	Pink	None Detected
ST-PCB-3	16	Softcore wall E. side	Grey	Aroclor 1254-1.2
ST-PCB-4	17	Paint on support beam	White	None Detected
ST-PCB-5	17	Coating on top of corvette		Aroclor 1254- 3.3
ST-PCB-6	16	Caulking just below door stop E. side	Beige	
ST-PCB-7	Ground	Deluge water system	Grey	Aroclor 1254- 16,000
ST-PCB-8	Ground	Structure under flame bucket	White	
ST-PCB-9	Dock	Dock Support Beam		

*BQL = Below Quantitation Limit $\quad * *$ MI - Matrix Interference

6.0 RCRA 8 METALS

TABLE 5: RCRA 8			
Sample\#	Analyte	Total ($\mu \mathrm{g}$)	Minimum Reporting Limit ($\mu \mathrm{B}$)
ST1-19	Silver	ND	24
	Arsenic	ND	49
	Barium	21000	240
	Cadmium	41	9.8
	Chromium	63	24
	Lead	360	24
	Selenium	ND	49
	Mercury	ND	0.12
Description: Structural Steel			
Sample \#	Analyte	Total ($\mu \mathrm{g}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST5-19	Silver	60	25
	Arsenic	ND	50
	Barium	22000	620
	Cadmium	23	10
	Chromium	400	25
	Lead	2600	62
	Selenium	ND	50
	Mercury	ND	0.049
Description: Coating on Top of Corvette			
Sample \#	Analyte	Total ($\mu \mathrm{g}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST-14	Silver	18	25
	Arsenic	85	50
	Barium	28	28
	Cadmium	16	1.0
	Chromium	130	2.5
	Mercury	ND	0.049
	Lead	160	2.5
	Selenium	ND	5.0
Description: Softcore Wall			
Sample \#	Analyte	Total (${ }^{\text {g }}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST-22	Silver	ND	25
	Arsenic	ND	50
	Barium	6200	250
	Cadmium	710	10

	Chromium	460	25
	Mercury	0.47	0.12
	Lead	2600	25
	Selenium	610	50

Description: Support Beam Under Flame Bucket			
Sample \#	Analyte	Total $(\mu \mathrm{g})$	Minimum Reporting Limit ($\mu \mathrm{g})$
ST-33	Silver	ND	25
	Arsenic	ND	50
	Barium	ND	250
	Cadmium	ND	9.9
	Chromium	57	25
	Mercury	0.47	0.051
	Lead	10,000	120
	Selenium	ND	50

Description: Structure Under Flame Bucket

Sample \#	Analyte	Total ($\mu \mathrm{g}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST-35	Silver	35	25
	Arsenic	ND	50
	Barium	ND	250
	Cadmium	ND	10
	Chromium	250	25
	Mercury	0.31	0.049
	Lead	130,000	2500
	Selenium	ND	50
Description: Inside Flame Bucket			
Sample \#	Analyte	Total ($\mu \mathrm{B}$)	Minimum Reporting Limit ($\mu \mathrm{E}$)
ST-50	Silver	ND	25
	Arsenic	ND	50
	Barium	ND	250
	Cadmium	ND	10
	Chromium	11,000	25
	Mercury	ND	0.049
	Lead	11,000	2500
	Selenium	ND	50
Description: Main Deluge Pipe			
Sample \#	Analyte	Total ($\mu \mathrm{g}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST-66	Silver	43	25

	Arsenic	ND	50
	Barium	ND	250
	Cadmium	11	10
	Chromium	710	63
	Mercury	ND	0.25
	Lead	4900	63
	Selenium	ND	50
Description: Exterior Wall of Corvette			
Sample\#	Analyte	Total ($\mu \mathrm{g})$	
ST-69	Silver	ND	12
	Arsenic	ND	24
	Barium	ND	120
	Cadmium	210	4.8
	Chromium	28	12
	Mercury	0.10	0.10
	Lead	920	12
	Selenium	ND	24

Description: Interior Wall of Corvette

Sample \#	Analyte	Total ($\mu \mathrm{B}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST-70	Silver	ND	100
	Arsenic	ND	200
	Barium	ND	1000
	Cadmium	11	40
	Chromium	680	100
	Mercury	ND	0.25
	Lead	58,000	500
	Selenium	ND	200
Descript	Structu	of Corv	
Sample \#	Analyte	Total ($\mu \mathrm{g}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST-72	Silver	ND	18
	Arsenic	ND	37
	Barium	ND	180
	Cadmium	10	7.4
	Chromium	73	18
	Mercury	ND	0.63
	Lead	1200	18
	Selenium	ND	37
Description: Structural Beam of Corvette			

