

National Aeronautics and Space Administration

ATION

 \mathbf{O}

ſ

Ш

Q O

AND

TCM A

Ζ

Π

NASA Advisory Council HEO Committee • May 13, 2020

MARSHALL SMITH

DIRECTOR, HUMAN LUNAR EXPLORATION PROGRAMS

www.nasa.go

Artemis Mission Trades

- Conducts mission trades across HEOMD to balance risk and ensure overall mission success
- Current activities include:
 - -Orbits trades (NRHO vs. lunar polar orbits)
 - -Balance of risk between Artemis I, II, and III, e.g., abort options
 - Options to demonstrate Rendezvous and Proximity Operations (RPO) on Artemis II

10

A B C D

н

CUBESATS DEPLOY ICPS deploys 13 CubeSats total

16

ARTEMIS I

18

6

The first uncrewed, integrated flight test of NASA's Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport.

National Aeronautics and Space Administration

12

▼ To Earth

10

13

ARTEMIS III Landing on the Moon

ORION OUTBOUND

POWERED FLYBY

GATEWAY ORBIT

point to Gateway,

and docking

INSERTION BURN

Orion performs burn to

establish rendezvous

performs rendezvous

Crew transfers to Gateway, activates Lander staged at

Gateway, prepares for

60 nmi from

the Moon

7

9

12

1 LAUNCH SLS and Orion lift off from Kennedy Space Center

2 JETTISON ROCKET BOOSTERS, FAIRINGS, AND LAUNCH ABORT

3 CORE STAGE MAIN ENGINE CUT OFF With separation

4 ENTER EARTH ORBIT Perform the perigee raise maneuver. Systems check and solar panel adjustments

TRANS LUNAR 5 INJECTION BURN Astronauts committed to lunar trajectory, followed by ICPS separation and disposal

ORION OUTBOUND TRANSIT TO MOON **Requires several** outbound trajectory maneuver burns.

Lander departure LANDER UNDOCKING 10 AND SEPARATION FROM GATEWAY

> LANDER ENTERS LOW 11 LUNAR ORBIT Descends to lunar touchdown

> > LUNAR SURFACE EXPLORATION Astronauts conduct week long surface mission and extra-vehicular activities

During lunar surface mission

14 LANDER ASCENDS LOW LUNAR ORBIT Lander performs rendezvous and docking with Gateway

> 15 CREW RETURNS IN ORION Orion undocks from Gateway, performs orbit departure burn

> > **ORION PERFORMS** 16 **RETURN POWERED** FLYBY • 60 nmi from the Moon

17 FINAL RETURN TRAJECTORY * CORRECTION (RTC) BURN Precision targeting for Earth entry

18 ENTRY INTERFACE (EI) Enter Earth's atmosphere

19 SPLASHDOWN Pacific Ocean landing within view of the U.S. Navy recovery ships

6

Gateway Orbit

16

7

15

9

Flight Test Objectives Coverage Options

Gaps are closed via Orion RPO(D), AE and DE test flights

Capability Gap Findings

Program	Assessment		Benefit	Tech Risk	Sched Risk	Findings			
Orion	Modify Artemis I to NRHO			Low	Low	Low/Med	Modification is feasible; however, requires rework of mission products/competing resources		
	Artemis II RPOD	Prox O	ps/Hnd. Qual	High	Low	Med	Exercises majority of higher risk RPOD objectives, smaller schedule risks to Artemis-II		
		Docking	g	Med	Med	High	Min additional benefit above Prox Ops/HQ demo, Hardware demonstrated via CCP-ISS flts		
	Mission implementation	HEO	Prox Ops/HQ	High	Low	Low	Primary risks for RPOD are sensor demo which could be accomplished with ICPS operation		
			RPOD	Med	High	High	No highly elliptical RNDZ exp., high mission opp. constraints, does not feed to All		
		NRHO RPOD		Med	Low	Low	Near-linear dynamics, most flight like, w/o HEO dissimilar ECLS backup possible w/ 3 crew		
Gateway	Support as a docking	HEO		High	Med	High	Technically feasible, dual launch with limited schedule margin before Artemis III		
		NRHO		High	Low	Infeas.	Availability on station in NRHO is too late to support flight tests		
	GLS docking target	For Orion		Med	Low	Low	Not Test Like You Fly implementation, least schedule risk option for Orion docking		
		For HLS AE		Low	Low	Med	AE rendezvous demonstration only, AE is the target vehicle for Orion in prox ops		
HLS	Ascent Element flight	Independent		Med	Med	Med/High	Most significant portion of HLS risk mitigated with any AE FT		
		Orion Integrated		High	High	High	Most beneficial; boilerplate flight test int. avionics/crew ops possible, limited AIII schedule		
	Descent/Transfer flight test	2- Element Arch		High	High	High	2-element or B1B sized could only be launch w/ New Glen to HEO, New Glen constrains dia.		
		3- Element Arch		High	Med	High	Viable launch architecture for CLV heavy class operations per baseline design		
		No DE FT mitigation		Med	Med	Med/High	CLPS or AE end of life demo to perform simulated lunar surface approach		

Targeted modifications to the campaign could close integrated capability gaps

Elliptical Coplanar Posigrade

Graphics for a 4500x100 km coplanar Similar profile for 5500x100 Earth-Moon Rotating Frame • 4500 x 100 km orbit achievable near the limit

- of Orion performance
- Mission durations 15-17 days available
- 3-7 days available in parking orbit

