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Why the Moon?
Samples and surface are 
(mostly) undisturbed by 
“geo”logical processes

Craters can be counted

Samples can be dated
→40Ar/39Ar, U-Th-Pb
→ 87Rb/87Sr, 147Sm/143Nd

Lunar cratering rate anchors the impact 
chronology for the entire (inner) Solar System



.



The Impact Flux

Ways to interpret the time-varying impact flux:
Samples:

▪ crystalline melts in Apollo samples
▪ crystalline melt clasts in meteorites
▪ zircons
▪ lunar impact glasses

Other:
▪ crater counting and stratigraphy

10s µm

~200 µm



Lunar Glasses
Glasses are formed when regolith is

melted during a high-temperature event
→where, when, how often impacts and 

volcanism occurred

415 µm x 375 µm 240 µm

Glasses are 
small, “clean”,

numerous, 
and optically 

homogeneous



Impact Glasses: 
Composition, Age, and Shape

1,039 glasses3730 ± 40 Ma
(lmHKFM) 

Delano et al. (2007): 1 large distant impact
produces 4 glass shards w/ same age

~800 Ma 

Zellner et al. (2009):  9 glass shards and spheres
from 3 landing sites indicate 7 impacts w/ same age

* Useful tools to extract info about impact flux *



The “Lunar Cataclysm”

Figure 6 in Tera et al. 1974

Lunar cratering
rates from 

U-Pb ages of
18 Apollo and

Luna rock 
samplesFl

ux



The “Cataclysm”
U-Pb ages

Stratigraphy

Crater counting

A15, A17 breccia 
40Ar/39Ar ages

(Dalyrymple & Ryder, 
1993, 1996)

4.3ish – 4.05 Ga
SPA

3.85 ± 0.02Ga
Imbrium 3.893 ± 0.009 Ga

Serenitatis

~3.89 Ga
Crisium

3.92 – 3.90 Ga (?)
Nectaris

3.84 – 3.80 Ga (?)
Orientale

Wilhelms (1987), Hartmann (2000), Ryder et al. (2000), Koeberl (2006)

~800 Ma
Copernicus

~100 Ma
Tycho



Describing the Impact Mechanism

Gomes et al. (2005); Tsiganis et al. (2005); Morbidelli et al. (2005)

Objects scatter into

the inner Solar System 

after the orbital shift of 

Neptune (dark blue) 

and Uranus (lt. blue)

Current-ish Solar 

System, after 

ejection of objects 

by planets

(JSUN)

Early configuration, 

before Jupiter and 

Saturn reach 

a 2:1 resonance

(JSNU)

Nice Model: 



Changing Views: New Data

Orbital Data
LRO: LOLA

LROC

Sample Data
New Interpretations
More Data
More Sophisticated Analytical Techniques

LRO/LCROSS



What’s New? LOLA Data 

: 
>100 >300-km QCD 

LA data, crustal (LO thickness maps)

Result: More basins w/ larger  diameters 
than determined by previous crater studies
→ CSFD shows more large early impacts

43 – 72
new basins

Fassett et al. (2012)

Frey (2011, 2012, 2015)

Frey, 2015

CSFD
curve



What’s New? Isotope re-Calibrations

Liu et al. (2012)
Merle et al. (2014)

Mercer et al. (2015)

Recal’d 39Ar/40Ar
standards and U-Pb

analyses: similar ages 
in samples with similar

compositions from 
multiple different 

Apollo landing sites 

Result: Many were 
derived from 

Imbrium (~3.9 Ga) 
and represent one event
(Other samples may represent basin-forming

events or smaller local impacts.)

Grange et al. (2010)

?



What’s New? Updated (but still uncertain) Ages
(based on new calibrations and superpositioning of ejecta blankets from orbital data)

Crater Age (today) Age (before)

SPA 4.2 Ga (?) 4.3ish – 4.05 Ga

Serenitatis >4.1 – 3.87 Ga 3.893 ± 0.009 Ga

Nectaris 4.1 Ga (?) 3.92 – 3.90 Ga (?)

