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1 Abstract 
All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity 
fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage 
of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, 
temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or 
utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is 
not constrained to any specific orbital inclination. Current results suggest that existing and emerging 
technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including 
detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety 
of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but 
cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of 
the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the 
feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. 
In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging. 

To resolve an Earth-like planet at the nearest star, 
Proxima Centauri, it would be necessary to develop a 
telescope with an optically-perfect baseline of ~2 km. 
On the other hand, the width of the United States is 
equivalent to ~14 milliseconds of light travel, a time 
scale that can be resolved by nearly any off-the-shelf 
photodetector. By leveraging millisecond-resolved 
temporal signals from distant solar systems, we can 

create an interstellar lidar, making it possible to detect 
and acquire continent-resolution images of distant 

worlds with existing hardware. 
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2 Introduction 
The recent flood of exoplanet detections is an incredible technological feat that also gives humanity a new 
perspective of the uniqueness of our place in the universe. Knowing that there are countless other planets 
in the habitable zones of stars is hardly the end of the inquiry. Steps to perform direct spectroscopic 
interrogation to understand the composition of these exoplanets and to search for possible signs of life are 
already underway. However, the inquiry will not end when spectral features are directly and regularly 
measured. The next challenge will be to see these worlds. Directly resolving exoplanets poses several 
challenges, the first of which is differentiating the trickle of photons reflected by the exoplanet from the 
ocean of photons coming from the host star. Researchers have approached this problem by investigating 
complex spatial filters that include starshade coronagraphs, differential spectroscopic techniques, and by 
considering ultra-large-baseline direct imagers. To exemplify of the scope of the challenge, a spatial 
resolution of one Earth diameter from an exoplanet at the nearest star, Proxima Centauri, would require a 
~2km diffraction-limited telescope, and the requirements get more extreme for more distant stars. 

Then there is the fact that all stars have intensity fluctuations over several timescales, from nanoseconds to 
years. Astronomers seeking exoplanet transits or changes in radial velocity have handled these fluctuations, 
including stellar variability and spectral jitter, as fundamental limitations. Astronomers seeking to directly 
image exoplanets have pursued the perfect coronagraph, one where the star’s light is removed entirely, but 
in the process they must delete entire regions of the star systems from their study. In this NIAC study, we 
considered an alternative: embrace stellar noise and imperfect coronagraphs. We found that, with proper 
design constraints, these perceived impediments may hold the key to beating the tyranny of the diffraction 
limit and could enable the first continent-level resolution images of worlds outside of our solar system. 

Figure 1. A fluctuation in the intensity of light from a star, as well as its echo from an exoplanet within 
the system, is captured by a telescope. The signal is digitized and processed by a correlator algorithm, 
resulting in a time-correlation plot that reveals the structure of the solar system. 

We evaluated the feasibility of distinguishing the photons that are from the star from those of the planet by 
leveraging a temporal effect: the echo. As illustrated in Figure 1, when a star fluctuates, the fluctuation 
signal takes time to reach the planets in the star system, often many minutes, resulting in a signal and an 
echo. High-cadence high signal-to-noise measurements can acquire the signal and the faint echo. 
Temporally resolving the star system, as opposed to spatially resolving the star system, places minimal 
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requirements on the imaging system and can be achieved with existing technology. Perhaps most 
tantalizing, the width of the United States is equivalent to ~14 ms of light travel, which is a time delay that 
can be detected by nearly any off-the-shelf photodetector. Consequently, stellar echo techniques may be 
able to provide continent-level resolution of exoplanets many light years away without requiring multi-km 
diffraction-limited optically-perfect telescopes. 

In this Phase I NIAC program, we evaluated stellar echo techniques and placed bounds on feasibility, 
determined relevant computational techniques, evaluated the state-of-the-art technology required, and 
conducted a literature survey. The results are extremely promising for flare stars. Detecting Earth-like 
exoplanets around Sun-like stars with echo techniques may end up not being practical, but there is still 
some hope: there is a general lack of high-cadence visible-spectrum data available from our own sun, so 
the accuracy of our models is limited by this apparent data void. Measurements of the sun from the ground 
are typically corrupted by atmospheric phenomena and measurements from space are acquired at relatively 
slow cadences that are optimized for downlink and data storage requirements; therefore, there may still be 
high variability signals that could be exploited, particularly from atomic emission lines associated with 
plasma fluctuations. 

1.1. Mission architectures 

Figure 2. Mission concepts to bring stellar echo imaging to fruition. The first priority is to acquire 
space-based, high-speed, spectrally-resolved light curves from the sun as a star, in order to determine 
whether there is sufficient spectral noise to perform stellar echo detection on sun-like stars. In 
parallel, a stellar echo survey mission will provide the first echoes from flare stars and other high-
noise stars. Following successful demonstration of the technique, a subsequent mission would 
attempt stellar echo correlation tomography to detect Earth-scale exoplanets. If the previous 
missions are successful, a constellation of high-performance next-generation space telescopes could 
produce continent-level-resolution echo maps of terrestrial exoplanets. 
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We envision three distinct stellar echo architectures: exoplanet surveys, echo tomography, and imaging 
missions where echoes are used in combination with direct imaging methods to produce “super-resolution” 
maps of exoplanets. Figure 2 illustrates a stepwise implementation strategy. There are two independent 
early priorities: (1) identifying high-cadence spectral properties of the sun and (2) developing a stellar echo 
survey mission. The survey mission will emphasize flare stars, so the results will not depend on the sun’s 
spectral properties. Stellar echo surveys do not require stringent angular resolution, but they do require a 
large space-based light bucket telescope. Membrane optics and other deployable structures appear to be 
viable options for this application. 

The results from the solar spectroradiometer and survey missions will be used to determine the feasibility 
of follow-on studies: if the high-cadence solar spectroradiometer successfully identifies highly variable 
emission lines, then it will be possible to develop a terrestrial planet imager for less-variable Sun-like stars; 
if the survey mission detects a significant number of exoplanets, accretion disks, or other structures, then it 
will be compelling to develop a correlation tomography constellation for mapping the high-resolution 3D 
structure of other solar systems. Table 1 outlines additional scientific benefits to these missions. 

Table 1. Mission architecture elements, approximate timeline targets, and the science to be 
accomplished. 

Mission element Period Stellar echo goals Additional science to be accomplished 

High-cadence solar 
spectroradiometer 
CubeSat 

Early 
2020’s 

•   Determine feasibility of 
obtaining echoes from sun-
like stars 

•  Correlation of microsecond UV/VIS 
variability with photosphere and coronal 
events 

•   Potential  discovery  of  heliophysics  
phenomena  

Stellar echo survey 
mission 2030’s 

•   Full proof-of-concept, 
demonstrate feasibility of 
identifying echoes from flare 
stars and other noisy targets 

•   Determine  distribution  of  
echo-relevant  star systems  

•   High-resolution asteroseismology survey, 
substantial signal-to-noise enhancement 
over CoRoT 

•   Exoplanet  transit  survey  
•   Study  of  interacting  binaries  
•   Potential discovery of astrophysics 

phenomena 

Stellar echo 
correlation 
tomography 
constellation 

2040’s 

•   Develop lidar maps of 
exoplanets and their moons 
near M dwarfs, ideally 
spectrally resolved 

•   Produce  3D  maps  of  
accretion  phenomena  

•   Study of flare dynamics on distant stars 
•   Potential  imaging  of  stars  through  

rotational  timing  cross-correlations  
•   Detection of non-radial asteroseismology 

modes 

Dedicated terrestrial 
planet imaging 
constellation 

Before 
2100 

•   Obtain continent-level 
resolution of Earth-like 
exoplanets 

•   High-resolution mapping of stars 

2.1 A	 brief discussion of echo detection and imaging 
During the Phase I program, we evaluated several aspects of stellar echo techniques. Here we summarize 
several of the key points, both positive and negative: 

• Spatial resolution is obtained from temporal resolution, not optical interferometry 
◦ Does not require perfect optical flatness over the baseline 
◦ Does not require combining beams over large distances 
◦ Can be operated in survey applications, similar to Kepler 
◦ Miniscule angular separations are second-scale temporal separations 

• Becomes feasible to detect moon systems 

6
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•	 Does not require ultra-high rejection of the parent star’s light 
◦ Can operate without a stellar coronagraph in survey architectures 
◦ Can provide super-resolution in telescopes with coronagraphs 

•	 Utilizes reflected light 
◦ Provides an immediate route towards acquiring spectral measurements 

•	 Is limited by photon counts, requires a very large collection area 
◦ Cannot collect photons that are not reflected—requires the planet to have a bright albedo 
◦	 Consequently, planets that are discovered are excellent candidates for follow-on spectroscopic 

studies 
•	 Requires the stars to have a form of noise or intensity fluctuations on a relatively short temporal scale— 

we have not yet figured out how to force stars to have such phenomena 
◦ The most common types of stars are red dwarfs, which have consistent and extreme flare events, 
◦ Some spectral lines, like H-α and Ca II, likely have regular fluctuations 

•	 Is affected by a variety of intrinsic, systematic error sources 
◦	 e.g., fluctuations on the far side of the star relative to the exoplanet may not reach the exoplanet, 

but can reach our detectors and thereby cause systematic signal de-correlation 
◦	 Some stars may exhibit seismic activity with a well-defined autocorrelation signature that can 

interfere with the exoplanet detection signal 
•	 Depends on a very stable photometry platform and is sensitive to non-traditional sources of noise 

◦	 Damping of vibrations is challenging in satellite platforms and we discovered that both CoRoT and 
DSCOVR, the two premiere high-cadence photometry space platforms, have readout noise that can 
dwarf the signals of interest 

•	 The primary algorithm used is the autocorrelation function, which is well-established 
◦ Does not require many assumptions about the data 
◦	 As a planet moves in its orbit, the temporal lag changes, requiring a time-dependent autocorrelation 

analysis 
• Time dependence can be used to quantify orbital parameters 
• May significantly increase the amount of averaging time required to obtain a desired 

uncertainty 
•	 The location of the fluctuation on the star will influence the autocorrelation signal and will convolve 

the structure of the star with the planet 
◦ May requires additional signal averaging 
◦	 One solution is the use of multiple echo detection satellites in order to localize the source of the 

fluctuation. While this increases the cost and systems management complexity considerably, it 
also enables 3D correlation tomographic mapping 

•	 Can use cross-correlations between spectral bands to enhance or weight the signal. For instance, while 
EUV and X-ray emissions will not reflect off exoplanets, they are often associated with other visible 
spectrum signatures. 
◦	 Systematic correlations and decorrelations between bands can be used to differentiate between 

direct light and echoed light. However, many of these signatures require a specific phenomenology 
to function, so each star class is expected to have its own class of phenomena. 

