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Previous correspondence to NASA was ignored: JSC-Partnerships@mail.nasa.gov on Fri, Jan 3, 

2014, 11:07, my time. 

 

If NASA/TM—2004–213283 used a barrel shaped capacitor was tested also for the so called 

"Biefeld-Brown" effect in vacuum and reported no thrust, 

Under the title, "6. VACUUM TESTING AND RESULTS" it reads, "… In hard vacuum even with 

potentials above 50 kV, there was no measurable performance observed …". 

 

The experiment is fundamentally wrong because in vacuum, thrust is not expected to appear due 

to high electric field gradients but due to a totally different effect. What causes an 

electro-gravitational warp drive is charge separation, see my paper, that is about to be published, 

on the next page. 

The barrel shaped capacitor has maybe only few Pico-Farads of capacitance and even under 50000 

volts not enough charges form an electric dipole to yield a measurable electro-gravitational effect. 

 

My assessment is of an effect that resembles Alcubierre warp drive and also accounts for the well 

know Dark Matter and Dark Energy effects in large astronomical scale due to slight charge 

imbalance or due to magnetic fields. 

The virtual mass appears on the two sides of the dipole and can be calculate according to the 

non-quantum limit equation (7) in my paper and according to (6.4) as 
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  such that K is the gravity constant, 0  is the permittivity and Q  

denotes the charges. The Sciama-like Inertial Induction conservation law can be seen in (25). 

By using very special two multi-layered boards, a capacitance of 20 Micro-Farads over a gap of 1 

meter and with 1 Mega-volts voltage can achieve high performance gravity which at optimistic 

assessment, without analytic solution of (7) and (25), implies a space-craft. With the correct 

geometry, and cockpit just above the positive board/plate, zero g will be experienced by the pilot. 

 

Kind and warm regards, wishing you Eytan Suchard. 
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Abstract: Einstein equation of Gravity has on one side the momentum energy density tensor and on the 

other, Einstein tensor which is derived from Ricci curvature tensor. A better theory of gravity will have 

both sides geometric. One way to achieve this goal is to develop a new measure of time that due to 

multiple curve intersections can't be a coordinate. One natural nominee for such time is the upper limit 

of measurable proper time measured along the longest geodesic curve from near the "big bang", either 

as a set of events or as a singularity, to any event. By this, the author constructs a scalar field of an 

upper limit of measurable time. Time, however, is measured by material clocks. What is the maximal 

time, that can be measured by a small microscopic clock, when our curve starts near the "big bang" - 

event or events - and ends at an event within the nucleus of an atom ?  Will our tiny clock move along 

geodesic curves or will it move along a non geodesic curve within matter ? It is almost paradoxical that 

a test particle in General Relativity will always move along geodesic curves but the motion of matter 

within the particle, may not be geodesic at all. For example, the ground of the Earth does not move at 

geodesic speed. Where there is no matter, we choose a curve from near "big bang" event or events, to 

an event such that the time measured is maximal. The gravitational field causes that more than one such 

curves intersect at events, which could result in discontinuity of the gradient of the scalar field of time. 

The discontinuity can be avoided only if geodesic motion is prohibited in material fields. 
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1. Introduction 

A) The principles of the presented theory 

      All the following paper is an improvement of an early paper [1]. 

 If spacetime is homotopic to either a single creation event or to a set of creation 

events from which we can say the cosmos started its expansion, then maximal 

proper time curves can be drawn between that event and any other event and 

therefore attach a time value to any event in space time. Intersections of such 

curves, however, prevent the global use of a single curve as a time coordinate but 

does not prevent definition of such time as a scalar field. Although the big bang is 

either a singularity event or singularity initial events, it is impossible that unbound 

time can be measured from an event backwards to near big bang. Such unbound 

measurement is inconsistent with any physical reality. Along these curves, we can 

imagine a tiny clock that travels and measures time. It is an important point that 

not the time is a field, but its upper measurable value by a clock particle is, see [2] 

for Sam Vaknin’s idea of Chronon. 

 It is essential to understand that the time discussed in this paper is not a coordinate. 

Many curves along which the upper limit on time form big bang event or manifold 
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of events is measured, can cross the same event. Therefore the gradient of the 

upper limit is a gradient of a scalar field and not of any coordinate. This paper 

uses this gradient to describe curvature which is closely related to acceleration. It 

is the curvature of clock trajectories as they interact with matter fields. In other 

words, matter prohibits geodesic 4-motion even of stationary particles due to 

gravity and not only of the ones measuring the upper limit of measurable proper 

time. A new principle of equivalence and an anecdote of gradient continuity: The 

gradient of the upper limit of measurable time from an event, back to near big 

bang - event or events - is continuous. Clock tick is different under space location 

due to gravity. The scalar field therefore, has a significant gradient by space.  

Where there is matter, however, different upper-limit-of-measurable-time curves 

may intersect. Therefore, at intersection events, the gradient of the scalar field 

can't be parallel to all of the curves. The result of this short argument is that a test 

particle moving along an-upper-limit-of-measurable-time-curves will not undergo 

parallel translation and will be non-geodesic near matter. This fact is a strong 

motivation to offer an intrinsic curvature operator of the gradient of the upper 

limit of measurable time as equivalent to matter. 

 The definition of event: The paper does not deal with a description of the 

coordinate of time. The coordinate of time is not subject to any equations! The 

upper limit on measurable time from the past to an event is subject to such 

equations because it is measured by material clocks and material clocks are 

influenced by space-time curvature and by forces. The main problem is that any 
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particle that has mass, experiences a different trajectory under the same force. To 

say that the geometry of the trajectory has a physical meaning, we must accept 

that either there is a unique particle that can interact with any material field e.g. [2] 

or to give a definition of an event that is consistent with this theory as related to 

non-gravitational acceleration. 

Definition: We will define an event as a non-gravitational interaction or more 

precisely as a collision. A satellite Fly-by interaction is therefore not considered as 

an event unless non-inertial acceleration is detected. 

 The laws of Nature will never directly involve any absolute upper time limit. 

Instead, we will be coerced to define them by using the gradient of such time, 

which is indeed local. This point is crucial to the understanding of the paper. 

