

Presented by
Josh Fody
NASA Langley Research Center
TECHNOLOGY DRIVES EXPLORATION



# The Emergency Fire Shelter



Emergency fire shelter – last resort if entrapped CHIEFS: Spin-off application of flexible heat shield tech

19 Lost: Yarnell Hill, AZ 2013

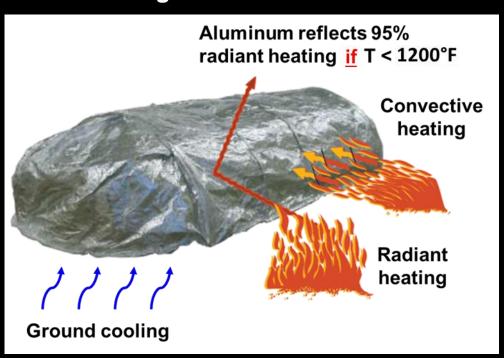
This was like a nuclear blast occurring right over you and you're lying in tinfoil.

Entrapment survivor

When the flame front hit, the shelter was unbearable. I cannot put in words what it was like. It was just totally unbearable. The only reason I didn't get up and get out was because I had enough sense to realize it was a lot worse on the outside.

**Entrapment survivor** 




Inflatable Decelerator



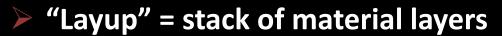
### **US Forest Service Fire Shelter**



- Must avoid flame contact: clear site of fuels
- Yarnell Hill (AZ 2013): insufficient time to clear dense brush
  - Shelters unable to sustain prolonged direct flame heating
  - 19 firefighters lost

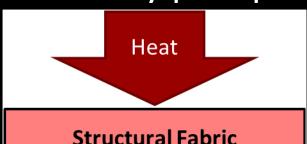





#### **CHIEFS: Target improved resistance to direct flame heating**

- Current fire shelter already considered "too big" by many
- Need high "thermal efficiency" materials




# The "Layup": NASA has expertise from inflatable heat shields





- Each material serves a function
- Order matters

#### **Generic Layup Example:**



High Temperature Insulation

Low Temperature Insulation

**Gas Barrier** 

#### **Inflatable Heat Shield Layup**





#### **Heat shield vs. CHIEFS F-TPS**

#### **Notable Similarities:**

- One time use
- Minimize packed volume & weight
- Short duration high intensity heat pulse
- Need to be flexible, foldable, durable

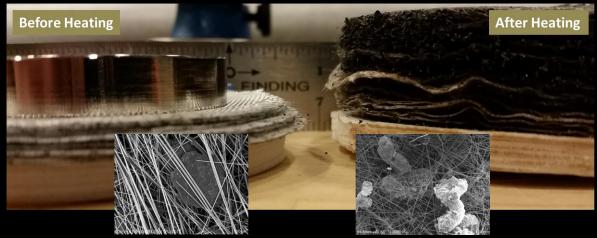
#### Biggest Difference:

- Heat shield materials endure higher heat load
  - Heat shield layups are too big for CHIEFS



# Example Materials Investigated






Low Density Fiberglass Batting



PTFE-Fiberglass Laminate

#### **Intumescent Graphite**





# CHIEFS Testing in Controlled Wildfire







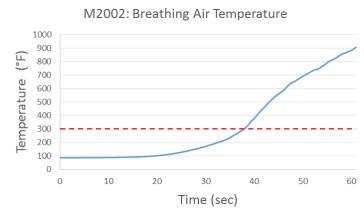
# CHIEFS Testing in U of Alberta Labs

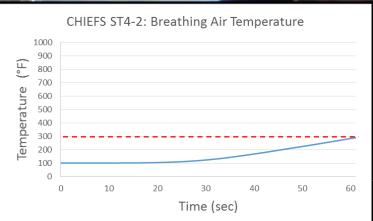






# Shelter Interior





**Current Shelter** 

Test Time 00:01:01:00

CHIEFS ST4 Shelter









## Partnerships/Opportunities



#### 1) Current partnerships:

- US Forest Service (MTDC)
- University of Alberta
- University of North Carolina
- Steve Miller and Associates Research Foundation
- Material vendors/laminators from private industry

#### 2) Benefits for partners:

- This technology could save the lives of firefighters who protect us
- ~100,000 units in the field (USFS contracts)

#### 3) Next steps/future work:

- Areas of opportunity to address:
  - Improved thermal performance/decreased packed volume materials
  - Durability and decomposition toxicity testing
  - Identify/test seam designs to mitigate gas ingress



# **Additional Applications**



- 1) Fire protection blankets for equipment and vehicles
- 2) Fire resistant wraps for structures
- 3) General flame resistant PPE:
  - 1) First responders
  - 2) Race car drivers
  - 3) Foundries/industry
  - 4) Military
  - 5) Aviation and marine
  - 6) Oil rigs and mines





### **Contact Information**



For more information about this technology or to discuss potential collaboration efforts:



Josh Fody joshua.m.fody@nasa.gov (757) 864-3424

Anthony Calomino anthony.m.calomino@nasa.gov (757) 864-1401