•	 Have not yet explored other means of enhancing the incident signals such as differential polarimetry 
(scattered light from atmospheres has a polarization dependence) or complementary intensity 
interferometry techniques that may be able to distinguish between different origins of the light, or 
provide bounds on the size of the star in order to estimate the geometric deconvolution requirements 

•	 Direct imaging techniques with coronagraphs can isolate the point of light from a given exoplanet, but 
they cannot resolve the exoplanet themselves.  

7
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◦	 Can be used in conjunction with rotational unmixing[1] where time-dependent light curves are 
extracted and the planet is ‘rotationally unmixed’ in order to assign spectra to individual 
hemispheres. 

◦	 Complementary high-cadence echo data can take advantage of residual starlight and allow 
extraction of sub-structures within these hemispheres in order to produce images with continent-
level resolution 

3 Exoplanet detection	 techniques and	 stellar echo background 
Like transit techniques, the echo detection of exoplanets requires only a single pixel for each star, which 
makes survey missions viable. However, transit methods fail if a planet’s orbital plane is not exactly aligned 
with the telescope. Radial velocity methods that measure the changing velocity of a star are an alternative, 
but these methods fail if the orbital plane is close to perpendicular relative to Earth. In these detection 
schemes, fluctuations are actually a significant problem: spectral jitter makes radial velocimetry challenging 
and intensity fluctuations produce false positives for transit techniques. Direct imaging fails for detecting 
exoplanets that have small angular separation from their host star, where the reflected light signal is actually 
highest, because they rely on coronagraphs cancelling out the host star’s light. Unfortunately, the 
coronagraph also blocks all light from an inner angular limit and requires extreme optothermal stability. 

Figure 3. Qualitative detection regimes for stellar echo compared to the most common alternatives. 
Stellar echo techniques could fill in a missing wedge for detecting exoplanets with small separation. 
The primary advantage is that stellar echo detection is survey-viable at all orbital inclinations. Note: 
Direct imaging can image planets in the transiting configuration, but is poorly suited for discovery 
of exoplanets in this configuration. (Radial coordinate: semi-major axis. Angle coordinate: orbital 
inclination relative to Earth, where 0 is the transit configuration, π/2 is a top-down view. Depth 
coordinate: exoplanet approximate size/mass) 
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Stellar echo techniques can detect exoplanets at any orbital inclination, benefit from spectral jitter, and 
provide orbital data. Echo techniques favor stars having particular temporal properties; however, the 
detection is not an isolated event like gravitational microlensing, so continued monitoring of the system 
increases detection certainty. Therefore, stellar echo techniques can help complete the exoplanet census by 
filling a missing wedge in existing exoplanet detection capabilities. 

Figure 3 illustrates detection regimes for stellar echo detection versus other common alternatives. As a 
survey technique, stellar echo methods can detect a wide range of exoplanet configurations and fills in a 
missing segment where there are no viable alternatives. 

The use of temporal data to detect exoplanets can be traced to a 1971 paper by Rosenblatt,[2] where the 
transit method is first described, and was refined and re-envisioned as a space-based method by Borucki 
and Summers in 1984.[3] Notably, the time domain has been heavily exploited by the Kepler mission, 
which has had unparalleled success in identifying exoplanet systems.[4] Unfortunately, transiting 
techniques only work if the star system is also in the plane of the Earth, setting a hard limit on the number 
of viable star systems. 

Intensity interferometry techniques also exploit the time domain and have been proposed for exoplanet 
searches.[5] Intensity interferometry relies on detecting correlated photons and determining the spatial 
extent of correlated photons by cross-correlating two detectors. While intensity interferometry appears to 
be very promising for imaging stars and other luminous sources, it faces significant challenges in 
applications with reflected light.[6] Intensity interferometry is a covariance technique that depends on the 
fact that thermal sources produce correlated bundles of light within a single emission event. In the visible 
spectrum, a handful of correlated photons will be produced, but when scattering from the planet, particularly 
one with an atmosphere, the correlated photons are unlikely to preserve their mode when they scatter 
towards the telescope. This mode preservation requirement is on top of the already challenging star-planet 
contrast issue. 

As early as 1992, Bromley recognized the potential use of flare echoes to detect exoplanets,[7] though there 
does not appear to have been considerable follow-on work. In 2009, Clark also evaluated the feasibility of 
the technique for using pulse-like flare events to detect planets,[8] but was concerned with the “snowflake 
syndrome,” where each flare is slightly different (both Bromley’s and the present work uses this as an 
advantage). Clark took an additional step and acquired data from flare stars, but was unable to detect any 
echo signatures through Earth’s atmosphere.  

A related technique is known as imaging ‘light echoes.’ Working at a much larger scale, Sugarman 
provided a theoretical model for the use of echoes in extended structures, including the use of supernovae 
to illuminate circumstellar and interstellar media.[9] This technique only works on structures that can be 
resolved by a telescope, though it has many similar considerations with stellar echo detection. 

Throughout this program, we noted a general lack of high-cadence measurements of distant stars, which 
increases uncertainty of our models. Part of the lack of understanding about microsecond-scale fluctuations 
on stars appears to be attributed to the Hubble space telescope primary lens spherical aberration. When the 
Hubble was first repaired, they removed the high-speed photometer to make room for the corrective 
optics.[10] However, the fine guidance sensor (FGS) remained, and has provided upwards of 40Hz 
resolution of stellar activity on a few occasions.[11-14] We did not detect any flare activity or echoes in 
the longest FGS datasets, but we were able to examine the high-speed noise structure of a large star, using 
the raw data from obtained from the asteroseismology from HD 17156.[15] And while the flare frequency 
and activity cycles are still disputed, FGS data obtained from Proxima Centauri essentially confirms the 
feasibility of stellar echo techniques for flare stars, as shown in .[13, 16] 
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Figure 4. Explosive flare observed at Proxima Centauri by the FGS-3 sensor on Hubble.[13] 

4 Technical Analysis 
4.1 Analytical models 
The core motivation is to produce an ‘interstellar lidar’ where the host star acts as the source, and the 
resulting signatures echo off the planets in the system—the time lag between the source and the echo event 
determine the separation between the planet and the host star. The problem is that you can’t coerce stars 
into producing nice delta-function pulses of light. Instead, by patiently acquiring the signatures from the 
star system and running an autocorrelation function on them, the echoes can emerge from the noise. We 
separate this into two classes of signal: pulse-like signatures and ambient fluctuations. Pulse-like signatures 
include flares, and can be directly identified within the data. On the other hand, ambient fluctuations include 
other forms of stellar noise, such as local transient events (e.g., plasma instabilities, micro-flares, or thermal 
fluctuations). These ambient fluctuations can be analyzed through long-duration autocorrelation studies, 
similar to the FFT techniques applied to asteroseismology data. 

4.1.1 Pulse-like	signatures 
Starting from Bromley’s work, the signal received from a highly localized flare impinging on an exoplanet 
is given by:[7] 

I t = F t + εF t − τ + Q + N(t) 

where F is the flare contribution, ε is the relative strength of the echo, τ is the echo delay, Q is the mean 
quiescent photon flux, and N the noise signal. In this form, for a single sharply-peaked flare event of time 
∆t of magnitude F = fQ, Bromley shows that the detection threshold for an exoplanet is approximately: 

1 ∆t  
ε0  ≥   

f  Q 

If the s ignal-to-noise  ratio is  high enough,  this  can be  rewritten in the  differential  form:  

dI  t  dF  t  dF  t  −  τ  
= +  ε  +  N′(t)   

dt  dt  dt  
With N′ the noise within the differentiation band, which depends on the processing techniques. In this 
form, the mean quiescent photon flux falls out of the equation, which has the beneficial effect of removing 
the background. For instance, the prototypical flare profile has a sharp onset, an exponential tail, and a 
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long-term post-flare brightening period. The differential signal will have the strongest signature only at the 
sharp onset, and the echo will reproduce this signature. While this form would be ideal, it essentially 
requires sufficient signal-to-noise from the echo to directly resolve a single event. Instead, it is typically 
more practical to consider a high-passed signal, which may or may not be part of the detection hardware. 

In general, flares may not be localized, particularly for red dwarf flare stars where the flare can extend over 
several stellar radii.[13] Consequentially, these sources can emit light over one light-second distances, 
which is worthy of explicit consideration. In this case, it is necessary to integrate over the region of photon 
emission. A general form of the intensity received by the detector is given by: 

r′  −  r ′ −
r′, t − te  r   r

= F   
I t le exo,i  rexo,i  −  rtele  
              +  ε   ′

i F r ,  t  −  +  dr′  +  Q  +  N(t)   
c  c  c  

i  

Where i is the index of the echoing structure, allowing multiple echo events within the same system. If the 
source of the echo is extended, such as an accretion disk, the sum can be reformed as an integral over the 
volume of interest. And because the number of photons scattering from the planet may be in the few-
photon-per-second range, it may often be more appropriate to consider the echo contribution as a probability 
density function that is sampled from, rather than a continuous function. 