Sample\#	Analyte	Total ($\mu \mathrm{g}$)	Minimum Reporting Limit ($\mu \mathrm{g}$)
ST-87	Silver	ND	250
	Arsenic	ND	500
	Barium	ND	25000
	Cadmium	ND	100
	Chromium	2900	250
	Mercury	23	1.1
	Lead	480,000	6200
	Selenium	ND	250

7.0 SAMPLING METHODS

7.1 Asbestos Sampling Protocol

The surveyor conducted a visual inspection of every accessible room, pipe chase, and shaft of the building and identified homogeneous areas based on the texture, appearance, use, and age of suspect ACM.

The surveyor collected bulk samples of all friable and non-friable suspect ACM. The surveyor collected a representative number of samples from each homogeneous area following the EPA's simplified random sampling method (EPA560/585-030a). The surveyor followed good Industrial Hygiene practices when collecting bulk samples in order to minimize fiber release. The surveyor took every precaution required to prevent asbestos exposure to himself, the building occupants and the public.

The surveyor logged all sample locations with the description of each sample location and marked the sample locations on any available drawings. The surveyor identified each area using a unique sequential numbering system.

The surveyor placed each bulk sample in a labeled bag and immediately marked the bag with a sample number.

The surveyor submitted a chain of custody form with each sample group submitted for analysis. The form was signed by laboratory personnel handling the sample(s) and returned with the sample results.

Schneider Laboratories Global, a National Voluntary Laboratory Accreditation Program (NVLAP) accredited laboratory, analyzed the samples for asbestos content.

7.2 Lead Sampling Protocol

Lead paint chip samples were taken by an EPA certified Lead Based Paint Risk Assessor, on a representative amount of elements throughout the B-2 Test Stand. Paint samples were submitted to Schneider Laboratories, an AIHA Environmental Lead Laboratory Accreditation Program (ELLAP) accredited laboratory for analysis.

7.0 DOCUMENT CONTENT

Consultation has been provided as stated in the Scope of Work for renovation of the structure.

The knowledge of the consultant is based upon current information and research. If local knowledge indicates error, omissions, or inaccuracy, please notify the consultant.

8.0 DOCUMENT USE

This document and all attachments provided are for the exclusive use of Harry Pepper and Associates.

SECTION 9.0

LABORATORY ANALYTICAL DATA

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Destription	Appearance	Nondsberetor		Asbagtas\% Type
			\% Fibrous	\% Noti-Fibrous.	
ST-A-1A $3 \mathrm{~S} 1402468-5004$	on E. Side of Softcore - 18 Flishing	Verrous Fibrous Hetrogenedus	5\% Synthetic	95\% Nor-tibrous (Other)	None Detected
ST-A-1B 	on E. Side of Solteore-18 Fitshing	Various Nom-Fibricus Hetarcgenemus	35% Synthenic	975. Nam-fibrous (other)	None Detected
ST-A-9C 347402406-900	에 S. $\mathrm{SH} \mathrm{H}_{\mathrm{E}}$ की Soltcore-13 Fleshing				Not Submitted
ST-A-2A 	Around Door on E. Side-1B Caulking	Gray/Rutit Nor-Fibrous Hatercgertacus		100\% Nor-fibrous (other)	Nowe Ditucted
ST-A-3A 1.11402406.0005	on Top of Corvette-16 Coating	Venous Non-Fibiout Hetercgenecus		20% Quartz 80\% Nor-fibrous (olher)	None Datected
ST-A-3B 3-140240e.ccoid	on Top of Convita - 16 Cosking	Various Non-Fibrous Helertajeneous		20% Quartz 80\% Non-fibrous (ofther)	None Deteeted
ST-A-3C $341402408-0007$	on Top of Corvette-16 Cogling	Various Non-Fibraus Heterogeneous		26\% Quert 75\% Nor-fibrous (dher)	Nono Detected
ST-A-4A 341402406-90\%	Under Door Stop on E. Sude - 16 Caulking	Gray Nor-Fibrous Harnogeneaus		100\% Ner-fibrous (other)	None Detected
Einj faber ur maitsobk					
Analytis ${ }^{\text {a }}$)					
	(6)				Asbestos Lab Manager proved signatory

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93r116 Method using Polarized Light Microscopy

