National Aeronautics and Space Administration

Gateway Science Summary

John Guidi NASA, Deputy Director, Advanced Exploration Systems, HEOMD August 28th, 2018

- Focus areas for Gateway utilization
- External/internal Gateway payload capabilities
- Science workshop
 - Top science/engineering outcomes
 - Gateway resources
 - Payload/resources comparison
- Other workshops
- ISS Lessons Learned
- Targeted science-related Gateway studies

Gateway Utilization – Four Focus Areas

- 1. Technology: Identifying high-priority technologies for Gateway demonstration:
 - Evolve its initial capabilities or enable new capabilities for human exploration.
 - Stimulate the development of commercial technologies for operations in cislunar space
 - Request For Information (RFI) released May numerous responses received
- 2. Commercial: Developing overall commercialization strategy for gateway:
 - Identifying commercial uses of a Gateway beyond NASA plans
 - Released RFI on Gateway commercial in June responses received 4 August
- 3. International: Enabling collaboration between interested parties:
 - International Space Station partner discussions ongoing, working on strategy to involve international, non-ISS partners (ongoing)
- 4. Science and Research: Identifying potential science opportunities, and how gateway infrastructure can support various investigations:
 - Identifying science events and forums to raise awareness and obtain requirements insight
 - Targeted Gateway studies increasing science potential
 - SMD/HEOMD-hosted Denver Gateway science workshop (February)
 - Revising current Gateway utilization ground rules & assumptions

Gateway Utilization Locations

All elements will have external payload accommodations

- Inflatable concepts are under study

All pressurized volumes may have internal payload accommodations

- Distribution of accommodations under study

Gateway Workshop Summary

DEEP SPACE GATEWAY CONCEPT SCIENCE WORKSHOP

February 27-March 1, 2018 DENVER, COLORADO

Workshop sponsored by NASA HQ (HEOMD & SMD), JSC, MSFC & GSFC

Three driving rationale for the workshop:

- Engage the science community with respect to the scientific potential of a lunar Gateway
- Discuss potential scientific investigations leveraging the Gateway
 - Including the scope of possible instruments
 - Using the Gateway infrastructure
- Discuss what resources the Gateway would have to provide to facilitate different types of scientific investigations

Science Workshop Format

- Introductory briefings on NASA plans, ISS lessons learned, Gateway orbit options
- ~180 Talks, ~300 Attendees
 - Government, academia, industry, international
- One day of discipline-focused sessions in five venues 5-20 minutes per abstract
 - Heliophysics
 - Earth Science
 - Astrophysics & Fundamental Physics
 - Lunar & Planetary
 - Life Sciences and Space Biology

Cross-cutting discussions

- Orbits, Human exploration, Potential future capabilities, Space Weather
- External Instruments
- Samples
- Telerobotics & Leveraging Infrastructure
- Internal Instruments

Science Workshop Analysis

~180 abstracts proposed 220 investigations

- Each proposed instrument included parameter and usage information:

Instrument Parameter:	Instrument Usage:
Mass	Orbit Considerations
Volume	Field of View (FOV) requirements
Power	Requires use of airlock
Thermal requirements	Crew interaction required?
Daily data volume	Will astronaut presence be disruptive?
Current TRL	Does the instrument present a risk to the crew?
WAG cost & basis	Other consumables or gateway requirements?
Duration of experiment	Special sample handling requirements
Other parameters	Need for telerobotics?

– ~7,200 data items returned

- Top Science and Resource takeaways
- Detailed Gateway resources
- Selected comparisons to existing Gateway Groundrules and Assumptions
 - Mass, power, volume, communication data rates

Workshop Top Science Takeaways

- Gateway, in a NRHO, offers unique opportunities for some Earth, Heliophysics, Astrophysics and fundamental physics investigations
- With the addition of additional transportation infrastructure (LLO tug/pallet, surface access, sample return capability) Gateway can enable additional important lunar science
- Externally mounted sample collection with controlled pointing can collect samples and provide important science about cometary material, solar composition, interstellar particles, and near **Earth objects**
- Radiation environment of the Gateway can provide important tests of the effects of radiation on biological organisms.
- Science utilization extremely constrained until the presence of an external robotic arm
- Need to coordinate with international partners on sharing/allocation of science resources avoiding duplication, maximizing science

Workshop Top Engineering/Resource Takeaways

- NASA
- External payloads with a variety of desired look directions, and many benefit from precise pointing and/or long duration stare capability
- Ability for external (i.e. in vacuum) delivery of science elements
- Contamination concerns (gateway exosphere & optical payloads passing through the hab)
- Interest in internal analysis equipment (multi-use, flexible and configurable)
- Automation of internal payload interactions (automated systems and robotics)
- Science can generate large amounts of data
- Farside of the Moon is a unique radio science location, need to consider Gateway RF noise
- Enhancement of generic gateway capabilities can facilitate science (GPS nav & timing)
- Lunar science needs significant transportation infrastructure investment

External Payloads – Gateway Resources

Assume a central data recorder for payloads

- Instruments send to central SSDR, Gateway handles downlink
- Onboard data computing capability
- Large amounts of data
 - Potential for terabytes daily feasible required depending on science payloads
 - Need for laser com or send hard drives back to Earth
- Need to determine the gateway's vibrational environment (crewed and uncrewed)
 - Vibration isolation potentially required for majority of optical payloads
- Potentially consider generic telescope facility
 - Photons sent to multiple sensors
 - Sensors possibly inside gateway (easier to swap with improved/different sensors)
 - Might require optically pure window

Gateway Internal Payloads

- Significant amount of volume could be utilized for internal experiments
 - Neutron/radiation detection, neurocognitive function, radiation and microgravity effects, behavioral health, gardening and food evaluation, waste reclamation
 - Need / opportunity for a separate science module?
- Interest in multi-use analytical equipment
 - Multi-use glove box, configurable
 - Partly a result of assumed limited downmass capability?
- On-board storage and distribution of space radiation environmental data (external/internal) from payloads as available meta-data for other payloads, especially Space Biology or HRP.