Figure 5. Influence of extended flare structure on pulse shape, assuming an explosive flare with ~5 
second full-width half-max and moving at a rate of 0.5c away from its star. The flare emission can 
extend several stellar radii for some stars. Note that the speed of the planet motion, which is at least 
~3 orders of magnitude slower, and typically even slower than that, will have a negligible contribution 
to the pulse expansion or contraction, so there are no anticipated Doppler-like features from the 
planetary motion. 
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Figure 5 shows an example of a (synthetic) extended flare observed from different directions. This effect 
may cause the exoplanet to echo a slightly different signature from the observed primary pulse. With a 
large signal-to-noise ratio, the different signatures can be related to their orbital positions, providing 
additional 3D data about the relative positions of the flare and the exoplanet. 

The light reflected from an exoplanet is proportional to its phase law, which is a function that takes into 
account albedo and its position in orbit. For a Lambertian albedo, the phase law is:[17] 

Φ α = sin α + π − α cos α /π 

Therefore, when the exoplanet is farthest from the Earth (superior conjunction, α = 0), it will reflect the 
most light. Unfortunately, this is also the position where the Earth cannot observe much of the host star’s 
activity, so it is necessary to also include the Earth’s view of the star. One approximate means of accounting 
for this is to consider the mutual view fraction between the star and the planet, which is to multiply the total 
planet illumination that is visible to Earth, , times the fraction that arrived from a hemisphere of the 
star that is visible from Earth, :  

Φ π − α Φ α = [(sin π − α + α cos π − α )( sin α + π − α cos α )]/π² 

Figure 6 illustrates the relative available echo signal from different inclinations using this reflection 
fraction. 

Figure 6. Total signal available for echo detection based on orbital inclination and orbital phase.  
Top-down (ϕ=0), there is a consistent signal for all orbital positions. In a transiting-orientation 
(ϕ=π/2), the signal is maximized when the exoplanet is at its most extreme positions (maximum 
elongation). 
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4.1.2 Ambient 	fluctuation 	signatures 
Without  knowing  the  structure  of  the  stellar  intensity  fluctuations  it  is possible,  at  least  in  theory,  to  identify  
echoes  through  a relatively  simple technique  called  the autocorrelation.  In  general,  the  correlation  between  
two functions fi   and at  time lag τ over period T is: 

1 T
Cij  τ  =  fi(t)fj(t  −  τ)dt   

T  0  
Eq. 1 

For i=j, this is the autocorrelation function. This can be understood as comparing the data at time t with 
the data at time t  + τ   for every time step in the data series. A larger correlation coefficient indicates a 
stronger correlation, while a negative correlation coefficient indicates the signal is opposite in magnitude. 
The normalized, discretized autocorrelation is given by: 

N−τ  N  

C  τ  =  xi  − μ  xi+τ  −  μ  xi − μ  ²   
i=1  i=1  

Eq. 2 

where is  the  mean  value  of  xi  with .   To  provide  an  example  of  this  data  processing technique,  
consider  the  data  in  Figure  7.  

Figure 7. Extraction of an echo of relative strength X from N white noise data points. 

The signal-to-noise of the autocorrelation function is determined primarily by the number of samples 
obtained and converges as , where  N is  the  number  of  photons  received  from  the  star system.   To  place  
preliminary bounds  on the  necessary collection time  required  to  obtain  a  measurement on  an  exoplanet with  
exoplanet-star  contrast  of  ε, telescope  area  A,  telescope  efficiency  η, star  intensity  reduction due  to 
coronagraph  contrast Z, star  flux  J, detection  confidence c, fluctuation  frequency ν, and  mean  relative  
fluctuation  amplitude  f, an approximate model is:  

t~ νfε2ZJ(1 − c)²Aη −1 
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Table 2 provides a few representative calculations. The time required to detect an echo is minimized by 
enhancing the coronagraph contrast, maximizing the size of the telescope collection area, and maximizing 
the available spectral bandwidth, provided that the fluctuations occur across the entire bandwidth (which 
depends on the phenomenology—a rapidly fluctuating narrow bandwidth can be more valuable than a more 
stable wide-band measurement). As indicated by these calculations, the stellar echo detection technique is 
directly viable for detecting exoplanets that are too close to their host star to be resolved by direct imaging 
techniques. For wider separations or smaller planet-star contrast ratios, a coronagraph becomes necessary. 
However, it is not necessary to have a state-of-the-art 109  blocking power coronagraph to produce useful 
echo data that cannot be obtained through other means. 

Table 2. Preliminary values from nearby systems using an 88nm wide V-band filter, 70% combined 
telescope and detector quantum efficiency, and a 10m space telescope, assuming the planet is in quadrature.  

Time  
between 

flares  

Star  
mag  Detection  goal  

 
Hot Jupiter at 

Proxima Centauri 11.13 31hr 100% None 0.3 0.015 ~10-4 26 days 

Jupiter at 0.5AU 
Proxima Centauri 11.13 31hr 100% 105 0.5 0.5 ~10-7 119 days 

Earth-sized 
Proxima b 11.13 31hr 100% 105 0.35 0.05 ~10-7 352 days 

Hot Jupiter at 
Lacaille 8760 6.7 27hr 10% None 0.3 0.015 ~10-4 3.9 days 

Jupiter in 
habitable zone at 6.7 27hr 10% 104 0.5 0.3 ~10-7 23 days 

Lacaille 8760 

To resolve Earth-like planets, we anticipate needing to resolve ~50 ms events, which means that the target 
operating rate is ~20-50 Hz, a tremendous cadence for traditional telescopes that typically integrate for a 
minute or more. The photon counting noise follows Poisson statistics, so for every N photons received, we 
expect a counting error of N photons. To calculate the noise within a given sample, it’s necessary to 
consider the photometry of the stars, which may vary considerably. Generally speaking, however, they are 
referenced to a standard set of magnitudes within specific bands, as outlined in Table 3.  

Table 3. Absolute photometry for several visible passbands, selected from Bessell.[18] 

Filter band λo (Δλ) 
nm 

Flux density for mag = 0.00 
W/m²-hz  

B 440 (97) 4.26x10-23 

V 550 (88) 3.64x10-23 

Rc 640 (147) 3.08x10-23 

The brightness difference between a mag 0 star and a mag m star is given by: 

Fm =  10−0.4m  
F0 

The energy in a photon is given by J at the center of the V band. The frequency 
bandwidth conversion from wavelength bandwidth, Δλ, for a photon centered at wavelength λo  is: 
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Δ 2    

Δ   2  λ
f = cΔλ/(λ0  −  ) 

2  

For a magnitude m star, the photon flux (number of photons arriving per second per m²) within a sub-band 
of width Δλ in the V band is: 

I 10−0.4mλ  
J(λ0, Δλ,m)  =

V 0Δλ 
  2  

  Δℎ 2 λ  λ0  −  2  

where IV is the flux density within the V band (from Table 3). For Poisson counting noise with a collection 
area of A, the signal-to-noise ratio (SNR) for a sampling frequency f or sampling time t is: 

SNR  =  JA/f  =  JAt   

The signal to noise for 20 ms cadence and 1 µs cadence is plotted for different telescope sizes and star 
magnitudes in Figure 8 and Figure 9. The reason for considering 1 µs cadences is described in the following 
section related to cross-correlating the star shape with the planet echoes. 

Figure 8. Optimal signal-to-noise ratio plotted as a function of star magnitude and telescope size 
assuming a 30 nm sub-band of the V band at a 20 ms cadence. 
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Figure 9. Optimal signal-to-noise ratio plotted as a function of star magnitude and telescope size 
assuming a 30 nm sub-band of the V band at a 1 µs cadence. This timescale is useful for cross-
correlation localization of flares, but is likely impractical for other applications. 

4.1.3 Implications	of	a	 planet	in	orbit 
The autocorrelation described previously is used to describe stationary processes. However, for most orbits, 
the correlation function changes as a function of time. Therefore, it is necessary to evaluate a time-
dependent autocorrelation. One way of handling this is to utilize a moving window function (similar to a 
Gabor transform): 

N−τ  N  

C  τ,  t  =  W(i,  t)  xi  −  μ  t  W(i + τ, t)  xi+τ  − μ(t)  W(i, t)²  xi − μ(t)  ²   
i=1  i=1  

where W(i, t) is a window function centered at time t and evaluated at position i and μ(t) is the mean value 
of W i, t xi, with i = 1, … , N. The width and shape of the window function can impact the resulting 
data—the window size will ideally be large enough to provide at least one sigma of standard deviation. A 
few standard window options are the boxcar or rectangular window, the triangular window, the Welch or 
parabolic window, the Hamming window, and so forth. These are regularly used in signal processing, such 
as reducing finite sample effects from a Fourier transform. The result of the window function is to limit 
the extent of the data processed and (excepting the boxcar window) to weight the data at the center of the 
window more heavily. Figure 10 shows an example of a time-dependent autocorrelation for a simulated 
planet with a nearly perpendicular orbital plane relative to Earth. 
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Figure 10. (Top Left) Autocorrelation from a signal with a varying delay term. It is challenging to 
isolate the signal from the standard autocorrelation. (Bottom Left) A comparable signal after 
averaging for two orders of magnitude longer reveals structure within the autocorrelation, but does 
not reveal its behavior. (Right) A time-dependent autocorrelation taken from the noisy data used on 
the Top Left readily reveals the periodic signal. 

Detection probability depends on several factors including the albedo, orbit, and stellar properties. Figure 
11 shows examples of the ideal signal and intensity as a function of orbital parameter for two eccentricities. 
These plots were generated by numerically solving Kepler’s equation, which is a transcendental equation 
that cannot be directly solved, then calculating the echo lag as a function of time in the orbit. The signal 
intensity was scaled by the inverse square falloff as well as an approximate echo view factor term described 
in §4.1.1. Using this technique, the ‘ideal’ time-dependent autocorrelation can be determined for any orbit. 