			Non-Ashertos			Astrestron $\%$ Type
Sample	Description	Appoarance	\%	Fibrous	\% Noh-Fibrous	
5T-A-5A-Insulavion 	on Jop ap Corveture-15 Black Fotm Pipe Insulation	Blact Non-Fibrous Hamcgeneous			950.. Perlite Bi. Nor-firous (other)	None Detected
STA-5A-4Hicicic स1T4	onTop of Corvette- 18 Elack Foam Pipio Insuation	Elack Non-Fibrous Homogeneous			100\% Non-tibrous (other)	None Defected
Sil-A-bA-Wrap 34170246500910	on End of Pipe E of Soltcore-11 Gasket	Whtelsherfinust Fibrcus Hetercagenecus	$\begin{aligned} & 40.4 \\ & 15.4 \end{aligned}$	tellulose Glass	45\% Nor-fivrous (other)	None Detected
ST-fi-AA-Itrswation 3A140: 106-0r1PA	on End of Pipe E of Softeore - 11 Gasket	Yelow Fibrous Homogemeous	98\%	Glass	2\% Nor-fibrous fother)	None Detected
SF-A-7A-Mestuc $34402400-0011$	-11 White Wrapping on Fobm Insulation	White'Rust Non-Fibraus Horrogerneous	5\%	Woplastorite	95\% Nor-fibrous (other)	None Defected
ST-A-7A-Incuration 	11 White Wrapping on Foam Insulatan	Yellow Fibrous Homogeneous	985:	Class	2\% Nom-fibrous (other)	None Detected
$\mathrm{ST}+\mathrm{A} \cdot \mathrm{BA}$ 	Ground Lever on Hydroger Vent Line - Caulkion	Gray/Rust Fibrous Homogenmous.		Wodastonte Glass	93\% Non-fibrous fother)	Norp Detected
ST-A-8B $3414080 \mathrm{CJ}-0013$	Ground Lever on Hydrogen Vant Line - Caulking	GrayiRust Fibrous Homogenebus		Glass Wellastonfe	93\% Non-tibrous (othe,	Noine Detected

Arnalyst(s)


```
|
```

Inithe report from 03/27/2014 07-05:39

Test Peenort PLM-728.9 Printed 327/2014 70539 AM

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

8ample	Description	Apprapance	htomeAsherstos			$\begin{aligned} & \text { Ashestos } \\ & \text { \% Typ } \end{aligned}$
			\%	Fibpus	\% Nan-Fibraus	
ST-A-AC 3414646060014	Ground Level on Hydinogen Vent Line - Cauking	Gray Fibrous Homogeneous	5\%	Wellastonue:	95\% Nom-fibrous (ofter)	None Detreted
ST-A-9A 	Ground Lever on Hydrogern Vent Lure - Insulahorn	Gray Non-Fibeous Hortwagenzous			100\% Non-fibrous (olherf	None Deterted
ST-A-98-Gray insuletion 	Ground Level on Hydrogen Vent Lire - Insulation	屯my Non-Fibraus Hormogenemus			100\% Non-fibrous (other)	Mone Detecterd
ST-A-9B-Yellow insulation $341402406-1015 A$	Ground Level on Hydrogen Vent Line - insulation	WhiterYellow Non-Fibraus Homogeneous			100\% Nom-fibrous (0ther)	None Detected
ST. A .9 C $95: 50200-0018$	Ground Level on Hydrogen Veit Line - Insulataion	White Non-Fiobrous Homogerieous			100\%\% Non-fibrous (other)	None Defected
ST-A-10A 541802404 3018	on Corrugated Metal Wall Cataking	Gray/Rust Non-Fibrous Heterogeheous			100\% Nox-fibutows \{ilher\}	None Detected
ST-A-11A $341902405-0019$	Dock Level on Stalniess Staal Pipe - Elbow Insulation					Not Submilted

Intiel repont from 03/27/2014 07:03:39

The following analytical report covers the analysis performed on samples submitted to EMSL Analytical. Inc. on $3 / 25 / 2014$. The results are tabulated on the attached data pages for the following client designated project:

140063 Stennis

The reference number for these samples is EMSL Orde \quad Please use this reference when calling about these samples. If you have any questions, please do not hesilate to contact me a

The lest resutts contained whinin thas report meet he rexpirifements of NELAC endyor the epperifc contitication program that is applicabde. undess otherwise noted. NELAP Certifications: NJ 0\$036; NY 10972, PA 68-00367

The samples associalad with this report were recerved in good condition unless otherwise noted. This report relates ondy to those liems tested as regeiued by the laboratory. The QC data associated with the sample resculls meat the recovery and precision requirements established by the NELAP, untess specifically indicated. All results for soil samples are reported on a dry weigh basis. uniess otherwise noted. This report may not be reproduced excepl in full and without writen approval by EMSL Anatylicall, Inc.