 The apparent shortcoming of this paper is that on one hand it talks about particles 

but on the other, it tries to avoid discussion of quantum field theory, however, the 

main subject of the paper is the phenomenological non geodesic movement of an 

interacting particle that measures an upper limit of time to an event. The classical 

description of the geometry of the particles trajectory and its relation to the 

existence of mass does not require Quantum Mechanics. Nevertheless, the idea of 

quantum coupling between an upper limit of measurable time, and how much 

matter is present where this upper limit is measured, is discussed as a natural 

possibility of the presented theory along with its outcome. 



ELECTRO-GRAVITATIONAL TECHNOLOGY VIA CHRONON FIELD 

 A nice, though less important issue, is that local foliation of space time into 3+1 

dimensions requires time orthogonality unlike in Kerr solution. This idea will also 

be addressed though it is a bit speculative. 

Classical or quantum matter: The gradient need not be parallel to any geodesic curve 

due to force interactions, avoiding singularities: 

Our strategy now will be to understand, why are forces needed where there is mass? 

We will see that without such forces, the previously mentioned "anecdote of gradient 

continuity " can't hold. The direction in space time of the maximum proper time forms 

a geodesic curve but not necessarily the gradient of the field is parallel to a geodesic 

curve because 1) more than one curve can reach the same event 2) at that event, force 

will cause any test particle clock to move along non geodesic curves (see Appendix B 

for understanding the role of forces) and 3) A real world particle clock will not move 

along geodesic curves within matter, otherwise its measurement will result in 

discontinuities or singularities of the gradient of the upper limit of measurable time. 

The idea of such particle clocks is not quite new [2] and is important for the action 

operator that will be presented in order to have physical meaning. Good examples of 

discontinuity are the center and edge of a hollowed ball of mass. Due to General 

Relativity, the clock ticks in the gravitational field of the ball are slower than far from 

the ball. As a result, max proper time geodesic curves from say "big bang" - event or 

events - must come from outside the ball into the ball. The time at the center of the 

ball is also a geodesic curve but it is in the time direction in Schwarzschild 

coordinates due to symmetry. The vector field of the lines is therefore discontinuous 
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and we may have a non zero [3] Euler number of the gradient of the upper limit of 

measurable time. As was already mentioned, one way to resolve such singularities is 

that our particle clock will experience force. Space-time in a hollow ball of mass is 

conic i.e. the Schwarzschild metric coefficient 
rrg  of dr is greater than 1, and is flat 

but with a zero measure singularity of the Gaussian curvature at the center which is 

the tip of 4 dimensional cone. In any case, such force has to be negligible though it 

should exist and should disallow geodesic movement in the sub atomic scale that will 

otherwise manifest the gradient singularity. 

(Fig. 1)  The line of the max proper time field from "big bang" - event or events - is 

discontinuous in the middle of a hollowed ball of mass and therefore a real world 

clock will not move along geodesic curves at such points no matter how negligible is 

such an effect. 

 

The "anecdote of gradient continuity" can hold in the sub-atomic level by forces that 

prevent any microscopic real world clock from moving along geodesic curves. Our 

field sets an upper limit to measurable time by any such tiny clock particle. The 

conflict without the existence of forces is apparent also on the edges of the ball 

because matter is granular, that is to say that the mass is not evenly distributed. 

Particles measuring absolute maximum proper time from “big bang” - event or events 

- along curves that enter the ball, must pass through the walls of the ball or 
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hyper-cylinder in 4 dimensions. Therefore, gravitational lenses are formed and events 

in the hollowed part of the ball are accessible by more than one curve. These 

singularities can be resolved too if any real world particle-like clock will not move 

along geodesic curves in the microscopic vicinity of matter, e.g. due to 

Casimir/Casimir Lifshitz [4] and thus the gradient will be smoothed. 

(Fig. 1A) On the edges, gravitational lenses due to granularity cause the geodesic 

conflicts. The particles form an obstacle that is bypassed by the entering curves. 

 

Also in this case, the new set of gradient conflicts (at absolute maximum proper time 

intersection events) can be avoided by forces exerted on the clock. If we say that 

matter is measured by such conflicts/intersections of time gradients, then the fact we 

also have a microscopic though negligible geodesic conflict in the center of the ball 

and the "anecdote of gradient continuity" attest to some non-locality of the energy of 

matter. Weak force fields out of known boundaries of matter are yet to be 

experimentally found. We will call them “Secondary Dark Matter", “secondary”, 

because it is not the regular notion of warm or cold dark matter that is often 

mentioned in astrophysics. In big words, the theory that is behind this paper says that 

indeed, laws of physics are local but the entire geometric context has influence on a 

new effect we have just named, “Secondary Dark Matter”. Contrary to the absolute 
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maximal proper time from "big bang" - event or events - measured by a microscopic 

clock, most geodesic curves - though they also use travelling clocks - usually measure 

only local maximum proper time. The curves along which the upper limit on 

measurable time is measured usually have tangents that point to a 4-direction in space 

time along which the time changes. In free of matter space, in perpendicular to the 

(Lorentzian) direction of the gradient, the differential should be zero. Therefore, in 

geodesic coordinates such that the time is parallel to one of the absolute maximum 

proper time curves, the mixed terms of the metric tensor vanish. Locally, the 

separation between space and time works also in metrics such as the Kerr metrics and 

time appears perpendicular to 3D space manifolds along the maximum proper time 

curves, e.g. in a set of rotating reference frames. Separation of space and time is 

important and can be achieve at least locally also along closed time-like curves, 

however, this paper has a much higher priority motivation, to get an equation that 

depends only on geometry. To show that time is an emergent dimension is not the 

issue of this paper. 

B) Open questions – local emergent time unsolved issue The question is: Can inverted 

logic work ? By minimizing an action operator on three dimensional manifolds, can a 

degree of freedom yield multiple solutions for the metric tensor, such that: 

1) The action can serve as a local homotopy [5] parameter. 

2) The action will be invariant under Lorentz - like rotations in the resulting four 

dimensional manifold. This question, to the author’s opinion justifies further research 

although foliation of space-time works only locally. We would like to describe the 
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curvature of the gradient of the upper limit of measurable time that is measured by our 

material microscopic particle-like clocks and show its possible relation to Ricci 

curvature and to Einstein's tensor. The idea is that the gradient of the upper limit of 

time from an event back to near "big bang" - event or events - forms curves that have 

non vanishing curvature where there is matter.  Again, it is important to say these 

gradients are local and that our time is an upper limit on all possible tiny test particles. 

We now proceed to the measurement of the trajectory curvature of our test particles. 

We need to develop tools to deal with such curvature as was already presented in a 

previous paper [1]. In appendix C it will be shown that this curvature can be seen as 

non-gravitational acceleration. 