Figure 11. Idealized time-dependent autocorrelation curves as a function of orbital inclination and 
orbit. The signal intensity is scaled by the approximate view factor of the planet and the view factor 
of the side of the star that the planet is facing. (Left) Circular orbit and (Right) an eccentric orbit. 
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There are often a number of orbital positions that can be satisfied by a given time lag, or even time-
dependent autocorrelation curve. For instance, a sine-like signal could be a circular orbit viewed at an angle 
or an elliptic orbit viewed top-down. To further constrain the orbit, consider the star as a point source at 
xstar and the planet is a delta-function scatterer at xexoplanet, such that the time lag is given by: 

1
∆t  =  x anet  −  xstar  +  x

c exopl Earth −  xexoplanet − xstar −  xEarth  
          

where c is the speed of light. Assuming that the star is at the origin, and assuming a coordinate system 
where Earth is directly along the z axis at distance d, then the expression simplifies to: 

1
∆t  =  xexoplanet  +  d  	z  −  xexoplanet  −  d   

c  

1  
=  x2  +  y2 +  z2  +  x2 + 2

exo exo exo exo   yexo +  (zexo      
  − d)² − d 
c 

Under a coordinate transformation of z′  =  zexo  −  d/2, 2a  =  c∆t  +  d, η  =  d/2   this becomes the more 
familiar form of a Cartesian coordinate ellipsoid, (more specifically, a spheroid), which is defined by: 

2a =  x2 + y2 +  z + η  2 +  x2 + y2 +  z − η  2   

Having this analytical form makes it easier to perform error analysis, for instance, and to take advantage of 
the various known relations for an ellipsoid. Another way of writing the potential positions of the exoplanet 
in orbit relative to our detectors is given by the implicit relation: 

x2  +  y²  z²  
+ =  1   

a² − η²  a²  

It is also clear that the exoplanet will be quite close to the star (relative to the size of the spheroid, which 
extends past the detectors), so a detection limit sphere can further constrain the position of the exoplanet.  
Figure 12a illustrates the spheroid and inverse square law falloff. Figure 12b illustrates triangulating the 
positions of the exoplanet using multiple detectors with a large separation. 

Figure 12. (a) For a given time lag, there is a spheroid of equivalent travel time such that the position 
of the planet cannot be immediately determined. This is cropped by an inverse square law intensity 
falloff, where planets are unlikely to be detected outside a given threshold. (b) With multiple 
detectors, it’s possible to triangulate the position of the echo without tracking the full orbit. 

4.1.4 Mitigating and	leveraging the	 star’s	 geometry 
One of the challenges with stellar echo detection is the influence of the geometry of the star on the signals 
received. Stars are not point sources and flares and fluctuation events will occur in multiple locations. Each 
event will have a different time delay to the exoplanet, resulting in several different delays instead of a 
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single star-exoplanet delay. Consequently, the autocorrelation function will have the effect of convolving 
the shape of the star with the exoplanet, reducing the signal-to-noise. 

Fortunately, one solution to this problem enables “echo correlation tomography.” By including additional 
detectors, it is possible to distinguish not only the echoes, but also to localize the sources of fluctuations on 
stars to a single hemisphere, and possibly even higher precision. Identifying the location of the fluctuation 
removes one significant source of systematic error, which is when the star has a flare on a side of the star 
that the planet cannot see, but our detectors can see. Figure 13 illustrates this point. By utilizing two 
detectors, the cross-correlation lag between the detectors can localize the origin of the event. 

Figure 13. A fluctuation event on a star can be picked up by exoplanets on the same side of the star, 
but not those on the opposite side. By using two detectors, the timing delay can be used to determine 
on which side of the star the fluctuation occurred, allowing individual fluctuation events to be 
mapped to, at least, a hemisphere. 

Quantitatively,  if  the s tar  is  distance  L away  (along  the z-axis),  the  two  detectors  are  separated  by  distance  
ℎ, and  both  detectors  are centered  relative to  the star,  then  

•   Detector  1  position:  hD1  = ( , 0, L)   
2

•   Detector  2  position:  hD2  = (−  , 0, L)   
2

•   Coordinate  of  fluctuation  on star: P = (r cos  θ  sin  ϕ  ,  r sin  θ  sin  ϕ  ,  r cos  ϕ  )   
•   Delay  in  arrival  at  the  detectors:  Δt  =  D2 −  	P  −  D1 −  	P  /c   

Once  the  norms  are  written  out,  the  terms  under  the  square  root  are  not  easily  combined.   However,  because 
L  ≫  r, ℎ, both terms  are readily  expanded  as  a Taylor  series,  canceling  out  the majority  of  terms.   The 
resulting delay between detectors  is:  

ℎ	r cos  θ  sin  ϕ  
Δt =   

c(L − r cos  ϕ  )  

Figure 14 shows the calculated maximum timing delays for stars at different distances from Earth, using 
two detectors separated by 1AU, assuming the star is the same size as the sun. Consequently, the relative 
timing uncertainty between detectors should be ≤1 µs in order to provide useful cross-correlation values for 
tomographic and localization purposes. 
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Figure 14. Maximum timing delay between two detectors separated by 1AU observing a sun-sized 
star at different distances from Earth. 

4.1.5 Correlation	tomography 
Cross-correlation of fluctuation lags opens a framework for echo correlation tomography, where 3D data is 
extracted from the star system. While the emphasis of this program is on detecting exoplanets, other 
extended structures in star systems, including accretion disks, can be probed as well. And with multiple 
detectors, a 3D density map is possible, though challenging. 

Figure 15. Placing detectors into different phases of Earth’s orbit, for instance, will create a 
sufficiently large baselines to triangulate the position of a given fluctuation on a star many lightyears 
away. The STEREO spacecraft have analogous orbits, so there is an established precedent for deep-
space telescopes. 
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The reference architecture for echo correlation tomography comprises three detection sites in an Earth-like 
orbit, similar to the STEREO orbits, as illustrated in Figure 15. The Earth-Sun L3, L4, and L5 Lagrange 
points are examples of a large-baseline system that may be useful. A maximum 1 µs relative timing delay 
puts constraints on the allowable timing jitter in the circuits, which must be highly accurate, but not outside 
the realm of modern clock technology. Another point worth mentioning is that if one of the telescopes is 
not in the same orbital plane as the others, its position can be ‘corrected’ by altering the timing delay 
computationally. 

The tomography reconstruction kernel would be a spheroid with one focus at the source of the fluctuation 
and the other focus at the telescope. The spheroid would be weighted by an inverse-square falloff, an 
approximate scattering phase law, and the relative signal-echo view factor. Detailed exploration of echo 
correlation tomography remains as a future task. 

4.1.5.1 Localization of sensors and	 synchronization of time [Case study] 
Consider the large-baseline example of sensors located at the Sun-Earth Lagrange points of L3, L4 and L5. 
How do these sensors know their location? For the sensors at L4 and L5, the Sun and Earth locations will 
be highly visible and can be used with ephemeris data to determine rough positioning. Additional periodic 
signals, such as those of pulsars[19] have been explored for determining the position of a single spacecraft 
location and relative location between spacecraft.[20] However, it is necessary to synchronize the sensor 
clocks from across the solar system, which requires several considerations. 

The  benefit  of  increasing the  baseline  between instruments  comes  with  a  cost of  increased  complexity. 
Consider  a  scenario  where  there  are  sensors  positioned  at  the  Sun-Earth  Lagrange  points  L3,  L4  and  L5.  
These  points  form  a  roughly  equilateral  triangle  distributed  around  the  sun  on  the  Earth’s  orbital  path,  with  
L3  point  being  directly  on  the  opposite  side  of  the  Sun  from  the  Earth.  Since  each  Lagrange  point  is  located  
on the  Earth’s  orbital  path,  each one  is  located one  Astronomical  unit  (AU) from  the  Sun.  The  distance  
between sensors  (e.g.  each leg of  a  hypothetical  equilateral  triangle)  is  2*AU*cos(PI/6).  Now  consider  that  
an  observation  is  made and  each  sensor  must  communicate  the  time  they  noted  the  observation  in  order  to  
properly place  the  observation in space.  The  time  for  a  speed-of-light message to   travel from  one s ensor  to  
the  next is  equal to  the  distance  between  the  sending  and  receiving  sensors  divided  by the  speed of  light,  or   
2*  AU *cos(pi/6)/c  which is  roughly 14 minutes.   However,  clock synchronization between sensors  must  
also  consider  the impact  of  special  and  general  relativity.   Note  that  as  in  our  simplified  example, the  sensors  
at  the L3,  L4,  L5 point  are  all  rotating around the  Sun synchronously with the  Earth,  so they  ideally  
experience no  relative motion.  In  practice,  objects  placed  at  the  L4  and  L5  points  are  stable  in  that  they  
maintain  station,  while  those  at  the  L3  point  must  expend  energy to maintain their  position,  and this  is  
usually accomplished with a  Lissajous  trajectory about  the  L3 point.  This  Lissajous  trajectory will  cause  
some  variation  in  velocity  between  the  L3  and  the  L4,L5  sensors,  but  there  are  many  possible  Lissajous 
trajectories  and  the amplitude would  generally  be small.   However,  there  is  a  definite  fixed  difference  in  
the  gravity  experienced  between  L3  and  the  L4,L5  points, and  that has  an  impact on  the  sensors’  perceived  
time  due  to  general relativity.  The  sensor  at  L3 experiences  less  gravity than the  sensors  at  L4,L5 which 
are closer  to  Earth,  so  that  the clock  of  the sensor  at  L3  runs  more slowly.   The  equation  for  time dilation  
due  to gravity  is:  

T
T 0

  =   
2GM  1  −  Rc2  

with,  T  T0   the  observed  period  between  events, G  is  the  gravitational constant, M  is  the  
mass  of  the  object  creating  the  field,  R  is  the  mean  radius,  and  c  is  the  speed  of  light.  
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In our case, the clock at L3 runs 1.000000000022195 times faster than clock on the sensors at L4,L5. Stated 
another way, the clock on the sensor at L3 gains 1.917 microseconds per day vs. the sensor at L4,L5 due to 
gravitational time dilation. Fortunately, this value can be pre-calculated and compensated in actual 
measurements. 