Analytical Results

Cilent Smplo Description	1 ST-PCE-1		Colfected:		Lab ID:		0001			
	18 caulkh	core								
Method	Parambiter	Result	RL	Units			Prep Date	Analyst	Andilysis Date	Anatyst
3540C/8082A	Aroclor-1016	ND	0.28	$\mathrm{mg} / \mathrm{Kg}$	$3126 / 2014$	RS	3/2712014	TL		
$3540 \mathrm{C} / 8082 \mathrm{~A}$	Arachor-1221	ND	0.28	$\mathrm{mg} / \mathrm{Kg}$	3/25/2014	RS	32712014	TL		
3540C/8082A	Arochor-1232	ND	028	mgikg	3/25/2014	RS	3/2712014	TI.		
3540crabeza	Aroctor 1242	ND	0.28	$\mathrm{mg} / \mathrm{kg}$	3/25i2014	RS	$3 / 27 / 2014$	TL		
3540С/8082A	Aroclor-1248	ND	028	$\mathrm{mg} / \mathrm{Kgg}^{\text {g }}$	3/25/2014	RS	372712014	TL		
$3540 \mathrm{C} / 8082 \mathrm{~A}$	Arackor-1254	2.5	0.28	$\mathrm{mg} / \mathrm{kg}$	3/25/2014	RS	$3 / 27 / 7014$	TL		
3540 c/8082A	Aroctor-1280	ND	028	$\mathrm{mg} / \mathrm{kg}_{9}$	312512014	RS	3/27/2014	TL,		
3540c/8002A	Anoctor. 1262	ND	028	$\mathrm{mg} / \mathrm{Kg}$	3/2512074	RS	3/27/2014	TL		
3540Craba2A	Aroctor 1288	ND	028	ming/kg	3/25/2014	RS	3/27/2014	TL		
Client Sumpto Description	$\begin{aligned} & \text { ST-PCE- } \\ & 16 \text { soticor } \end{aligned}$			Collected:		Lab ID:	0003			
Mathor	Paramotar	Resuft	RLL	Units	Prep Data	Analyst	Analysis ante	Analyst		
3540Clieg82A	Arockor-1016	ND	0 08	$\mathrm{mg} / \mathrm{Kg}$	325/2014	RS	W28/2014	TL		
3540C18082A	Aroctor-1221	ND	060	$\mathrm{mg} / \mathrm{kg}$	3/25/2014	RS	3/29/2014	TL		
3540C18082A	Arockro-1232	ND	088	$\mathrm{mg} / \mathrm{Kg}$	3/25/2014	RS	32812014	TL		
3540C/8082A	Arcelor-1242	ND	088	$\mathrm{mg} / \mathrm{Kg}$	3/25/2014	RS	3/2812014	TL		
3540C88082A	Aroctor-1248	ND	0.88	mpfikg	3/25/2014	RS	$3128 / 2014$	TL		
3540C/8082A	Aroctor- 254	ND	0.88	mgikg	$3725 / 2014$	RS	3/28/2014	TL		
3540Cr8082A	Anoctior- 260	ND	088	mgikg	3\%25/2014	RS	3288/2014	TL		
3540C/8083A	Aroctor-1262	ND	0.88	mgikg	3/25:2014	RS	3/28/2014	TL		
3540C18082A	Aroctor-1268	ND	088	mgikg	3/25/2014	RS	3/28/2014	TL		
Client Sampla Description	$\begin{array}{ll} \text { ST-PCE }-4 \\ 17 \text { Paint on } \end{array}$			Collectad:		Lab ID:	0004			
Hethod	Parametar	Result	RL	Unts	Prep Dats	Analyst	Analyazis Date	Analyst		
3540C78082A	Arocior-1016	ND	097	$\mathrm{mg} / \mathrm{Kg}$	32552014	RS	3/2912014			
3540C/8082A	Arecior-1221	ND	0.97	$m \mathrm{~m} / \mathrm{Kg}$	$3 \times 25 / 2014$	RS	3/28/2014	TL		
3540C/8082A	Aractor- 1232	ND	097	$\mathrm{mg} / \mathrm{Kg}$	3725:014	RS	3/28/2014	TL		
3540C/8082A	Aroctor 1242	ND	097	molkg	3/25i2074	RS	328/2014	TL		
3540 Cr 9082 A	Aracior-1246	ND	097	$\mathrm{mg} / \mathrm{kg}$	$3 / 25 / 2014$	RS	3/28/2014	TL		
3540C/8082 ${ }^{\text {A }}$	Araclor 1254	1.2	097	$\mathrm{mg} / \mathrm{Kg}$	325512074	RS	\$2812014	TL		
$3540 \mathrm{C} / 8082 \mathrm{~A}$	Aractor-1260	ND	0.97	mgikg	3/25/2014	RS	3/282014	TL		
3540C/8c82A	Aroclor-1282	ND	0.97	mokg	3/25/2014	RS	3/28/2014	TL		
3540C/8082A	Aroclor-1268	ND	0.97	$\mathrm{mg} / \mathrm{kg}$	312512014	RS	3/2312014	JL		