Intuitive discussion about the second power of curvature of a conserving vector field 

and about "bending energy". 

In special relativity, the square norm of a normalized 4-velocity of a particle is 

constant 12  i

iuuN  written in tensor formalism. Also
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ix denotes the 

coordinates and C is the speed of light. If we want to express the curvature of a 

particle's trajectory when force is exerted on the particle then we can't use derivatives 

of
 

12  i

iuuN  to express that curvature. However, if   is a scalar field, 

measuring the upper limit of measurable proper time from near "big bang" singularity 

event or starting events, to any event, then its derivatives form a vector field. This 

vector field will not be always geodesic if there are locations in space time where real 

forces are exerted on any particle, e.g. in matter's vicinity. So i

iN 2  such that 
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ii
dx

d
  may offer a way to achieve 0,2 kN . The reader can find the origin of this 

work in [6] and especially of the use of an early "Bending Energy" operator. So let us 

begin. We will now define what the Square Curvature or conserving-field-curvature of 

a vector field V  in nR , with positive definite Euclidean -geometry, is. The 

formalism will not be tensor but don't worry about that because in most of the paper, 

full tensor formalism is inevitable. The same formalism is easily extended to 

Riemannian geometry. We also define Bending Energy as the Square Curvature 

multiplied by the square norm of the gradient of a scalar field. We would like the field 

V to reduce or increase its differential in directions that are perpendicular to the 

direction of the field. This requirement is also comprehensible when the metric tensor 

of a manifold with coordinates in nR  has only positive eigenvalues in local 

orthogonal coordinates and we shall see that the operator that describes Field 

Curvature has quite the same formalism in Riemannian manifolds. We will start with 

an intuitive description of the operator and later give a proof it is the square curvature 

of the conserving (here it simply means a gradient of a scalar field) vector field. Given 

two infinitesimally close points in nR , 1q  and hVqq  12  for some infinitesimal 

h , we would like that )1()2( qVqV  will be as parallel as possible to the field )1(qV . 

By Pythagoras it can be written as the following problem to locally minimize 
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When   is the inner product in nR . 
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qVqV   represents the projection of the derivative matrix of 
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the vector field )(qV multiplied by the field direction in space. 

In other words, since 2h  is arbitrarily small, our objective is to minimize, 
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Here V means the matrix 
j

i
ji

X

V
a




 in its non covariant form. 

(Fig. 2) – "Bending Energy" which is the Field Curvature multiplied by the squared 

norm of the gradient and its Euclidean geometric meaning – informal description is, 

how much the field changes in direction perpendicular to itself. 

 

The following next figure shows us two curves one on the left for which “Bending 

Energy” BE  is zero and one on the right for which BE  is positive: 

(Fig. 3) - Parallel deviation on the right. 
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2. Tensor formalism of the Square Curvature of a conserving field 

How can we measure, how much the gradient of the upper limit on measurable time 

from an event back to near "big bang" event or events, bends, i.e. force on particles 

measuring such time, is exerted in matter ? As will be discussed, in tensor formalism, 

derivatives are replaced by covariant derivatives and are denoted by semi colon ";" 

and derivatives by comma ",".  

For example the covariant derivative of the vector field V by the coordinate dx  , 

is written, k

k

k

k VVV
dx

dV
V 


  ,;  where 

k

  denotes the upper 

Christoffel symbols . Upper and lower indices represent the covariant and 

contra-variant properties and upper and lower indices sum according to Einstein 

convention so (2) can be written as a tensor density with local coordinates in nR . In 

this paper, often the gradient of a scalar field P  by the coordinate x , dx

dP
 will 

be replaced by P . Regarding the square root of the determinant of the metric tensor 

g , so following are tensor densities [7], that yield tensor equations [8], 

or  
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2/3

i
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
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  . Don’t' confuse the scalar function t  with maximum proper time. 

We choose a simpler expression for our absolute maximum proper time from "big 

bang" event or events, namely  , and where there is no matter in space-time, we 

expect one of the following to be true. 

realisPP   ,                                         (4) 

or 

complexisPPP    *,* 2                    (5) 

Important: Please note that )()( kPatureSquareCurvPatureSquareCurv  for constant 

k . This fact attests to the intrinsic geometric trajectory curvature that (3) represents. 

Please note that in the model presented in (5), the time   is coupled with a wave 

function   and there is only a need for P  to have 3
rd

 order derivatives but 

not for   alone. For the reason of coupling please refer to T. Banks, Willy Fischler 

page 7, [9]. An intuitive idea behind the coupling   is that   tells us in Quantum 

Mechanics language, how much matter there is where the upper limit   can be 

measured. This approach is different than the philosophy behind Richard Feynman’s 

path integrals. Development of (3) can be from the following: 
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The unique properties of (6) as an intrinsic geometric operator that does not depend 

on the parameterization of the curves formed by P , can be seen in the following, 

we can write i

i

m

μ
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paper) we can sloppily omit the comma for the sake of brevity the same way we write 

iP  instead of 
iP,  and instead of 

idx

dP
and write 
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Obviously 0m

mPU . The vector mU  describes the direction and intensity of the 

curvature of the field P  which is a change perpendicular to mP . 

3. Classical non-relativistic limit - passive acceleration energy difference 

The purpose of the following is to approximate the energy of the weak gravitational 

field. It will be shown in appendix C that the non-relativistic classical limit of our 

square curvature of the gradient of upper limit of measurable time back to near “big 

bang” event or events should be 42 / C  where
 

2222 )()()( zzyyxx gagaga 
 
where ),,( zyx ggg denotes the classical 

gravitational acceleration g and ),,( zyx aaa , denotes average acceleration by 
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material fields, C is the speed of light. zyx ,, are the three dimensional coordinates.  

If we consider K/2 , K  is the gravity constant, as an energy density we include 

the gravitational field energy in our calculation. However, (3) describes a 

non-geodesic acceleration field which has its classical limit as 
4

222
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a zyx 
 . 

We do not know the average non-gravitational acceleration that a clock particle 

undergoes in matter so 
2a  is unknown but due to Einstein's principle of equivalence 

we do know that a particle resting on the ball or in the ball is actually accelerated. An 

average non-relativistic classical acceleration a , can be with the direction of 

gravitational acceleration, opposite to gravity or perpendicular, so averaging these 

accelerations, we can write an approximation 
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Such that 22 ga   accounts for perpendicular ).,,(),,,( zyxzyx ggggaaaa   

Or in a more illuminating language 22222 2/))()(( gagaga  . If the 

integration over volume of 2  is preserved and 
22 ag   then 2g should be 

proportional to the negative potential gravitational pseudo energy. 