Mission Risk Comparison to NRHO

				Crew Risk					
Orbit Selection	Orbit Period	Time in Orbit MET		Abort Time (Surface to Orion, Does not include RPOD)	Abort Time (Orion to Earth)	Delay for missed Earth return window	Critical Maneuvers (Number of HLS maneuvers consistent)	Communication Outage to Orbit	
Baseline NRHO	~6.5 days	~13-18 days	~25-34 days	0.5 to 2.5 days	~5-8 days ~1-2 day window per NRHO rev (some NRHO arrival conditions allow for aborts with METs <21 days total)		OPF, NRI, RPODUs*, NRD, RPF	N/A	
Elliptical Polar Orbit (EPO) with CoLA (6500 x 100 km)	~9 hours	~4.5-10.5 days	~20.5-23.5 days	11-13 hours	3.5-10 days Continuous abort window during orbit phase	~17 days	3 burn LOI Sequence 3 burn TEI Sequence (these occur in front of the Moon) RPODUs*	Comm losses due to occultation behind the Moon	
Elliptical Lunar Orbit (ELO) Coplanar Posigrade [Equatorial- No Polar Access] (5500 x 100 km)	~8 hours	~7 days	~17.5 days	11 - 13 hours	3-8 days 5 day window	~20-21 days	3 burn LOI Sequence 3 burn TEI Sequence (these occur in front of the Moon) RPODUs*	Comm losses due to occultation behind the Moon	
Color compares to NRHO					*	All missions have Orio	on RPOD. HLS undock. HLS RPOD. an	d Orion undock	

Blue – better than NRHO Orange – worse than NRHO Red – not viable

Forward Work - Eclipses

Example from previous analysis of 10000 x 100 km orbit:

- Utilizing perilune, apolune, and beta angle eclipse and insolation variations are derived
 - Thermal conditions of HLO are similar to transit (negligible lunar albedo)
- Use of resulting eclipse range used as a sizing bound for all operations
 - Mission design applies 3 hr long eclipse as sizing capability
 - Transit eclipses could be up to 7-8 hrs in length, eclipses >3hrs would be 'cutouts' in launch opportunity
- Lunar flyby and transit ops will result in eclipses from short to med length

Estimates for maximum eclipse durations for a 5500x100 coplanar posigrade orbit are ~2 hours

• Further work needed to assess seasonal variations and relations to major burns

Forward Work – Landing Site Impacts

- Example shows the precession of an Earth-Moon "coplanar" orbit in the Moon centered Moon ME frame
 - Solid line indicates original orbit
 - Dashed line indicates orbit after ~14 days
- Orion drifts away from landing site during surface mission
 - Need to account for plane change

NextSTEP A: Habitation Systems

Phase 1 – 2015-2016: Concept Designs and Operations Phase 2 – 2016-2019: Prototype Development and Testing Phase 3 – 2019-2020: Continued testing focused on Gateway and Foundation Surface Habitat

Life Support Systems

CO₂ Removal STRUCTURED SORBENT TEST STAND

Trace Contaminant Control CATALYTIC OXIDIZER ASSEMBLY LIFE TEST STAND

Environmental Monitoring SPACECRAFT ATMOSPHERE MONITOR

Atmosphere Management Approach

INTERNATIONAL SPACE STATION DEMONSTRATIONS

4-Bed CO₂ Scrubber (NASA in-house) 2021 flight

Thermal Amine CO₂ Scrubber (Collins) On board Mini CO₂ Scrubber (Dynetics) 2021 flight Ionic Liquid CO₂ Scrubber Test Stand (Honeywell investment) 2021 flight via CASIS

Down-select to best and integrate with redesigned Oxygen Generation Assembly & Sabatier CO₂ Reduction Assembly for longduration ISS demonstration

RadWorks – Radiation Detection, Shielding, Monitoring

Spacecraft Fire Safety Experiment (Saffire)

Large-scale fire experiment series conducted inside Cygnus cargo vehicle after it departs the International Space Station, before its destructive re-entry through Earth's atmosphere

Saffire IV loaded into Cygnus NG-13, December 2019

- Saffire IV was remotely activated by Northrop Grumman operators on May 11. NASA/GRC Saffire staff are monitoring the experiment as it burns and returns data back to Earth.
- Saffire IV will burn multiple samples (45 cm wide and of varying length) to determine how the flame spreads across different materials.
- Saffire IV will burn some of the same materials as in Saffire II but at different pressures and oxygen concentrations for comparison.

Logistics Reduction

Developing technologies that reduce logistical mass, volume, and crew time dedicated to logistics management

Intravehicular robotics to unload resupply vehicles and retrieve items

Trash Compaction and Processing Systems

Trash-to-Gas: recover effluent water and gases from trash.

Tank Health Monitoring Modal Propellant Gauge

Artemis I Secondary Payload CubeSats

BioSentinel

- Detect, measure and correlate the impact of space radiation on living organisms over long durations.
- Ready for Delivery to Dispenser Integrator, Tyvak by June/July 2020*

NEA Scout

- Image/characterize a near-Earth asteroid during a slow flyby using solar sail deployment and navigation
- Spacecraft integration 95% complete

Lunar IceCUBE

- Majority student-led team with a mission to prospect for ice, liquid, vapor forms of water on the Moon using IR spectrometer
- Hardware delivery to GSFC
 6-8 weeks after re-open

Launch and Payload Schedule

Launch Date	Mission	Payload
Jul. 2020	Mars 2020	MEDLI-2, MOXIE, MEDA
Sep. 2020	NG-14	Saffire-V
Sep. 2020	NG-14	UWMS
TBD	ISS	Brine Processor Assembly
Apr. 2021	NG-15	Saffire-VI
Nov 2021	Artemis I	Secondary Payloads – BioSentinel, NEA Scout
Nov 2021	Artemis I	Hybrid Electronic Radiation Assessor (HERA)
Dec. 2022	KPLO	ShadowCam