4.1.6 Efficient	 calculation	 of	 stellar	 echo	 signals,	 positive	 identification,	 and	 other	 considerations 
Performing an autocorrelation is a relatively common calculation that is relatively straight-forward to code, 
and is included as a stock function in programs like Mathematica (CorrelationFunction). However, the 
identification of exoplanets requires more than a simple 1D autocorrelation, because for the majority of 
orbits, a time-dependent autocorrelation is required. Additionally, the orbit will exhibit periodicity, so it 
would be advantageous to take advantage of this periodicity to improve the signal-to-noise. 

The  primary  methods  for  exploiting  periodicity  include  Fourier  transforms  and  data  folding.   Because  the  
signal  is periodic,  a  Fourier  transform  seems natural,  but  the  signals  will  appear  to  be p eak-like, similar  to  
a Dirac comb.  From  Monte  Carlo  simulations, we  found  that there  was  a  slight increase  in  the  power  
spectral  density  from  FFT  analysis,  but  its structure  was often  ambiguous.  Data  folding  is  an  alternative  to  
FFTs  and  complementary  to  time-dependent  autocorrelation, where the data is assumed to be periodic, but 
no assumptions  are  made  about  the  structure  of  the  data  (i.e.,  the  signals  are  not  decomposed into sines,  so 
they  can  have  more  complex  shapes).  The  data  folding  process  is  to  take  a  signal, say  x1,  …  ,  xN.  Then, for  
a period  T, there  will be  a  maximum  of  T   data  bins  and likely fewer,  as  there  will  be  some  form  of  
windowing,  kernel  smoothing,  or  binning.   For  a  simple  single  data  point  in e ach b in,  the  signal  at  time  xi   
and  xi+T   are included  in  the same bin,  resulting  in  all  data that  matches  that  periodicity  being  averaged  out.   
The  random  errors  will  converge  as  ~1/  N/T, but this  assumes  that the  correct period  has  been  chosen. 
Unfortunately,  selecting th e  correct orbital period  a priori  is  impossible  unless  the  period  has  already been 
detected through other  techniques,  so the  primary source  of  error  will  be  systematic  uncertainty.    

 

Figure 16. (Left) A periodic signal found by data folding. (Middle) The same signal, but folded at half 
the period shows a clear Lissajous structure. (Right) By weighting every other period of a Lissajous 
with opposite signs, then summing them, real signals will reveal their phase dependence, while false 
signals will average to zero. 

Fortunately, we identified at least one means of performing an orbital period search that appears to be 
reliable and robust to several forms of false positives. Figure 16 illustrates two verification methods for.  
There are two key ideas to support the parameter search: (1) periodic, systematic noise that can masquerade 
as a signal will have higher harmonics in the lag axis, while an echo from a planet will not, and (2) the 
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signal will exhibit even and odd harmonics in the time axis if the periodicity is off by exactly an integer or 
half-integer multiple of the period, resembling a Lissajous plot, while noise will not preserve the time-
domain harmonics. 

When performing an orbital period search, it quickly becomes apparent that many of the calculations are 
redundant. In particular, a large number of products will be calculated for every candidate orbital period. 
Instead, by pre-computing all of the products, different data folding periods can quickly be summed even 
by a scripting program like Python. To summarize in pseudo-code: 

LagMatrix = [LagMax-LagMin][NumPoints-LagMax] 

For each i in range NumPoints: 

For each Lag in range LagMin to LagMax: 

LagMatrix[Lag][i]  =  xixi+Lag   

To  calculate  the  non-normalized autocorrelation,  sum  all  points  in the  array for  a  given time  lag.   To 
calculate a period-folded  dataset  at  period  T, list-convolve the array  at  each  time lag  with  a Dirac comb, or  
delta  function  array,  d  i  =  k  δ(i  −  kT).  By  replacing  the  delta  function  with  a  window  function, this  is  
a straight-forward  way  to  produce  a  filtered  dataset.   Other kernels  are  also  viable,  including  d  i  =  

k  −1  kδ(i  −  kT/2) , which  results  in data  that  is  shifted  by a  half-period being subtracted,  rather  than 
added,  to  the signal, producing  datasets  like  that  shown on the  right  side  of  Figure  16.  

Because the signals  of  interest  are relatively  high-speed,  the  first  step  in  the  data  processing  is  typically  to  
high-pass  filter  the  signals.   This  removes  a  large  number  of  effects  including stellar  rotations,  detector  
drift,  and thermal  background drift.   It’s  conceivable  that  this  high-pass  filter  could be  included on the  pixel  
itself, such  as  an  AC-coupled  CCD  or  a ROIC  with  tailored  electronic bandpass  elements  on  each  pixel, but 
this  may  remove  data  useful to  asteroseismologists.   Recognizing  that  the  signals of  interest  are  relatively  
faint  echoes  against  a  large  background,  we  evaluated  another  pre-processing step that  brings  the  signals  
into  a  comparable  magnitude.  The  goal is  to  magnify  extremely  small signals  and  reduce  the  magnitude  of  
extremely  large  signals.  One  function  that performs  this  task, while  maintaining  a  1-1 mapping of  the  data,  
is  the  square  root  (because  the  data  has  been  high-pass  filtered,  it’s  important  to use  a  sign-preserving 
version of  the  root).  For  instance, a  signal that was  1/100  becomes  1/10,  while  a  signal  that  was  100  
becomes  10.   The  order  of  magnitude  separation  between these  signals  goes  from  104   to  102  .  Other  root 
laws  are  also  options, such  as  the  6th  root.  This preprocessing step was found to be exceptionally useful  in  
some  simulations, and  useless  in  others.  More  evaluation  of  this  processing  step  is  required  to  understand  
the best ways to use it.  

4.1.7 The DSCOVR/NISTAR data 
The Deep Space Climate Observatory, or DSCOVR, satellite is positioned at the Earth-Sun L1 point. One 
of its instruments, the National Institute of Standards and Technology Advanced Radiometer (NISTAR), 
acquires high-cadence radiometry of Earth. We attempted to determine the approximate magnitude of 
stellar fluctuations at Earth using the photodiode data from the NISTAR instrument, but discovered that its 
autocorrelations are plagued by what appears to be harmonic noise, as shown in Figure 17. While there 
may be a way to account for this, we moved on to other tests in the interest of time. 
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Figure 17. Example of an autocorrelation plot from the NISTAR photodiode data. 

4.1.8 The 	CoRoT	data 
The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES, 
with participation of the Science Programs of ESA, ESA's RSSD, Austria, Belgium, Brazil, Germany and 
Spain. As an asteroseismology probe, CoRoT obtained thousands of hours of stellar intensity signals from 
high-magnitude stars. CoRoT has a relatively small aperture (27cm) compared to the requirements of stellar 
echo measurements, and a back-of-the-envelope calculation suggested that a hot super-Jupiter would be 
just barely outside the detection threshold of stellar echo techniques. However, given the large volume of 
data, it was worth investigating and practicing the signal processing on real data. We analyzed the time-
dependent data for dozens of the longest CoRoT datasets and in the process developed many of the 
techniques described previously. During this analysis, we found that preprocessing the data with high-pass 
square-root filters prior to performing time-dependent autocorrelation analysis was effective in revealing 
structure within the signals, but the majority of the structure that we identified appeared simultaneously in 
multiple datasets. We concluded that the structure that we observed was likely caused by other factors, like 
orbital influences or electronic noise. With further analysis, it may be possible to subtract these factors, but 
there was a diminishing return for the time remaining in the program. 

Figure 18 shows an extreme example of digital noise. The autocorrelation revealed that there was a minor 
intensity spike every 32 seconds, which happened to be the exact readout cadence of a nearby FPA. This 
kind of crosstalk would not necessarily be apparent in most analysis techniques, indicating that echo 
techniques may be sensitive to different types of noise than other measurements. Figure 19 shows a less 
noisy signal. Most stars we examined were somewhere between these two results. The double-hump 
structure was present at similar scale in nearly all measurements, indicating that it was likely an 
instrumentation artifact and not a property of stars. 
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Figure 18. Results for HD 180642, CoRoT target 8393. (Left) Autocorrelation and (Right) three 
different processing techniques for the time-dependent autocorrelation. 

Figure 19. Results for HD 171835, CoRoT target 8394. (Left) Autocorrelation and (Right) three 
different processing techniques for the time-dependent autocorrelation. 

4.1.9 The Hubble FGS data 
We were able to access and test the raw data from the longest continuous data run from the Hubble FGS 
data sensor, which corresponded to a particularly exciting measurement. For 10 days, Hubble stared at a 
single star for an asteroseismology measurement of star HD 17156.[15] Additionally, the star is known to 
have a transiting exoplanet on a highly eccentric orbit that results in the planet coming close enough to the 
star to be interesting for echo studies. The measurement cadence of 40Hz was high enough to attempt to 
identify high-cadence fluctuations from the star. Figure 20 shows the processed data. The streaks in the 
windowed time-dependent autocorrelation indicate that the sensor has several additional high-frequency 
components, but this measurement represents the best available data for stellar echo purposes that we were 
able to identify. To fully understand this particular data set, it would likely require at least three of the 
exoplanet’s orbital periods of data (~66 days). Additionally, there was little expectation of significant 
fluctuations from HD 17156, given that is more massive than our own sun, though only longer duration 
analysis would be able to confirm this. 
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Figure 20. Autocorrelation of the data obtained by Gilliland et al of HD 17156.[15] (Top) Time-
dependent autocorrelation and (Bottom) the total autocorrelation from the measurement. 

4.1.10 Case	study:	Proxima	Centauri 
Proxima Centauri is the closest star to the Earth, at a distance of ~4.24 LY.[11] As a red dwarf and flare 
star with a reported exoplanet,[21] it is an extremely interesting candidate for evaluating the stellar echo 
technique. Furthermore, Proxima Centauri’s Ca II line appears to be particularly inconsistent,[22] which 
would have additional benefits for ambient echo-based techniques. Table 4 summarizes some relevant 
known parameters. 