Crisium ~3.9 Ga (?) ~3.89 Ga

Imbrium 3.77-3.90 Ga+ 3.85 ± 0.02 Ga

Norman (2008); Grange et al. (2010); Spudis et al. (2011)

+ Imbrium’s age is based on Apollo 14 and Apollo 15 

samples, whose geologic provenance is not well-

established



New: Old Lunar Sample Ages
Apollo 16 impact breccia U-Pb age: 

large event at 4.22 ± 0.01Ga 
Norman et al. (2016)

Norman and Nemchin (2014)

Apollo 16 melt 40Ar–39Ar ages:
4.21 ± 0.05 Ga and 4.29 ± 0.04 Ga 

Fernandes et al. (2013)

Lunar zircon heating events with U–Pb 
ages: 4.3 ± 0.01, 4.2 ± 0.01, and 3.9 ± 0.01 Ga

Hopkins and Mojzsis (2015)

10s µm



What’s New? Dynamical Models

Existence of Hungaria Asteroids explained via E-Belt 

(1.7- 2.1 AU) that was destabilized by late giant planet 

migration

Figure 1 from Bottke et al. (2012)

Result:
1. LHB started at

~4.1 Ga (age of Nectaris?) 

2. LHB not very high

3. No “cataclysm” 

@ ~3.9 Ga



New: Terrestrial Archean Impacts

Byerly and Lowe (2015)

Result: LHB lasted longer than we thought

Barberton (SA):
Multiple impact 
spherule layers 
from large distal 
impacts between
3.5 and 3.2 Ga 
(Byerly and Lowe, 2010; 

Lowe et al. 2014; 
Byerly and Lowe, 2015)



What’s New? GRAIL Data 
Neumann et al. 2015

Evans et al. 2018

Multiple new basins w/ >300 km  diameters
6 known basins with D >200 km larger than previously measured

Result: Impact flux needs to be recalibrated: # impactors capable of forming 
basins (≥90 km) decreased substantially thru Nectarian and Imbrian periods



What is the Earl 

Early Intense 
Bombardment 

view 2 of Tera et al. 1974) 
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Modified from Zellner (PhD thesis); ; Tera et al. (1974) 
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Impact Ages of all Samples

Imbrium
Samples

O2 Whiffs @
3200 Ma, 
2600 Ma 

GOE

(Zellner, 2017)



Old Biogenic Carbon in Zircon

Bell et al. (2015)

~30 µm

10,000 Jack Hills zircons 

1 with age >4.0-Ga and containing 
graphite as a primary inclusion

→ zircon was crack-free

δ13CPDB = −24 ± 5‰ consistent with 
a biogenic origin 

Evidence that a terrestrial 
biosphere had emerged by 4.1 Ga?



The 1st Billion Years

* = biological events on Earth, in the context of impact flux

Zellner, 1st Billion Years Wkshp (2018)



Back to the Moon!
Lots of interest in the Moon: 

China, India, Japan, ESA, US 

Volatiles, Water
Other Resources?

Locales for settlement?
Active Interior?

Much more to explore…

Apollo 14 (3.6 km)
Garry et al., 2012, LPSC



Transformative Science
• Advances in technology & instrumentation
• Orbital data, sample data, and models:

holistic view of Moon’s history, incl. impacts, H2O

• Expt’s designed to test observational evidence:
results support delivery & production of
complex molecules

Cross-disciplinary efforts make 
more progress than disciplinary 
efforts in isolation.
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MoonRise

Focus on SP-A, presumed to be the oldest 
basin on the Moon

Return 1 kg samples:
• Lunar deep crust

(mantle?)
• Lunar impact 

chronology
• Moon’s thermal 

evolution



Humans Back to the Moon!
Samples
• Science
• Extraction/Use

Bases 
• Settlements
• Exploration
• Science (e.g., Astro)



.
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Lunar Regolith Samples

Billions of years impacts 
have pulverized the 
surface into a fine 

powder called regolith

Apollo 11 footprint in lunar regolith 

Regolith looks and feels 
like sticky brown 
talcum powder



Lunar Glass Samples
Glasses are formed when regolith is

melted during a high-temperature event
Where, when, how often impacts, volcanism occurred

Glasses are small,
numerous, and
homogeneous.
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Impact Ages of H Chondrites
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Impact Ages of HED Meteorites

Figure 9 in Cohen 2013
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In Total: Impact Sample Ages

Modified from Zellner, OLEB, 2017

“Sawtooth”
Constant 

Bombardment

Interesting!
young volcanism

GOE
evidence for life

decreased impacts?DUPLICATE SLIDE



Summary: Lunar Impact Rate
Lunar Samples are being re-analyzed

Lunar ages re-calibrated, rocks re-analyzed
Few lunar impact glasses with ages ≥ 3.9 Ga

Limited by available K?
Limited by number of impact events?

Glass spheres turn into shards over time

Duration and nature early lunar impact flux 
still uncertain
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