Analytical Results

EMSL Order. CustomeriD: customerpo ProjectiD:

Test Report：Lead in Paint Chips by Flame AAS（SW 846 30508／7000B）＊

	NDI	Sami Commadration	Wetes
0001 3＋20／2014	0.012 － 10	4.7% wit	Site．19 Hancral White
Client Sampfe ST－z			Cullewed：3／21／2014
0002303014014	0．010\％w	0.024 䓂 w	Site 19 Stairs Whate
（fient Sumple ST－3			Cullected；3／21／2014
0603 3／262014	$0.010 \% \mathrm{mt}$	012 mm	Site 19 Stairs Whte
（7ent Sump／e ST－4			Cowlected：3／21／2014
000437282014	$0.030 \% \mathrm{wt}$	d．的的 \％W	Site： 18 Soulh Side Softeore Whall Pintik
Cllent Sumpore ST－6			Cancuterde 3／212014
0005 32812014	0.010 \％ wt	0．049 \％wt	Site 15 West Side Soltcore Pink Collected； 3／21／2014
C／hent Sample ST－7			
0006 3／2＠／2014	0．078 \％wi	0.56 5ix	Stie： 18 East Silde Paink on Flashing of Softcore Grey
Chent Sumple ST－B			Collcerd：3r212014
0007 3／26／2014	0010\％mt	027 ct	Site 18：East Side Faint on Fleshing of softerre Grey
Cfient Sampe ST＋星			Cohlectud 3 31／2014
0008 3／26120i4	0.010 \％wt	029 Fwt	Site．18 East Side Softcore Wall Grey
Chems Simule ST－10			Coffected：3／21／2014
$00093128 / 2014$	$0.010 \% \mathrm{mt}$	19\％wt	Site 18 E Side Pand on l－peam Grey
CHen Somple ST－11．			Colfectere 3 3，21／2014
0010 3／26i2014	$0.010 \% \mathrm{wt}$	$28 \% \mathrm{wt}$	Site： 17 E．Slde Paind on l－beam Gray
Chent Sampde ST－12			Colfecters 3／21／2614
0011 3／26／2014	0.010% w	0.0668	Site． 17 E．Sidie Soflcore Pain on Door Grey
Chent Sump／e ST－13			（ollected： $3 / 21 / 2014$

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Juhth. thupred	R mm	Icoder Cuncrentrmion	Fuls
$00123 / 2812014$	0.010 \%90	0.014% w	Site. 16 S . Side While Pant on Suftcore White
Cllent Stubite ST-18			Coltreted: 3/21/2014
00Y3 2/26/2014	$0.010 \% \mathrm{~mm}$	<0.010 \% wt	Site: 16 S. Slde Blue Pantion Soticore wall Blue
Clfent Somple ST-19			Culfectred: 3/21/2014
0014 3/28/2014	0.014% w	0.29 .a w	Site: 16 Rapiling White
Chent Sample ST-20			Culfertert 3/21/2014
0015 3/28/2014	$0.010 \% \mathrm{mt}$	34% w	Site 11 E Side Softcore P1-3801 Pipe Grey
Clem Sampte ST-21			Cultu led: 3/21/2014
0016 3/26,2014	$0.012 \% \mathrm{mt}$	030\%\%m	Stee 11 Base Column of Convette
Chent Sumple ST-23			Colfectert: 3/212014
0017 32612014	$0.010 \% \mathrm{wd}$	17 mum	Siter 11 10" Vertical Pipe Part of Deluge Systern
Chem Sumple ST-24			colfertued: 3/21/2014
0018 328\%O14	0,010\% mit	27% w	Site: 11 VA 3Jothâ $21 / 2^{1}$ Pipe on Scticome
Chemi Suppde ST-25			Collectert: 3/21/20:4
0019 3/26r2014	$0.011 \% \mathrm{~m}$	0.13% w	Stue: 11 3" Helium Pipe
Chent Sumple ST-20			(Tolle eledi 3/21/2014
coso 3/26/2014	$0.012 \% \mathrm{md}$	0.1358 wl	Site 17 Base Columin of Convette
Chem Sample ST-27			(ishlerede - 32112014
$0021 \quad 3 / 2612014$	0.011 \% wt	$0.96 \% \mathrm{wl}$	Site. 11 Railing White
CIIent Sampie ST-28			Cotfected: 3/21/2014
0022 3/26/2014	0.010 \% w	2.2 \% me	Site: 11 Verical Fire Line Whilp
Crient Sampie ST-29			Collervet: 3/21120:4
0023 3/2612014	$0.010 \% \mathrm{wt}$	28 \% wt	Site: Ground Deluge Water System Pipe 日eige
Chent Sample ST-30			Colleciedi 3/21/20:4