4222
/)( Cggg zyx   is a non-relativistic limit of curvature of the gradient of time 

because in the special theory of relativity 4-acceleration is a curvature vector and the 

time component of that vector is very small in the non-relativistic limit. Let us 

integrate 4222
/)( Cggg zyx  in our ball. Suppose our ball has a radius 0r  and a 

volume 
3

0
3

4
rV


  and a mass M and that our gravitational constant is K . So it's 
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density is 
3
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  then the integration yields: 
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gravitational potential energy of the ball we have 
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Where 2 C  is the energy density and   is the mass density.  

In general, 
22

2

2 )( 



dC

xd

C

ii

  which is the 4-acceleration expressed in length units. 

4. Classical non-relativistic limit – small uncharged particles in an electric field 

The energy of matter is expressible as non-geodesic motion of particles measuring the 

upper limit of measurable proper time but by (6.1) also of other particles. We can use 

the classical limit which is a non-gravitational acceleration field also in an electric 

field. We have to explain how an uncharged particle that seems to be inertial actually 

interacts with the field and accelerates, possibly from the positive charges to the 

negative ones. As we shall see when we formalize the equation of gravity, charged 

particles change the metric of space time in a very special way. The energy density of 
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a static electric field is 
20

2
E


 such that 0 is the permittivity constant and 2E  is 

the square norm of the electric field. 

EnergydVolumeE 
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 (6.3) 

We can easily see that our curvature 4-vector 
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 such 

that P  the upper limit of measurable time to an event, is perpendicular to the 

unit 4-vector 

i

iPP

P and that 

i

iPP

P is expressible by derivatives by length so we 

have an approximation in the non-relativistic classical limit by 
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
  as we saw. Where 2C  is the energy density, K  is the 

gravitational constant and   is an acceleration by a force field, expressing a 

non-geodesic motion of a particle. So we can write 
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 E
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(6.4) 

(6.4) Yields -2-12-11 Second*Volt*Metre10*1.71888777 . It takes 1000000 Volts over 

a gap of 1mm to expose an acceleration field of 1.71888777 cm/sec^2. Since it is an 

acceleration field, also a neutral particle starting at rest must respect the conservation 

of (3) and accelerate unless the force field is changed by other force fields. 

As will be described in the equation of gravity there is more to (6.4). A parallel plates 

capacitor charged at high enough voltage will manifest local gravity. There are ways 

that such gravity will respect the conservation laws by interaction with the inertial 

space-time, see James F. Woodward paper from 1997 [10], and D.W. Sciama, 1952 
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[11]. A problem maintaining high voltage in a parallel-plates-capacitor is the creation 

of pairs of charged particles [12]. It is possible to create very strong electric field 

densities by using relatively low voltage and by using conducting board and a cone to 

achieve a high gradient of the square norm of the electric field 2E
dx

d
i

 and this field 

is known to achieve the phenomenon of Dielectrophoresis [13]. By subtracting the 

force 
DEPF  caused by Dielectrophoresis from the total force F  on a ball of matter 

in a strong average electric field E  we would expect 

DEPFFEm
K

0
0

2



     
 (6.5) 

where 0m
 
is the mass of a ball in the electric field. It is much more difficult to 

achieve high values of E  in homogenous fields even when electric potentials of 

millions of volts are applied. (6.5) has evidence in the experiment by T. Datta, M. Yin, 

A. Dimofte [14], however, this experiment was done with metal balls in which the 

surrounding field caused induced dipoles to appear. The Fly-By Anomaly [15] is 

probably also related to a very same interaction with the Earth magnetic field.  

5. Classical non-relativistic limit – tidal force 

If a metal rod is suddenly exposed to a very strong non-uniform gravitational field, the 

rod may break due to tidal forces. So we may think that our definition of an event as a 

non-gravitational interaction is wrong. However, the rod experiences tidal forces due 

to chemical and covalent bonds which are the reason for its non - geodesic motion and 

therefore the tidal rod experiment doesn't violate our definition of an event as a 

non-gravitational interaction. 
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6. The equation of gravity 

Although QFT is not the subject of this paper, it is worth mentioning [9] and 

especially that the meaning of 0mU
 
is the Unruh effect. Also see Appendix C in 

this paper which presents the link between the pair mU
 
and 

i

iPP

P and Minkowsky 

rotations. We continue from the minimum action of 
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See Appendix A, for the most general equation, using Einstein Tensor 
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as we shall see later, if we consider variation by μP  and by g and their 

derivatives and do not explicitly regard P  then a simple solution 

0; 
Z
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k   to the Euler Lagrange equations yields 
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and therefore (7) becomes 




RgRgUUUU k

k

2

1
)

2

1
(

4

8
                (9) 

and we have RL  ,  such that R  is the Ricci curvature tensor [16]. [17]. If 

we ignore (6), and the coming (18)-(24),(34),(35) and (36), it is a bit disappointing 

that after all the efforts we simply get [16] and [17] which look like an ordinary 

General Relativity matter-geometry equation. Up to a sign, there is always a way to 

solve the following equation  
T

C

K
gUUUU k

k

4

8
)

2

1
(

4

8
  in General 

Relativity constants for an ordinary dust energy momentum tensor and therefore (9) is 

consistent with existing theories and is an important link to well established work on 

General Relativity. (9) suggests 0
4

8
 


PPRRUU  so for sufficiently 

small geodesic normal exponential coordinates y  such that 




p

d

dy
 , the volume 

cone in y  direction is like the one of flat space since 

Euclidean

ji

ijSpaceTime ))dΩO(|y|yyR(dΩ 3

6

1
1   so EuclideanSpaceTime ))dΩO(|y|(dΩ 31

.  