Table 4. Parameters for the Proxima Centarui case study. 
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Based on the flare measured by Benedict et al shown in Figure 4,[13] the relative intensity spiked by ~65%, 
from ~4000 to ~6600 within ~1.4 sec. Figure 21 illustrates the telescope requirements for detecting an 
exoplanet at Proxima Centauri with high confidence using stellar echo techniques. Given the uncertainty 
in flare intensity and frequency, these represent preliminary values. If a given band, such as H-α, 
contributes more heavily to the flare by, say, an order of magnitude, which is not unreasonable to consider, 
then all of the integration times can be reduced by an order of magnitude by selecting the H-α band for the 
study. Phenomenology plays a key role in the signal analysis, so follow-on analysis will be key to fully 
constraining the feasibility. 

Figure 21. Telescope size and detection time for different distances from Proxima Centauri. Assumes 
no coronagraph, Jupiter albedo and radius, 65% flare magnitude, 31 hours between explosive flares, 
200nm bandwidth, 70% efficient telescope, and a 75% detection confidence. 

4.2 Monte Carlo simulations 
To evaluate the validity of the approach, we have prepared a variety of simulations. All of the simulations 
require a noise model, and until we have access to realistic star fluctuation data, all of the fluctuations we 
evaluate will have inherent assumptions. One type of assumption is the temporal structure of the 
fluctuations—what Fourier components are most pronounced? Presently, we are assuming white noise 
processes due to the simplicity in producing the simulations. 

To evaluate the influence of the spatial extent of the star, we considered an ideal star that has multiple 
sources simultaneously emitting and calculated the resulting autocorrelation function (Figure 22). With 
enough averaging, the impact of multiple emitters will average out, but this can take a considerable amount 
of time—ideally, the technique would be robust to this source of systematic noise. We will be updating 
this model to account for multiple detectors in order to evaluate the ability to localize sources of noise in 
order to enhance the signal-to-noise. Additionally, we will soon be including higher levels of detail into 
the time-dependent models, such as the orbital phase dependence on the received echo signals. 
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Figure 22. The influence of multiple independent emitters on the surface of a star. (Left) For a single 
emitter, the exoplanet can be readily isolated. (Right) With 10 emitters, the exoplanet can no longer 
be identified through the noise without additional averaging. 

We also developed a flare-based model, which represents a sparse collection of sharp-onset, high-
magnitude signals, instead of a consistent baseline of small fluctuations. Local events, such as convection 
cells, provide minute-by-minute fluctuations, but are also ubiquitous and likely average each other out, so 
we’re unlikely to implement a convection model.  

As an explosive flare model, we use a linear-onset with an exponential decay term, mimicking the behavior 
in Figure 4. Poisson noise is added based on the intensity of a “pure signal” which is created by summing 
a background intensity, a time-dependent flare intensity, and a faint flare echo signal. 

Figure 23. Example of synthetic data from the flare model. (Top) A series of flares produce high 
magnitude spikes ranging from 10% to 90% of the mean quiescent flux intensity. (Bottom Left) 
These flares echo at a level that is below the shot noise level. (Bottom Right) Resulting autocorrelation 
plot of the entire time series reveals the echo, which occurs 360 samples after the initial flare. 
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4.3 System trade study 
As described in §1.1, we envision three distinct stellar echo architectures: exoplanet surveys, echo 
tomography, and imaging missions. Timelines for space telescope studies are often on the order of two to 
three decades. The Kepler space probe launched March 7, 2009, and its roots can be traced to a 1971 paper 
by Rosenblatt[2] and was first envisioned as a space telescope by Borucki and Summers in 1984.[3] Given 
the reduced cost of access to space since the 1980s, it is conceivable that future missions will be transitioned 
more rapidly, but a minimum timeline of a decade is still realistic. Based on the advances anticipated over 
the next decade, we foresee several new options for space telescopes. For instance, the anticipated launch 
of the 6.5m James Webb Space Telescope will provide a pathway towards ultra-large deployable mirror 
structures.  

4.3.1 Study of 	survey 	missions 
A stellar echo survey mission requires a large light bucket with a large field of view. Because the stellar 
echo does not require extreme angular resolution, the optical surfaces are not required to be exceptionally 
flat, relaxing fabrication requirements. 

Another major factor is scintillation. The atmosphere moves at a high speed, so in order to average out the 
effects of the atmosphere, it’s necessary to either operate outside of bands that are heavily influenced the 
atmosphere, operate with significantly large collection areas that average out the effects of the atmosphere, 
or simply to operate outside of the atmosphere. From the work of Dravins et al,[24] we have determined 
that acquiring measurements in the atmosphere will be a significant problem. For high-speed 
measurements, less than 100 µs cadence, it is possible to obtain useful data, but around 300 µs, the ‘inner 
scale’ of atmospheric turbulence turns on and influences the signal. This means that ‘aperture averaging,’ 
or a very large collection aperture, is needed in order to average over multiple scintillation cells.  

From  follow-on work by Dravins  et  al,[25]  they  showed  that multiple  telescopes  can  be  used  to  get around  
this  problem  more  readily  than  with  a  single  large  telescope, because  they  sample  different, uncorrelated  
portions  of  the  atmosphere.   They  describe  the  scintillation-noise  amplitude  decreasing with telescope  
diameter as  D-2/3 , while  the  noise  amplitude  decreases  with  1/  Number  	of  	telescopes, so  a  factor  of  10x  
reduction  in  noise  requires  either a  1000x  increase  in  telescope  area  (30x  diameter) or 100  small  telescopes.   
For  cost  reasons,  the  large  number  of  small  telescopes  is  almost  always  preferable, but this  makes  time  
synchronization  more  challenging.   Furthermore, because  the  highest signal-to-noise  events  are  brief  flares,  
having a  staring array with near  100%  up time  maximizes  the  probability of  success.   While  it  is  likely  
possible  to demonstrate  the  feasibility of  stellar  echo techniques  by studying high-magnitude  flare  stars  
using very large  Earth-based telescopes,  a  formal  survey mission will  require  a  space  telescope  that  can 
stare  for  months on  end,  much  like  the  Kepler  mission.  

Transit-based exoplanet detection occurs on timescales of minutes to hours, and is therefore amenable to 
long exposure and readout times. Because of this, the combinations of the FPAs and optics used in current 
exoplanet survey missions are not capable of producing the SNR required for stellar echo detection and 
imaging. For example, the CHEOPS survey telescope is designed such that the brightest stars in its field 
of view just reach saturation at the end of its 60 second exposure time; reduce that exposure time by a factor 
of one hundred or more, and the 100 ke-/pixel wells will be dominated by Poisson noise. 

Data rate limits on most FPAs reduce the number of pixels that can be read, which is problematic for wide-
field survey instruments looking at many stars. The FPA will most likely need to be of a CMOS type, 
which are only recently reaching the performance requirements for space telescopes. Examples of science-
grade CMOS detectors are shown below. 
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I. TAOS II (e2v VEGA image sensor CIS113) 
• CMOS
 
• can be butted together on three sides to construct a large FPA
 
•   one  5 x 5 pixel  block can achieve  10,000 fps,  “but  even faster  is  possible” 
 
 

Parameter Value 
Pixels (H x V pixels) 1920 x 4608 
Pixel size (µm x µm) 16 x 16 
Image area (mm x mm) 73.728 x 30.72 
Number of outputs 8 
Time to read and readout one complete row or half 
row 

130 µs 

Well depth 19 ke- (15.5 ke- linear) 
Readout noise (e- RMS) 2.3 typical, 5.0 max 
QE @ 800nm 0.50 
II. JUICE (e2v SIRIUS image sensor CIS115) 

• CMOS 
• like other e2v CMOS, individual regions of interest can be read at higher framerates 

Parameter Value 
Pixels (H x V pixels) 1504 x 2000 
Pixel size (µm x µm) 7 x 7 
Number of outputs 4 
Time to read and readout one complete row 66.25 µs 
Readout rate 6.2 Mpixel/s (typical), 10 Mpixel/s (max) 
Well depth 33 ke- (27 ke- linear) 
Mean readout noise (e- RMS) 5 
QE @ 650nm 0.90 

The design approach to flat fielding and undersampling error could have a large impact on the number of 
simultaneous observations that can be made as well as the SNR; for example, a typical approach is to 
defocus the optics, but this decreases photon flux on each pixel, as well as increasing the readout time. A 
possible compromise is to use optics without a central obscuration (such as membrane optics), which can 
be defocused such that the PSF just overfills a single pixel. This eliminates undersampling error, without 
as great a loss of SNR, and none of the loss in temporal resolution associated with defocusing. Used in 
combination with precision guidance systems and calibration, flat field error may also be minimized. 

Additional important differences are a massive amount of data that the higher temporal resolution will 
generate, the minimization of the relative importance of dark current, and the greater importance of readout 
noise. 

We evaluated different large-area space telescope technologies that may be viable, and membrane optics 
appear to have the highest TRL for ultra-large-area space-based telescopes, though there is still a significant 
demonstration gap. The highest TRL system we are aware of is DARPA’s MOIRE telescope,[26, 27] which 
provides a route towards a large-area chromatically-corrected diffraction membrane telescope, but is 
lacking a demonstration in space. Figure 24 illustrates a first draft of a membrane telescope with a sun 
shade. 
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Figure 24. Concept for a membrane-optic telescope. 

Alternatively, the James Webb space telescope (JWST) is expected to demonstrate large-area deployable 
mirrors. The optical quality of these mirrors is substantially higher than the expected requirements for 
stellar echo, which primarily requires a light bucket, but many of the lessons that will be learned from JWST 
can be applied to the deployment of other large space telescope structures. 