Gateway Infrastructure Capabilities

Capability to deploy CubeSats/SmallSats from the Gateway

- Interior payload source via a science airlock
- Externally using the robotic arm to remove a satellite/pre-packaged deployer from an unpressurized logistics module.
- Deployment capability of up to 12U identified as likely candidates
- Provide communication relay or navigation aid for other orbiting/lunar surface assets
 - Small spacecraft/cubesats, farside locations, polar regions, and steep terrain

Teleops of space/surface assets conducted by Gateway crew or by Earth payload operators

- Installation, assembly, and deployment of external instruments
- Management of samples collected from free flyers and robotic landed missions
- Extend lifetime of internal Gateway experiments into uncrewed Gateway modes
 - autosampling, programmed fluid delivery or fluid/water delivery, programmed or human-in-the-loop measurements
- General maintenance.

Samples – Specific Gateway Resources

- NASA
- Ability to install, and retrieve dust collectors on the gateway in different look directions, avoiding contamination from the gateway.
- Ability to dock, or berth, a sample return vehicle with or without crew present
 - Need for a science airlock
- Some internal volume needed of science support equipment, in addition to experiments
 - Glove box (multi use) and analytical equipment
 - Emphasis on in-situ analysis (assumption of limited downmass to Earth)
- Many Space Biology and HRP return samples will require on-board and return cold stowage capability
- External analytical equipment possible
 - Decrease need to open "dirty" lunar samples inside the gateway

Science Workshop: Upmass Analysis

- Current Groundrule: For each crewed Gateway mission starting with Gateway Mission (GM)-2, a minimum of 1,000 kg shall be available for utilization.
- If instruments were equal priority and without considering other parameters, ~90 accommodated by a 1000 kg allocation

Science Workshop: Electrical Power Analysis

- Current Groundrule: Gateway shall provide a minimum of 4kW power during SEP operations and crewed operations for Utilization. Gateway shall provide a minimum of (TBD)kW power during non-SEP operations for Utilization.
- 50 concepts in the 100s W range, almost all concepts <500 W, 3 concepts in 4-9 kW power range

Science Workshop: Internal Volume Analysis

- Current Groundrule: The Gateway shall provide at least 1 (TBD) m³ within each of the Habitation Elements, for powered payloads.
- 1 m³ could support 29 smallest of 36 payload proposals providing volume data
- Currently assuming all SLPSRA payloads are internal and all others are external
- Total sum of internal payloads: 12.5 m³ (single largest 8 m³, sum of all other concepts is 4.5 m³)
- Assumption of 100% efficient packing in these values need to factor in additional volume margin due to varying payload geometries and packing configurations

Science Workshop: Daily Data Volume

- NASA
- Current Groundrule: The Gateway shall provide 5.15 Tbits/day (644GB) allocation for utilization downlink.
- Factoring in the possibility of high drivers being selected and considering the need for additional margin (e.g. hi definition video), 644GB/day appears to be a reasonable baseline assumption for daily data downlink needs from onboard experiments and Gateway systems.

NAS

1. ESA Science Workshop

- European science community
- NASA workshop outcomes provided to ESA
- Using results to advise ESA industry studies on Gateway elements

2. CSA Science Meeting

- Invited Canadian scientists
- NASA workshop outcomes provided to CSA

3. JAXA Gateway Science Workshop

- Provided NASA workshop data templates & outcomes
- Informing JAXA contributions

All agencies are participating in the Gateway design and development process

Key ISS Lessons Learned for Gateway

1. Target obtaining science support from key science stakeholder communities

- Engage SMD and science communities early
- Build stakeholder support to aid funding and long term sustainability
- Align Gateway capabilities with key stakeholder needs (e.g. sample/sample return, astrophysics, heliophysics, human research, Earth/Moon observations)

2. Consider Utilization location within Program Office

- Goal of Gateway operations touches all systems and needs all systems
- Systems view of Utilization sets up competition with other Gateway systems resources rather than supported by other resources

3. Consider new accommodation of internal experiments (i.e. different than Express Racks)

- Incorporate modern improvements software upgrades, plug and play, standard interfaces, automation, structural improvements
- Legacy experiment considerations
- Balance between crew and automation/robotics

4. Prioritizing science among Gateway users and partners

- ISS evolved to current prioritization processes
- Start defining processes now

Near Term Science Utilization Activities

Providing GPS/Navigation on the Gateway

- Precision timing/location for physics experiments, facility capability for instruments or cislunar/surface assets

Utilization during uncrewed periods

- Defining Gateway internal environmental conditions for experiments requirements
- Developing ConOps to optimize automation planning, robotic system potential designs
 - Established Software/Autonomy working group

External location of experiments

- Field of View studies, vent location designs, shadowing, exosphere analysis (includes NRHO)

Logistics

- Advocating for dual use logistics vehicles (supply, secondary missions/tugs, experiments)

External arm delivery

- Protecting earlier delivery in Gateway assembly sequence

• SLPSRA

Detailed studies on potential internal science experiments and identifying common facility lab systems