To see how (6) is related to spinors [18] see Appendix C. However, (7) offers more 

interesting fields and (6) is a purely geometric term. We see that curvature of the 

gradient of upper limit on measurable time is equivalent to Ricci curvature. If that can 

be true then we have an equation that is based solely on geometry. We have a simple 

action (without spinors [18] and other advanced mathematical technology) of the form: 

2

1

t
VV 

  such that V is a vector field and 
t

1
 is also a scalar field. If the definition 

is in 3 dimensions, it hints at 4 dimensional Lorentzian metric geometry. U  is in 

units of 
Length

1
. For the complex square (second power of) curvature operator we 
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set the curvature vector 
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7. Quantum Gravity in a nutshell 

The idea that   is meaningful where a material reference frame can interact with a 

particle measuring that upper limit of time, requires a formalism of how much matter 

there is to “contribute” or influence that measurement as a wave function and that is 

the idea behind the coupling ** 2PP  to denote observer- time measurement 

coincidence. We would also like to discuss the calculative outcome of this 

philosophical idea. kÛ  can be written in a more illuminating way as 
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Where the index k , means derivative by the coordinate kx , 
k

kN *)()(ˆ 2   and 

for the sake of simplicity k

kN 2 . 

We can replace   by an eigen-function that depends on   and write 

1-i    s.t. 




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
iE

e                                             (10.2) 
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and where E plays the role of energy of a coupled wave function, so we have 
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Now from (10.1), (10.5) and (10.6) we have the result 
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Therefore if the wave function depends solely on the upper limit of measurable time, 

(10) is reduced to (3). Now recall (6.1) and we have that replacing  )(f  

renders (3),(6),(7),(8),(9),(10) invariant. Recall that the upper limit of measurable time 

can be defined as a limit backwards from any event to near the “big bang” singularity 
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event or events and that   starts from zero. Now suppose a particle appears as a 

fluctuation in space time then when looking at the (10.5) additive, 
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(10.8) 

we can see that the denominator can't be smaller than 2 for small enough   and E  

and since the denominator is in Joule * Second units, the physical meaning of such a 

denominator can be 
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which is a form of the principle of uncertainty. The change in the direction of the 

gradient of  the time field is due to the need to avoid discontinuity of gradient 

measurement by particle clocks in max proper time curves intersections .Discontinuity 

of the gradient is avoided by uncertainty of  the intersection events/strings . Then 

*  could be the probability of the 4-location of such avoided geodesic conflict in 

the middle of a constellation of particles. The coupling of   and   has an extra 

important meaning which is that quantum uncertainty resolves the discontinuities of 

the gradient of   and prevents its measurement. In the classical model of gravity in 

this theory,   is "smoothened out" by the equation (7) or (9) which are an 

approximation or a limit of a Quantum effect. The classical model is sufficient for a 

giving a new description of matter, however,   is required for resolving gradient 

singularities of   that do not exist in the classical model.  
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8. Noether's theorem 

Zero divergence if we consider variations of P  not as derivatives of P . 

Another proof of the divergence conservation is based on the invariance of  under 

scaling of )1(   PP  so   PP   and by Noether’s 

theorem
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which means 

conservation of the non-gravitational acceleration field exactly as will be shown in 

(8),(23). 

9.  Vaknin's Chronon fields 

A natural question is, given a solution to (7) when is
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under rotations 
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A of kP ? By definition, a rotation can be seen
 
as isometrics in 

Minkowsky space. Less than full isometrics is actually required. We require at first:
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PPNZ  2  is invariant and therefore also 
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We need to find a "rotation" 
j

A  for which
 

gUUζ k

k 
4

1
 remains invariant. 

Since 
3

2

Z

)P(Z

Z

ZZ
UU

j

j
k

k
k

k   and since Z  and kZ remain invariant, we only 

need our "rotation" 
j

A  to keep 
j

j PZ  invariant. It is sufficient for 
j

A  to be a 

"rotation" about the jZ  axis that leaves jZ  invariant i.e. 
j

j AZZ   and 
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j

j PZ invariant. For 0
ZZ , the vector that is rotated is 
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                               (10.12) 

And 

0
Z

Z

Z

P

ZZ

ZZ

Z

Z

Z

P

Z

Z
Y

k
k

k

k

k

k







                  (10.13) 

From the invariance of 
j

j AZZ   and j

j PZ  under the "rotation" 
j

A , 

0
ˆ

ˆ

ˆ
ˆˆ





Z

P

Z

Z

ZZ

ZZ

ZZ

ZP

Z

Z

Z

P

ZZ

ZZ

ZZ

ZP

g
Z

Z
AYA

Z

Z
Y

Z

Z
Y

μk

λ

λ

kμ
k

k
kμ

λ

λ

kμ
k

k

ksjj

sμ

μ

k

k

k

k

k

       (10.14) 

An example condition for rotation is 

j

j

kk YAAY 


                                    (10.15) 

which reminds of spinors. 

Vaknin's Chronon field 


kA  as defined here can't exist if jj KZP  for some K  

Because then  0
Z

KZ

ZZ

ZZ

Z

KZ
Y kk

k








 and the rotation is degenerated. 

jj KZP   also means 0
22


KZ

PPP

KZ

P

Z

PPZ

Z

Z
U

k

j

jkk

j

jk
k . 

A necessary condition for Vaknin's Chronon field to exist is therefore 

0 kkk UA


                                (10.16) 

Such that 


 k  is the Kronecker delta. 

In 1982 Dr. Sam Vaknin laid the foundations of the existence of a Chronon field [2] 

and also to possible irreversible cosmic expansion. Replacement of kP by 


PAk  

leaves   invariant but not the curvature vector and therefore influences gravity. 
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There are other ways to use symmetries in gUUζ k

k 
4

1
 to show spin, however, 

curves along which the upper limit of measurable time is measured and that enter a 

ball of hollow mass, cause 
jZ  at the center of the ball point in the Schwarzschild 

time axis. These clocks must come from the outside because clock ticks are slowed by 

gravity. In such a case rotation of kP  around 
jZ  makes physical sense. 

(Fig. 5) – Conic rotation 

 

10. Electro-gravitational engine 

The idea of electro-gravity is based on both (6.4) and (7). From (6) and (6.4), 

In a weak gravitational Schwarzschild field, 

2

0

22 2
)(

2
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2

1

C

EK
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a
P

)P(P

P),P(P

PP

),P(P
U m

m

i

i

μ

μλ

λ

i

i

mλ

λ

m


          (10.17) 

C  is the speed of light, a is the weak acceleration of an uncharged particle, 0  is 

the permittivity constant in vacuum, K  is the gravitational constant and E  is the 

static field such that 00 E  and also 0;0 
kE . 