Test Report: Lead in Paint Chips by Flame AAS (SW $8463050 \mathrm{~B} / 7000 \mathrm{~B}$)*

Lıbin): sturymed	RDA.	Seud Conscentrution	Velcs
0024 3/26/2014	$0.010 \% \mathrm{~m}$	41% me	Site: Ground Deluge Water Systern Pipe Beige
Cuenr Sumple ST-31			Codecred: 3/21/2014
0025 3/26/2014	0.010% wt	0.015 \% w	Site. Grounce Bot Angle Support under Flame Buxket Be:ge
Cllent Sample ST-32			Coltected: 3/21/2014
0026 32612014	0.010% wt	$0.098 \% \mathrm{mt}$	Stre: Ground Bolt under Flame Buckel Bege
CHen Sumple 87.34			Cimbered: $3 / 2122014$
0027 3/26/2014	0.010% wt	17\% wt	Site Ground under Fiame Bucket Geige
Chent Stmpfe ST-33			Cuthecred: 3/21/2014
0028 3/28/2014	$0.010 \% \mathrm{wt}$	0.21 smt	Site: Ground Eotts Under Fiante Bucket Sege
Cliemt Sumpie ST-37			Collected $\quad 3212014$
0029 3/2602014	0.010 \% m	0028 : mm	Sitr: Ground Elevfeed First Babe Plate under Flame Bucke
Crient Sanble ST-38			Cothereded 3/21/2014
0030 3/2612014	0.010\% \%	47% mm	She Elevatec First Lever Deluge Water System Pipe SE B
Cllen Souple ST-39			Coffectert: $3 / 21 / 2014$
0031 3/26/2014	0.0140 wt	$0.078 \% \mathrm{wt}$	Sthe: Eleveted First Level Verical Deluge Water System $\$$
Client Sample ST-40			Collected: 32112014
0032 3/2612014	$0.010 \% \mathrm{mt}$	21 m m	Site. 11 Deck pf Batriefield Befige
Chent Sumple ST-41			
0033 3/2612014	0.013 \% m	4.7% wn	Site 11 VA3K67W Deluge Warer Syslem SE Ton of Batteshi
Cllent Sumple ST-42			Cealloted: 3/21/2014
0034 3/28/2014	0.011 3 m	23\% w	Site 11 I-bearn Structure on Top of Batlestup Beige
CHent Sample ST-43			Collererd: 32112014

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

	R dr $^{\text {d }}$	Cital Comerermion	Vpres
$0035 \quad 3 / 2662014$	0.020 \% m	$0.33 \% \mathrm{~m}$	Site. 11 Raing on Top of Batrestip Beige
Chent Sumple ST-44			Coflerued: 3/212014
0036 3/28/2014	0.010\% m	0070 5\%	site: 11 I -beam Siruclure on Top of Extileghtip Beige
C7iun Sumple ST-4\$			Culfecedi 3/21/2014
0037 3/23r2014	$0.010 \% \mathrm{mt}$	0.20 mt	Site 11 Floce on Top of Batteshiq Grey
Chent Sumple 6T-46			Coffectul) 3/21/2014
O03a $\quad 32 \mathrm{c} / 2014$	$0.010 \% \mathrm{wt}$	0063% wt	Site 11 Floc: on Top of Bettieship Grey
Chiven Sample ST-47			Coffecterd $\quad 3 / 2112014$
00393	0.010 ct m	0.010 \% wt	Site Ground Botiom of Fiame Bucket Grey
Chens Sumpie ST-48			Cothuted: 3/21/2014
0040 3/26/2014	$0.010 \% \mathrm{~m}$	$0.053 \% \mathrm{wt}$	Site: Ground Botom of Fleme Bucket Grey
Client Sanupde ST-49			Coffiected: 3/2122014
0041 3/23/2014	$0.017 \% \mathrm{wt}$	0.52 \%m	Sile: Ground inside of Flame Bucket Yellow
Cllent Sannde ST-53			Coltecwert: 3/21/2014
0042 3/28/2014	$0.015 \% \mathrm{wh}$	3.6% wt	Siter 2 Suppor 1 -beam for Deluge System Grey
Chent Sumple ST-52			Collectert: 3/21/2014
0043 3:2\%2014	0.012 wt	6.4\% wh	Site 2 Suppor 1-beam for Deluge System Grey
(hent Sumple ST-53			
0044 3/282014	$0.018 \% \mathrm{wt}$	35 \% wt	Site'3 Bay 3 Denuge Pipe Support Bux Grey
CHent Sample ST-54			Collerimert 3121/2014