4.3.2 Study of 	correlation 	tomography 	missions 
As we studied the influence of multiple flare locations on the same star during the Monte Carlo simulations, 
it became apparent that localizing the source of the flares may be necessary for high-performance signal 
analysis. §4.1.5 describes the basic framework required to determine the position of the flares. While the 
purpose of this study was to evaluate the feasibility of identifying exoplanets, a multi-baseline mission 
opens the door to ‘correlation tomography’ mapping of distant star systems. This includes planets and their 
moons, but also includes extended structures like dust, accretion disks, and distributions of debris. We did 
not pursue specific studies within the Phase I program, but anticipate that echo correlation tomography 
mapping could be an exciting area of study in the future. 

4.3.3 Feasibility of investigating sun-like	stars 
Exoplanets may be detectable for a variety of orbits around flare stars, but what about exoplanets orbiting 
Sun-like stars? 

During a solar flare, it has recently been discovered that the total energy radiated by the flare is actually 
highest in the visible spectrum, but is dwarfed by the star’s background. In particular, there is more intrinsic 
variation in the star caused by acoustic waves and solar granulation.[28] For heliophysicists attempting to 
study solar flares, having a varying background is an impedance, but is extremely promising for producing 
consistent high-cadence variation for stellar echo measurements. Unfortunately, the majority of solar 
research is performed over longer timescales—the limiting factors are often the hardware selected to 
readout the data from the detectors. With sufficient motivation to understand the high-speed solar 
phenomena, existing detectors could easily perform the measurements. 
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We see a high-cadence solar spectroradiometer as an essential step prior to fully investigating sun-like stars.  
In particular, individual emission lines are known to be more variable, but down to what timescale? We 
approached this question in two ways: envisioning a CubeSat spectroradiometer and attempting to measure 
the sun-moon echo. 

4.3.3.1 A	 high-cadence	 CubeSat spectroradiometer 
The goal of a high-cadence spectroradiometer is to determine the power spectral density as a function of 
wavelength. We started with a worst case S/N analysis, shown in Table 5. 

Table 5. Worst-case S/N analysis. 

Parameter Value Product 
Visible spectral irradiance in space 530 W/m2 

Slit area 5 µm x 1 mm 2.65 µW 
Exposure time 1 µs 2.65 pJ 
Efficiency of monochromator 0.30 0.8 pJ 
Quantum efficiency of focal plane array 0.25 0.2 pJ 
Energy per 550 nm photon 0.369 aJ 540,000 photons 
Number of bands 1000 540 photons/band 
Readout noise 50 e- RMS SNR: 10.8 

Thus, high-speed spectrometry can be photon-starved even when staring at the sun. Without changing any 
of these values, however, it is possible to drastically improve the situation by coupling more light into the 
system with a lens or concentrator. A small COTS achromat/asphere positioned such that its image plane 
coincides with the entrance slit, would restrict the field of view rather than the coupled power. 

Parameter Value Product 
Visible spectral irradiance in space 530 W/m2 

½” Lens area (90% clear aperture) 53 mW 
Exposure time 1 µs 53 nJ 
Efficiency of monochromator 0.30 16 nJ 
Quantum efficiency of focal plane array 0.25 4 nJ 
Energy per 550 nm photon 0.369 aJ 10 billion photons 
Number of bands 1000 10 million photons/band 
Readout noise 50 e- RMS SNR: 200,000 

It’s likely that a COTS lens will need an iris or filter to limit the power coupled into the system. We
 
produced a preliminary design for a high-cadence CubeSat spectroradiometer using the following COTS
 
lenses:
 

Edmund  Optics  #49664  (aspherized  achromat,  input  coupler) 
 
 
Thorlabs  AC050-008-A (achromatic  doublet) 
 
 
Thorlabs  AC300-100-A (achromatic  doublet) 
 
 
Commercially  available Z eiss  grating 
 
 

Several manufacturers, including Teledyne, ON Semiconductor, and Excelitas, can produce custom linear
 
arrays with the necessary readout speed. Figure 25 illustrates one configuration of a 1U spectroradiometer
 
that uses these components.
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Figure 25. Volume ray trace model to verify the spectroradiometer can fit into a 1U compartment of 
a CubeSat. 

4.3.3.2 Measuring the Sun-moon echo 
Any high-cadence intensity fluctuations of the sun measured directly from the Earth may be caused by 
atmospheric fluctuations, including high altitude clouds, so it would be challenging to confirm the origin 
of fluctuations by simply staring at the sun. However, by simultaneously measuring sunlight scattered by 
the sky and light from the moon, we believe it may be possible to identify a sun-moon echo, if one exists. 
Because the position of the moon is well-known, the time delay can be determined by the relative Earth-
Sun-Moon positions. The study we conceived is as follows: 

1.	 A telescope is aimed at the moon during the day, when there is still diffuse sky radiation from the 
sun. Light collected from both the moon and atmospheric scatter passes through a blue filter, which 
passes the spectral band which is most scattered by Earth’s atmosphere (thus maximizing the ratio 
of atmospheric scatter to moon reflection), and finally is received by a single photodiode. 

2.	 The received signal is then digitized and recorded. 
3.	 The fractional difference of the autocorrelation function at the time of sun-moon echo over the 

noise background represents the noise associated with an echo 

The test is illustrated in Figure 26. Unfortunately, bad weather prevented us from testing the system until 
late in the program, but we did manage to acquire one data set with ~300,000 data points. The data from 
this measurement is shown in Figure 27. No signal was observed within the autocorrelation, but this is 
fairly reassuring because the sun is at an activity minimum, so any echo signal would be expected to be in 
the ppm level or lower, far below our present noise floor. Follow-on measurements with telescope tracking 
could provide additional bounds on the signal. 
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Figure 26. Schematic for the sun-moon echo experiment. 

Figure 27. Sun-moon echo data. A digital readout noise source is likely responsible for the spurious 
peaks in the autocorrelation. At the time of month that the data was acquired, the echo would occur 
at ~300ms, but no signal is identifiable within the noise level. 

4.3.4 Study of 	terrestrial 	planet 	imaging 	missions 
The purpose of stellar echo techniques is to take advantage of the spatial resolution associated with temporal 
fluctuations of stars. With sufficient temporal accuracy, ~10ms, resolutions on the order of continents 
become attainable. However, this does not solve the problem of collecting and differentiating the photons 
from the planet from those of the star, which remains a significant signal-to-noise problem. In general, the 
solution to this problem is to exclude the light from the star using a coronagraph. While the preceding work 
on stellar echo measurements has primarily highlighted the power of ignoring the impressive technological 
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developments in direct imaging, we acknowledge that these two techniques may be most powerful when 
working together. 

As a stand-alone methodology, stellar echo techniques can provide survey-level detection of exoplanets, 
and possibly their moons, that are presently undetectable by any existing technique. When utilized in a 
constellation, they can provide 3D correlation tomography of distant star systems, recreating the full 3D 
distribution of light-reflecting structures. But when coupled with emerging direct imaging technologies, 
including high-contrast coronagraphs for space telescopes, they could identify sub-structure in exoplanets 
with continent-level resolution without requiring multi-km, optically-flat baselines. Table 6 provides 
examples of the requirements for terrestrial planet imaging, which is presently an intractable problem. 
While these requirements are certainly challenging, modern coronagraphs are starting to demonstrate
level contrast,[29-31] making stellar-echo-enhanced direct imaging techniques viable. 

Table 6. Preliminary values for a dedicated telescope within a terrestrial planet imaging constellation using 
a 200nm wide VIS-band filter, 70% combined telescope and detector quantum efficiency, and a 20m space 
telescope, and assuming the planet is viewed in quadrature. 

Imaging  goal  Star  
mag  

Time  
between 

flares  

Flare  
magnitude  

Coronagraph  
contrast  

Planet  
albedo  

Planet  
distance  

(AU)  

Feature/ 
star  

contrast 

 

 

Time  for  1-
sigma  

REarth/4 features on 
Proxima b 11.13 31hr 100% 108 0.35 0.05 ~10-9 9.7 days 

REarth  features in 
habitable zone of 

Lacaille 8760 
6.7 27hr 10% 108 0.35 0.015 ~10-9 7.2 days 

Earth-like planet in 
an Earth-like orbit of 

a cooperative star 
10 8hr 10% 109 0.35 1.0 ~10-10 550 days 

There is still certainly more work to go into the development of imaging Earth-like exoplanets, but these 
order-of-magnitude estimates show that timescales that are becoming common in space telescope 
operations could be used to resolve features of Earth-like exoplanets when combined with next-generation 
direct imaging approaches. And because any direct imaging mission that can isolate the point of light 
generated by a single exoplanet will have considerable angular resolution, it will likely be able to 
differentiate the position on the star that fluctuations are generated at, and can be used to better isolate the 
exoplanet’s signal. Utilizing the residual starlight, instead of throwing it away completely, may prove to 
be the last key to unlocking the mysteries of other worlds. 
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4.4 Laboratory	 studies
 

Figure 28. Design to evaluate a random-noise correlation detector. 

Initially, we evaluated a hardware demonstration of random noise lidar systems, where we can generate 
different types of noise, project it onto a scene, then combine it with the original source light and perform 
an autocorrelation. Figure 28 illustrates the current design, where a random signal generator that can 
provide different magnitudes of noise is modulating a laser. The noise-modulated laser is then split into 
two paths: one path is the projection of the laser onto a scene, likely a retroreflector, positioned at ~1km 
away, to represent the exoplanet. The second path is passed through an OD filter to select how much light 
is obtained, then passed onto the photodiode. The return light from the retroreflector is passed through a 
separate OD filter that allows tuning of the star/planet contrast, which is then recombined with the original 
beam and passed onto the photodiode. Therefore, the photodiode receives both the initial signal and the 
echo-delayed signal. The total signal is digitized and passed onto a computer for correlation processing. 

We stopped working on this demonstration when we became aware that random noise lidars are studied 
regularly, with a history going back to at least 1983.[32] In many ways, the established validity of random 
noise lidars provides substantial credibility to the stellar echo technique. The key advantage of random 
noise lidar is that the autocorrelation function of white noise is a delta function, which provides significant 
advantages over the sinc-shaped pulses traditionally used, including continuous operation. It has a broad 
bandwidth that reduces the noise, as well, by essentially multiplexing many channels simultaneously. 