The conservation law that governs non-zero divergence 0; k

kU  will be described 

in (25) in the "Chameleon Fields, Pressure or Electro-gravity ? " section. Also see 

Inertial Induction in "The origin of Inertia", D.W. Sciama [11]. 
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In an electrostatic capacitor the electric field is stationary so we have, up to a sign, 

2

0 ;

22

1
;

4

1

C

EK
U k

k

k

k 
                                  (10.18) 

Now looking at (7),  




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8
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The term 


gUUUU k

k
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1
(

4
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 ) can be approximated in the electrostatic field by 
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0
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gEEEE

C

K
gUUUU kk   and since our electric field 

is stationary we can write, 
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The gradient of the upper limit of time will be discussed later in the Schwarzschcild 

solution in Appendix B, following are derivatives by the radius and time, 

)1(
r

R

dt

dP
Pt  , 

R

r

dr

dP
Pr 

,
  2

r

R

R

r
Z  such that R  is 

Schwarzschild radius. The most significant term is 1
2//

/





rRRr

Rr

Z

PP rr . 

In reality we have to take Friedmann–Lemaître–Robertson–Walker metric into 

account because there is not only one body of mass in the entire cosmos and due to 

symmetry of mass distribution 0/ ZPr
and the 1/ ZPt  term is also significant. 

Now sticking to the somewhat unrealistic idealized one body of mass, the contribution 

to the gravity equation is mainly to the RgRG rrrrrr
2

1
  term. 

rr
k

k

G
C

EK

rRRr

Rr


 2

0 ;

22//

/
8


                       (10.20)

 

From the electro-magnetic theory we have 
0

;



k

kE  such that   is the charge 
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density. We have 
 

112

022//

/
8 GG

C

K

rRRr

Rr
rr 






                  (10.21)

 

And we see that the sign of the charge density 
 
greatly influences gravity. 

In reality in a weak gravitational field we will have 

002

02
8 GG

C

K
tt 




                                  (10.22)

 

We yet do not know if the acceleration field in (6.4) is from minus to plus or vice 

versa but a single experiment is enough. Here is an example in which using different 

size of plates controls the charge density and therefore enables to design the geometry 

of the gravitational field. A usual parallel board capacitor will not work. The boards 

should be layered into thousands of disk layers gapped with slabs of an insulator or 

dielectric material in order for each one of the two disk boards to have high enough 

capacitance.
 

(Fig. 6) – Electro-gravity thrust engine that requires very high charge densities 

 

 

 

By local integration over space, (10.22) is expressible as a virtual electro-gravitational 

mass, such that Q  is the charge on each board or plate, 
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22

0

_
8

2
8

C

MassVirtual
K

C

QK



   which yields, 

02
_

K

Q
MassVirtual


                                (10.23) 

Let us see what we can do with one gram of ionized hydrogen.
 

The number of atoms by Avogadro's number is 
2310  6.02214129n  . The charge of 

the electron is Coloumbs 1051.60217656e -19 so 

Coloumbs 105956868859.64853364 4Q -1-13-11 seckgm106.67384K  and 

F/m 10  76..8.85418781 -12

0   so (10.23) reaches a virtual mass of 

Kg.ssVirtual_Ma 151048428726663259684867780662285502  . That is far less 

than the mass of the Earth KgM Earth

2410 × 5.97219 but the distance between the 

capacitor boards is much less than the average Earth radius and therefore a field that 

overcomes the Earth gravitational field is feasible. 

11.  Capacitance requirements for a practical electro-gravitational engine 

We will calculate 
02

_
K

Q
MassVirtual


  for 20 Coulombs. 

Kg
K

Coulomb 10

0

1056131641706185613444212.90885947
2

 1





. 

Multiplied by 20 we have 

.10121263283412371226888425.81771895
2

 20 11

0

Kg
K

Coulombs





 

Consider a distance of one meter and Newton's gravity law as an approximation 

although this gravity resembles an electric dipole and not a single source, 
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2

211

2

Second

Meter
 4253050391368848036857038.8265254

1/10121263283412371226888425.81771895
_




Kg
radius

MassVirtualK

 

That is a little less than 4g. Over a gap of one meter and within one square meter 

under one million volts we need by the following: 

 Charge_QVoltage_V*e_CCapacitanc  so

VoltsFaradsMicroCoulombs  1000000*_ 20 20   but the capacitance of an 

ordinary parallel plates capacitor is 
d

A0
 such that A  is the boards area and d  is the 

distance between them so because 0  is small, an impractically big area A  is 

required. The solution to that problem can be that the boards in (Fig. 6) will be as 

offered, i.e. layered into many thin disks, possibly spaced by an insulator or by a 

dielectric material and thus each single board will have high capacitance. 

12.  Proof that SquareCurvature is the square (to the second power of) 

conserving field curvature 

The square curvature of a conserving vector field is defined by an arc length 

parameterization t  along the curves it forms 

 g
VV

V

dt

d

VV

V

dt

d
Curv

k

k

k

k
)()(2                              (11) 

such that g  is a diagonal unit matrix.  For convenience we will write 

k

kVVNorm    and   V
dt

d
V   . For arc length parameter t . Let W  denote: 







k

k

k

k
gVV

Norm

V

Norm

V

VV

V

dt

d
W 



3
)(                        (12) 

Obviously  
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Thus 
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Since 
Norm

V  is the derivative of the normalized curve or normalized “speed”, using 

the upper Christoffel  symbols,
 Norm

V
V

dt

dx
VV

dx

d
V

dt

d r

r

r
s

rsr
);()(     such 

that rx  denotes the local coordinates. If V  is a conserving field then  ;; rr VV   

and thus  ,
2

1
, 2NormVV r

r   and 
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    (15) 

Writing the last term in Riemannian geometry is the same field curvature operator that 

we chose on a conserving vector field. 

13.  Locally separable coordinates 

The following is a bit speculative but may be important. It can't work globally 

because different upper limit time curves may intersect at single events. We see that 3 

dimensions hint at 4 dimensional action. This is done by looking at the action (3) in 

three dimensions and observing the following way to write it, 
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                                                          (16) 

Where g  is the metric tensor in 4 dimensions and ijq is in 3. ijq  implicitly refers 

to a local submersion [19] where time is locally held constant. 

Can we do the opposite, look at 4 dimensions and reduce the problem to 3 without 

violating the principle of covariance ? 