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Tuhilk taurbzed	RDL	1. wil Cumentruiur	Veres
0045 3/2812014	$0.010 \div \mathrm{mt}$	24 \% wt	Site. \ddagger Bay 2 Deluge Pqe 5 uppar Box Grey
Clutu Sumiote ST-55			(obtrecued: 321:2014
0046 3/26/2014	0.033 st wt	$0.058 \% \mathrm{mr}$	Site 3 Bay 3 Support 1-beam Grey
Chem Sumple ST-56			Coltecterl: 3/21/2014
0047 3/26/2014	0.010\% m	$012: m$	Site 3 Hay 2 Support 1-peam Grey
Chent Sumple ST-69			C'pheciedi $\quad 3 / 21 / 20.14$
-0488 3/28/2014	$0.010 \% \mathrm{w}$	0074% wd	Site 11 Support Hangers for Firex and Helum Pipes S Si
Chent Sample ST-60			Collterted: 3/21/2014
0049 3/28/2074	0.010 \$6 m	$0.33 \% \mathrm{wt}$	Site: 11 Supporl Hargers lox Firex Pipes S Sude Pink
Chimt Suspice ST-61			Coilerited: 3/21/2014
0050 3/26/2014	$0.010 \% \mathrm{wt}$	15% mit	Site: 11 Support Hangers lor Firex Plpes E Side Grey
Cluent Sample ST-62			colfered: 3121/2014
0051 3/28/2014	$0.015 \% \mathrm{mt}$	0.23 \% wt	Site: 11 Supporl Hangers for Firex System Smal Pipes Gr
Chient Sempole ST-83			Coiltected: 3/2120014
0052 3/28/2014	0,021 \% wt	$0.52 \% \mathrm{~m}$	5He: 11 Suppori Hangers tor Firex Sysiem Grey
Chent Sample ST-B4			Collected: 3/21/2014
0053 3/26/2014	0.015 s mt	$0.33 \% \mathrm{mt}$	Sile: Ground Main Deruge Fipe Benge
Chent Sample ST-65			Cobreciedt 3/212014
0054 32820014	0.010\% wt	5.2 \% m	Site: Ground Support for Deluge System Bege
Chent Sample ST-67			Colferent: 3/21/2014
0055 3/26/2094	0.010% wt	0.088×4	Site. 18 Exderior Wall of Corverte White
Cient Sempie \$T-68			CaNected: 3/212014

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Airh If. .totuduced	RID.	A.rud tountuirmiour	Tores
0056 3/25/2014	$0.010 \% \mathrm{~m}$	S6\% ${ }^{\text {\% }}$	Site. 18 Interior Wall ar Co vetie White
Clun Stumpe ST-71			Codevredt 3/21/2014
0057 326/2014	0.016% wt	$4.4 \% \mathrm{~mL}$	Site: 16 Fire Supression System Whate
Clfent Samole St-73 $^{\text {a }}$			Colbereft $\quad 3 / 21 / 2014$
0058 3/251/2014	0.057% wt	03% w	Site 1 Nitrosth Line While
Chent Sumple ST-73A			Collecredr 3/21/2314
0059 3/2812014	$0.010 \% \mathrm{Wt}$	04287	Sile. 1 Helium Ling White
Crient Somple ST-74			(oHecterdt 3/21/2014
0060 32612014	$0,025{ }^{\circ} \mathrm{O}$: wt	24 c	Site: 1 Air Line Whate
Clatu Simple ST-75			Collcurds 3/212014
0061312052014		$0.12 \% \mathrm{~m}$	Site 1 Hydrogen GH White
C7iend Smmple ST-76			Cowhecredt $\quad 5 / 21 / 2014$
0062 3/26/2014	0.028% w		Site 9 Hellum He White
Clien Sapupe ST-7]			Cohertup: 3/21/2014
0063 3726/2014	0025% wh	$20 \% \mathrm{md}$	Siter 1 Suppert Beren frox Pipes White
Cleris Smuple ST-78			Contryed - \quad /21/2014
0064 3/2802014	0.010 \% wh	$37{ }^{3}$	Silte. Ground E. Pier Stair Reailing Beige
Chent Sampole ST-79			Cottectent 3/21/2014
0065 3/28/2014	$0.020 \% \mathrm{wt}$	$56: w h$	Site: Ground E. Pier Stair Kick Plade Beige
Chent Sample ST-80			Colfecter: 3/212014
0066 3,26/2014	$0.010 \% \mathrm{wt}$	$35 \% \mathrm{~m}$	Ster Ground E. Pier Stair Post Beige
Chient Sumple ST-B1			Cullecired; 3/21/2014
0067 3/2612014	0.012% wt	9.7% wd	Site: Ground Dock Support Beam Whrte
C7l/fI Snmple ST-82			Collecued; 3/21/2014
		\square Ph.D., Laboratory Manager or cher approwed signacry	