5 In Conclusion 
Stellar echo detection, tomography, and imaging techniques represent a largely untapped source of high-
resolution astronomy data. It is admittedly satisfying that there appears to be a viable class of solutions that 
beat the diffraction limit by exploiting previously deleterious stellar properties, including noise and residual 
coronagraph light. We hope that, even if the approaches pursued in this program are found to be 
impractical, the concepts explored here can help advance the ultimate goal of directly resolving worlds 
outside our solar system. 

36
 



     
     

 

 	
         

                  
                  

                  
           
                

                
             

           
                

              
                
               

         

  


 

 

  


 

Mann - Stellar Echo Imaging
 
NIAC Phase I Final Report
 

6 Acknowledgements 
I am indebted to dozens of people for their discussions, insights, criticism, and support throughout the 
program. While they tried their best to share insights, any residual mistakes discovered in the report are 
entirely my own. Specifically, I want to thank the other 2016 NIAC Fellows for several fruitful discussions, 
as well as the NASA NIAC program for supporting this research. I am grateful to the entire CoRoT team, 
and while I didn’t get a chance to speak with anyone directly, the data their satellite produced provided the 
first realistic processing and analysis conditions for the technique. I am grateful to Ed Nelan for the 
discussions, as well as the data from the Hubble Space Telescope Fine Guidance Sensor, which provided 
real-world, high-cadence, high-quality data to practice algorithms on. Thanks to the numerous people I 
harassed discussed the program with at the National Solar Observatory, the Southwest Research Institute, 
NIST, NASA, NOAA, and Ball. Thanks to Professor Ben Bromley for the great discussions, as well—I 
discovered, only near the end of the program, that he had already published a manuscript on stellar echoes 
in the 1990’s. Thanks to Scott Kenyon for the discussion of numerous stellar mechanisms of relevance to 
the program. And thanks to the whole Nanohmics team: a program like this would never have received this 
much support and encouragement in a proper corporate environment! 

37
 



     
     

 

 	
               

        
          

     
               

  
               

 
             

     
            

             
            

        
               

  
           

      
              

       
              

          
        

                
    

               
         

            
   

               
            

               
              
               

             
 

             
     

             
           

            
    

              
       

                 
        

              
          

  
	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 

	 
	 
	 

	 

	 

	 

	 

	 

	 


 

Mann - Stellar Echo Imaging 
NIAC Phase I Final Report 

7 References 
1.	 Cowan, N.B. and T.E. Strait, Determining reflectance spectra of surfaces and clouds on exoplanets. 

The Astrophysical Journal Letters, 2013. 765(1): p. L17. 
2.	 Rosenblatt, F., A two-color photometric method for detection of extra-solar planetary systems. 

Icarus, 1971. 14(1): p. 71-93. 
3.	 Borucki, W. and A. Summers, The photometric method of detecting other planetary systems. Icarus, 

1984. 58: p. 121-134. 
4.	 Johnson, M. and B. Dunbar. How many exoplanets has Kepler discovered? 2017; Available from: 

https://www.nasa.gov/kepler/discoveries. 
5.	 Strekalov, D.V., B.I. Erkmen, and N. Yu, Intensity interferometry for observation of dark objects. 

Physical Review A, 2013. 88(5). 
6.	 Fried, D.L., J. Riker, and B. Agrawal, Signal-to-noise ratio limitations for intensity correlation 

imaging. J Opt Soc Am A Opt Image Sci Vis, 2014. 31(7): p. 1536-46. 
7.	 Bromley, B.C., Detecting faint echoes in stellar-flare light curves. Publications of the Astronomical 

Society of the Pacific, 1992. 104(681): p. 1049-1053. 
8.	 Clark, R.E., A search for extrasolar planets using echoes produced in flare events, in College of 

Science and Mathematics. 2009, California State University, Fresno. 
9.	 Sugerman, B.E., Observability of scattered-light echoes around variable stars and cataclysmic 

events. The Astronomical Journal, 2003. 126: p. 1939-1959. 
10.	 Bless, R., et al., The Hubble Space Telescope high-speed photometer. Publications of the 

Astronomical Society of the Pacific, 1999. 111: p. 364-375. 
11.	 Benedict, G., et al., Interferometric Astrometry of Proxima Centauri and Barnard's Star Using 

HUBBLE SPACE TELESCOPE Fine Guidance Sensor 3: Detection Limits for Substellar 
Companions. The Astronomical Journal, 1999. 118(2): p. 1086. 

12.	 Benedict, G.F., et al., Photometry of proxima centauri and Barnard's star using HST FGS3. The 
Astronomical Journal, 1998. 116: p. 429-439. 

13.	 Benedict, G.F., et al., Proxima centauri, time resolved astrometry of a flare site using HST FGS 3. 
Cool Stars, Stellar Systems and the Sun, 1998. 154: p. 1212. 

14.	 Benedict, G.F., et al., Periodic low-amplitude variations in the brightness of Proxima Centauri. 
Astronomical Society of the Pacific, 1993. 105(687): p. 487-493. 

15.	 Gilliland, R.L., et al., Asteroseismology of the Transiting Exoplanet Host Hd 17156 With Hubble 
Space Telescope Fine Guidance Sensor. The Astrophysical Journal, 2011. 726(1): p. 2. 

16.	 Walker, A.R., Flare activity of Proxima Centauri. Mon. Not. R. ast. Soc., 1981. 195: p. 1029-1035. 
17.	 Traub, W.A. and B.R. Oppenheimer, Direct Imaging of Exoplanets. Exoplanets, 2010: p. 111. 
18.	 Bessell, M.S., UBVRI Photometry II: The Cousins VRI System, its Temperature and Absolute Flux 

Calibration, and Relevance for Two-Dimensional Photometry. Publ. Astron. Soc. of the Pac., 1979. 
91: p. 589-607. 

19.	 Sheikh, S.I., et al., Spacecraft Navigation Using X-Ray Pulsars. Journal of Guidance, Control, and 
Dynamics, 2006. 29(1): p. 49-63. 

20.	 Emadzadeh, A.A. and J.L. Speyer, Relative Navigation Between Two Spacecraft Using X-ray 
Pulsars. IEEE Transactions on Control Systems Technology, 2011. 19(5): p. 1021-1035. 

21.	 Anglada-Escude, G., et al., A terrestrial planet candidate in a temperate orbit around Proxima 
Centauri. Nature, 2016. 536: p. 437-440. 

22.	 Cincunegui, C., R.F. Díaz, and P.J.D. Mauas, A possible activity cycle in Proxima Centauri. 
Astronomy and Astrophysics, 2007. 461(3): p. 1107-1113. 

23.	 Lurie, J., et al., The Solar Neighborhood. XXXIV. A Search for Planets Orbiting Nearby M Dwarfs 
using Astrometry. The Astronomical Journal, 2014. 148(5): p. 91. 

24.	 Dravins, D., et al., Atmospheric Intensity Scintillation of Stars. I. Statistical Distributions and 
Temporal Properties. Publ. Astron. Soc. of the Pac., 1997. 109: p. 173-207. 

38
 

https://www.nasa.gov/kepler/discoveries


     
     

 

               
         

        
              

   
               

 
                 

        
               

    
             

   
              

 

	 

	 
	 

	 

	 

	 

	 

	 


 

Mann - Stellar Echo Imaging 
NIAC Phase I Final Report 

25.	 Dravins, D., et al., Atmospheric Intensity Scintillation of Stars. III. Effects for Different Telescope 
Apertures. Publ. Astron. Soc. of the Pac., 1998. 110: p. 610-633. 

26.	 Waller, D., et al., MOIRE Thermal Vacuum Structural Stability Testing. 2015. 
27.	 Oschmann, J.M., et al., MOIRE: ground demonstration of a large aperture diffractive transmissive 

telescope. 2014. 9143: p. 91431W. 
28.	 Kretzschmar, M., et al., The effect of flares on total solar irradiance. Nature Physics, 2010. 6: p. 

690-692. 
29.	 Serabyn, E., D. Mawet, and R. Burruss, An image of an exoplanet separated by two diffraction 

beamwidths from a star. Nature, 2010. 464(7291): p. 1018-20. 
30.	 Foo, G., D.M. Palacios, and J. Grover A. Swartzlander, Optical vortex coronagraph. Optics Letters, 

2005. 30(24): p. 3308. 
31.	 Shaklan, S., et al., Survey of experimental results in high-contrast imaging for future exoplanet 

missions. 2013. 8864: p. 88641F. 
32.	 Takeuchi, N., et al., Random modulation cw lidar. Applied Optics, 1983. 22(9): p. 1382. 

39
 


	Stellar Echo Imaging of Exoplanets
	Contents
	1 Abstract
	2 Introduction
	1.1. Mission architectures
	2.1 A brief discussion of echo detection and imaging

	3 Exoplanet detection techniques and stellar echo background
	4 Technical Analysis
	4.1 Analytical models
	4.1.1 Pulse-like signatures
	4.1.2 Ambient fluctuation signatures 
	4.1.3 Implications of a planet in orbit
	4.1.4 Mitigating and leveraging the star’s geometry
	4.1.5 Correlation tomography
	4.1.5.1 Localization of sensors and synchronization of time [Case study] 

	4.1.6 Efficient calculation of stellar echo signals, positive identification, and other considerations
	4.1.7 The DSCOVR/NISTAR data
	4.1.8 The CoRoT data
	4.1.9 The Hubble FGS data
	4.1.10 Case study: Proxima Centauri

	4.2 Monte Carlo simulations
	4.3 System trade study
	4.3.1 Study of survey missions
	4.3.2 Study of correlation tomography missions
	4.3.3 Feasibility of investigating sun-like stars
	4.3.3.1 A high-cadence CubeSat spectroradiometer
	4.3.3.2 Measuring the Sun-moon echo

	4.3.4 Study of terrestrial planet imaging missions

	4.4 Laboratory studies

	5 In Conclusion
	6 Acknowledgements
	7 References