First, our maximum proper time curves are intrinsic and do not depend on the 

coordinates. We can therefore agree that the absolute maximum proper time curves 

are different than ordinary geodesic curves on which only local maxima of proper 

time can be measured. We choose to describe (3) on our space-time in our special 

coordinates. Under correct choice of coordinates, the direction in space time of the 

maximum proper time is an eigenvector of the metric tensor with the biggest 

eigenvalue, our metric tensor is of the form presented in (16) for which the mixed 

space time terms are zero. Also, 

3,2,1,11PP 0   



 PPPP  and 

0,P,P,P,P,P,P 030201302010   
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We can assume as possible 0P,0P,0P 321  especially if multiple maximum 

proper time curves to the same event 'e' exist. So instead of (3) we reduce the action to 

become three dimensional, 
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(17) 

This means that on our three dimensional sub-manifolds ("Leaves of a foliation"),  

there is a corresponding action operator that is free of derivative dependence on time. 

Solving the Euler Lagrange equations for the Tweaked Square Curvature and 

receiving a plurality of solutions is indeed a promising direction of research. 

14.  Unsynchronizability 

Since P  is not constant on the 3 dimensional sub-manifolds perpendicular to the 

upper-limit-of-measurable-time-from-near-big-bang curves, these manifolds are not 

synchronizable and are therefore not the ideal inflating S(3) i.e. Friedmann – 

Robertson - Walker.  

15.  History of the paper's concept of time 

The idea of an unreachable time, such as maximum proper time from a common event 

or set of events from which we can say the cosmos had started, i.e. "big bang", is not 

new [20], [21] and it appears in Hebrew writing such as the Book of Principles by the 

philosopher Rabbi Josef Albo 1380-1444. Rabbi Josef Albo wrote about time that can 
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be measured by devices and another aspect of time which he termed immeasurable 

which he considered as an absolute inaccessible time because it does not depend on 

subjective measurement. The maximum proper time can't be measured by any 

massive devices because due to General Relativity, clock ticks are slowed down by 

the gravitational field of any mass. 

 

16.  Conservation of known matter from the Euler Lagrange Equations 

Finally we get the following zero divergence: 
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W  is obtained from the subtraction of (35) from (36), see Appendix A. 

Variation by P  and its derivatives is a special case 
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Recall that 0k

k PU , multiplication by 
4

μ-P
 and contraction yields, 
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and as a result of (20) the following term from (7) vanishes, 
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Which yields a simpler equation (9). Recall that 
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Which proves (8)  

0);( 
U                                      (23, see 8) 

And proves the simple representation of the field equations 

That we saw in (7) 
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17.  Chameleon Fields, Pressure or Electro-gravity ? 

As we can see, the more general case is, 
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instead of 
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An effect which is contrary to gravity will add a positive delta to the Ricci curvature 

and therefore from (7), multiplication by the metric tensor g and contraction yields, 
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An effect which adds gravity, will add negative delta to Ricci curvature and therefore, 
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Known matter will be simpler 
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It is possible that either (28) or (29) is mathematically not valid. Additional terms 

can't violate the vanishing of the divergence of Einstein tensor. High order derivatives 
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of the metric tensor and pressure were studied by Deser and Tekin [22]. For 

application of (28) and/or (29) to space-time warp drive please refer to [23]. 
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19. Conclusions – test for the theory 

General 

Maximal time from an event back to near "big bang" event or events, is measured by 

particle clocks. This time sets an upper limit on measurable time quite similar to the 

way the speed of light sets an upper limit on speed. Physics, however is local and 

therefore only the gradient of this upper limit has a true physical meaning. 

Since time is measured by material clocks, these material clocks are influenced by 

forces. The particle that can measure the maximal possible time from the “big bang” 
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event or events to an event within matter will therefore be influenced by such forces 

along with the influence of its own gravitational field. Non geodesic motion as 

uniform acceleration is well defined by Friedman-Scarr representation (although the 

author does not agree with all of their claims) and has a linear interpretation by an 

anti-symmetric tensor [24] which also indirectly describes an intuitive relation to 

spinors (well at least if we can blissfully afford to ignore wave functions, and group 

representation, see Appendix C), however, the most interesting effects that this theory 

offers, are beyond the scope of Friedman-Scarr representation of 

acceleration 


 aWA  ,  speed 1

WW  and acceleration matrix  AA  .  

As a down-to-earth summary, the proof of this theory will start by experimental 

evidence that there is a lower limit of acceleration 
 d

du

d

du

C

i

i

4

1
as a particle interacts 

with a constant material force field. This will show that the idea of event that is 

discussed in this paper has a physical meaning. There is experimental evidence 

regarding high gradient of an electric field in which force that acts on metal balls is 

represented as the ordinary force on the induced dipole as in ordinary 

dielectrophoresis [13] plus an unexpected “force” that depends on mass [14]. On one 

hand [14] can attest to the existence of true force field, which is not gravity, that 

depends on mass but can also be gravity.  This is one way to achieve a unique 

trajectory of the maximally measured proper time by any massive test particle 

including zero mass Chronons [2] which are perfect theoretical clocks. In this case, 

[14] can be an exposure of a fundamental field, more basic than the electro-magnetic 

forces and it can be expressed in the non relativistic classical limit as 
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DEPFFEm
K

0
0

2


. Even in a homogenous static electric field we would expect a 

very weak force field, -2-12-11 Second*Volt*Metre10*1.71888777 . It takes 1000000 

Volts over a gap of 1mm to expose an acceleration field of  1.71888777 cm/sec^2 

which results in a force that depends on mass. 

This property offers a new technology as an electro-gravitational engine which is 

realized as an Alqubierre Warp Drive [23] and respects a more general conservation 

law (25) which could be D. W. Sciama's Inertial Induction [11]. Further research and 

even government funding is highly important. 

20. Appendix A: The Euler Lagrange Equations of the SquareCurvature action 

We will not solve the entire system 
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21. Appendix B: The scalar time field of the Schwarzschild solution 

We would like to calculate 














3

2

2 )P(P

)P),P((P

)P(P

g),P(P),P(P

i

i

m

mλ

λ

i

i

mk

ks

s

mλ

λ

 in 

Schwarzschild coordinates for a freely falling particle. This theory predicts that where 

there is no matter, the result must be zero. The result also must be zero along any 

geodesic curve but in the middle of a hollowed ball of mass the gradient of the 

absolute maximum proper time from "Big Bang" event or events, derivatives by space 

must be zero due to symmetry which means the curves come from different directions 
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to the same event at the center. Close to the edges, gravitational lenses due to 

granularity of matter become crucial. The speed U of a falling particle as measured 

by an observer in the gravitational field is 

22

2
2 2
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Where R  is the Schwarzschild radius. If speed V is normalized in relation to the 

speed of light then 
C

U
V  . For a far observer, the deltas are denoted by rddt ,' and, 
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Which results in, 
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Please note, here t is not a tensor index and it denotes derivative by t  !!! 
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Please note, here r is not a tensor index and it denotes derivative by r  !!! 