[^0]

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Tuh he: sambzed	sbl.	Asuel Comereurution	Nouter
O065 3-2012014	0.017% w	7.2\% m	Site Ground Dock Support Beam White
Chenos Supule ST-83			Collected: 3 3212014
0069 3/7812014	$0.010 \% \mathrm{wt}$	$44 \% \mathrm{wt}$	Site: 3 E. Pier Star Post Beige
Cllent Sample ST-84			Colfected: 3/21/2014
0070 3/2912014	$0.010^{*} \mathrm{wt}$	29 is wt	Site 3 E Puar Stas Rearing Beige
Cllent Sumple \$T-85			Coliceredi - 3/21/2014
0071 3/2812014	0.013 tb wt	125.4	Stle 3E Pier Star Plale Exiga
Chent Samind ST-88			cibletedt \$/21/2014
0072312812014	$0.010 \% \mathrm{wt}$	$13 \% \mathrm{wl}$	Stite 18 Stair Railing White
Cient Sumpur ST-88			coulterted: 31212014
60:3 3/28/2014	$0.010 \% \mathrm{mt}$	22 \% wt	She: 18 Stair Kck Plate Whilte
			Cofhertere 3/212014
0074 3/28/2014	$0.021 \% w t$	0.29 \% wt	Site: 16 E. Side Stair Relling White
Chen Stmody ST-90			Cwhlertedt 3/21/2014
0075 3/23/2014	$0.041 \% \mathrm{wt}$	$076 \% \mathrm{nt}$	Site 16 E Side Stair Post white
Cizar Sumple 8 T-91			Coplected: 3/21/2014
$0075 \quad 312512014$	0.046 \% wt	30 \% m	Stier 15 E. Side Kick Plater Whrte
Chent Sample \$T-92			(cillected: 3212014
0077 3/2312014	$0.010 \% \mathrm{wt}$	11 \% we	Sive 11 S Side Stair Railing White
Crent Srmpaie ST-93			Coltexted: 3/21/2014
0078 3/2612014	$0.010 \% \mathrm{wt}$	1.1 \% wn	Site. 11 S. Side Stair Kick Plate White
CIPht Sumple ST-94			Colfered: 3/21/2014
0079 3/2al2014	0.010% wt	$22 \% \mathrm{~mm}$	Stie. 11 S. Side Steir Post White
Cllemf Smmotr ST-95			Colfecied: $\quad 35212014$

EMSL Analytical, inc.
6125 Adansen Btreat. Suite 900, Oflando. FL 32804
 nis: Hhen Ensican prlancolanti-nslcan
$\left[\begin{array}{l|l}\text { EMSL Order: } & \\ \text { CustomeriD: } & \text { OCCU56 } \\ \text { CuslomeraO: } & \\ \text { Projectic: } & \end{array}\right.$
OHC Environmental Engineering, Inc.
Phon
Fat:
Received
Received
Suite 100
Tampa, FL 33609
LProfect: 14ypas Sterinis

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

	kid.		Thuma
$0080 \quad 3 / 2812014$	0.0295	2.75 wt	Site. 8 Walkway S. Bide of Bsaloship - Railkng White
Cumb Semofe ST-9E			CrHertarlt - 3 21/2014
0061 3126/2014	0000\%mm	095% w	Site 9 Walkway S. Side al Craticship - Post Whate
Cticousturude ST-日7			Culherapt 3 31212014
0082 3-2912014	-010 $\mathrm{m}_{3} \mathrm{w}$	14 gh w	Site: 9 Walkapy 5 . Side of Baturship - Kick Plaxe White
Chenf Sumple St-98			(oulewtul 3 31/2014

Inidial report from 03/26/2014 19:47\%

[^0]:

 1
 Inital report from 03/ra/2014 19:41 08