For the square norms of derivatives we use the inverse of the metric tensor,  

So we have 
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We continue to calculate 

r

R

r

R

Rr

R
PN tt )

1
()1(

2

22   and 

r

R

r

R

Rr

R

r

R

PN tt
)

1
)(1(

)1(
2

2





                     (43) 

Please note, here t is not a tensor index and it denotes derivative by t  !!! 
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Please note, here r is not a tensor index and it denotes derivative by r  !!! 
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And finally, from (42) and (46) we have, 
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which shows that indeed the gradient of time measured, by a falling particle until it 

hits an event in the gravitational field, has zero curvature as expected. 

The term 22 
r

R

R

r
N  is slightly disturbing because at very far distances, 

R

r
 becomes significant. Moreover, if R has a lower atomic limit, then for such R  

the term 
R

r
 is a whole number! We now return to the discussion about a hollowed 

ball of mass. It is clear that the maximum proper time from "Big Bang" - event or 

events - curves entering the ball are symmetrical in relation to the center and therefore 

R

r

dr

dP
Pr

00)0(   where 0r  is the radius in the far coordinate system of the 

hollowed ball of mass. However, )1(
0r

R

dt

dP
Pt  . Writing the gradient in two 

dimensions in t , r , ignoring the gravitational lenses due to mass granularity, and 

ignoring quantum uncertainties of coordinates and of energy momentum, we have 
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The last result 
R

r

dr

dP
Pr

00)0(   is an inevitable outcome of the symmetry in the 

center of the ball. The gradient by the space coordinates must be zero and the change 

of direction in the gradient means that curvature is inevitable. 

 

Center analysis if there is an atom of translation length 

Without even negligible forces acting on a test particle and without quantum center 

location uncertainty, in the middle of a hollowed ball of mass the gradient of absolute 

maximal proper time is discontinuous due to symmetry. Suppose that the difference 

between the gradient at the center where 0r and where, rr  , such that r is 

small, results in )0(2N . We want to measure the second power of the curvature of 

the gradient of absolute maximum proper time due to that difference. Suppose that the 

change happens smoothly within a small radius from the center, measured around 

0r . We assume that such curvature measures how much the gradient is not 

geodesic due to curve intersections. Consider )1(
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Given the radius 'r  that is seen within the gravitational field, the surface of a small 

ball around the center is smaller than expected in flat space-time,
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We now calculate the curvature and then multiply it by the volume of the ball in 

which the direction of the gradient changes towards the center as seen in (49),(50),
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(64) is very interesting because it depends only on 'r and not on the mass of the 

gravitational source. 

22.  Appendix B2: Approximated validity test at the Planck scale 

(64) imposes some strict limits on the offered theory. For the following, we assume 

that rRrr  /1('   is big enough in comparison to the Schwarzschild 

radius R otherwise none of the following calculations will be valid. Suppose that all 

the matter we have is due to force field acting along the distance 'r . Then by (9) and 

the following conclusion that RL  and by Einstein equation of Gravity 
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Where E  is achieved via integration of energy on space. K is the known Gravity 

constant 2131110*)80(67384.6  skgmK  and 11810*99792458.2  smc  .

 

So we can divide the equation by
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So we have Force
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That is quite a strong force, about 4410*415191416731479452157572.53492499  

Newtons. On the other hand if our energy is within a ball of radius 'r and 'r is also 

the uncertainty of the space coordinate of the center then we have by the law of 
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uncertainty of Quantum Mechanics  

2
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sJ  3410*6471.05457172  and in the inequality extremity of equality, 
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 Now consider (66) which is a very strong force, acting on a small enough particle so 

virtually we can say that the speed of the particle is approximated by an average speed 

which the speed of light. So  
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Recall the definition of work as Force multiplied by length on which the force acted, 

we have from (69) and from (66) 
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This value is quite close to the Planck Energy 
K

c5
. 

23.  Appendix C: Ashtekar variables in the description of a non-gravitational 

acceleration field   

We would like to extract a general force from the relation between U  and P . 

This work is related to both Sam Vaknin's work from 1982 [2] and to Fridman - Scarr 

force representation [24]. Please note that the theory is of a non-gravitational 

acceleration that causes space-time curvature rather than force theory. 

The curvature vector is 
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It measures how a trajectory of a particle measuring the gradient of upper limit of 

measurable time 
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is not geodesic. We now want to link kP  and U  to force in order to predict force 

on any test particle (with some conditions on its direction). By the principle of 

parsimony we would like to find a matrix 
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The simplest representation needs only three complex variables, cba ,,  
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Please note that the matrix is orthogonal in the Euclidean sense and that the following 

is Unitary in the Euclidean sense, 
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We need to prove that if 
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then indeed we can describe any perpendicular vector by spanning the 3D 

perpendicular space to (4), 
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The latter is a linear combination of vectors perpendicular to (73).  Therefore (71) 

defines a force theory. Obviously IcbaAAt )( 222   where I  is the identity 

matrix and the determinant is 22222 ))**(
2

1
()(Det(A) i
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i

i UUUUcba  . 

Which quite reminds the determinant used by Abhay Ashtekar [25].  
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The latter differs from Ashtekar vectors [25] because only three orthogonality 

conditions are required. An open question: Is 
kA  applicable to any kW direction ? A 

clue seems to prove that )3(),2(),1( iii VVV are space-like and for the non relativistic 

limit to show that, 
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Such that . 
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,
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    where C  is the speed of light, 
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v  the speed,  as acceptable usual annotations  in the special theory of relativity and 

accelerations are xa  
ya and 

za . The classical limit of our square curvature of the 

gradient of upper limit of measurable time back to near big bang event or events, 

should be 42 / C  where 2a is 
2222 )()()( zzyyxx gagaga  where 

),,( zyx ggg denotes the classical gravitational acceleration. If we want to measure 

acceleration in length units then, 
2

2

)( Cd

xd k

 is simply the expression of the 

acceleration vector by differentiation by length, which is the source of the 

term 42 / C . 
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