National Aeronautics and Space Administration

NASA's Game Changing Technology Industry Day June 29-30, 2016

010101010101010 1001010000100001111140101 11111000000101010 1010101 1010101010 101010 01010101010 001011100000110000011000001

Advanced Near Net Shape Technology (ANNST)

Presented by Wesley Tayon NASA Langley Research Center TECHNOLOGY DRIVES EXPLORATION

Advanced Near Net Shape Technology: Integrally Stiffened Cylinder Process

- Integrally Stiffened Cylinder (ISC) Process - Revolutionary manufacturing method to produce stiffened aerospace structures
- The ISC process offers ~50% reduction in manufacturing cost and ~10% mass savings
- This technology targets launch vehicle cryogenic propellant tanks, but will also benefit intertank and dry bay structures

Traditional Cryogenic Tank Manufacturing

Problem

• Machined/welded construction of launch vehicle cryotanks is expensive, heavy, and risky

Integrally Machined

- 90% Scrap Rate *
- Approx. 540,000 lbs. Chips *
- \$8M Chips *
- Environmentally Unfriendly

 Majority of launch vehicle cryotanks are welded and machined based on manufacturing principles from 1950's

Welded Structure

- Material Property Knockdown
- Potential Weld Defects
- Weld Lands Concentrate Load
- Approx. 0.5 Miles of Welds *

Solution

• Use innovative metals forming techniques to manufacture cryotanks which are cheaper, lighter, with fewer welds

Comparison of Manufacturing Technologies

Key Benefits of ISC Process

- Minimizes machining
- Eliminates longitudinal welds
- Reduces number of circumferential welds

Cost-Benefit Analysis of the Integrally Stiffened Cylinder (ISC) Process

ISC Process vs. Conventional Fabrication

Savings	NASA	MT Aerospace
Cost	52 %	41 %
Mass	7 %	5 %

- Cost reduction attributed to:
 - Reducing labor for machining, welding and inspections
 - Truncating manufacturing schedule by 60%
- Mass reduction by eliminating longitudinal welds and associated weld lands
 - Additional mass savings may be realized through design optimization
- Capital investment for ISC equipment estimated at \$8M
 - ROI after fabrication of 5 cryogenic tank barrels
 - Capital investment equals material savings in one Shuttle External Tank scale barrel

Integrally Stiffened Cylinder (ISC) Process

Fabrication of Stiffened Structures with the ISC Process

- A thick aluminum pre-form is mounted on a slotted mandrel
- Mandrel rotates while forming rollers apply force to lengthen the cylinder and thin the wall
- Rollers force material into slots producing stiffeners

Video of the Integrally Stiffened Cylinder Process

Integrally Stiffened Cylinder Forming Equipment

Maturation of the Integrally Stiffened Cylinder Process

Lab to Launch in 4 years

Proof of Concept with AI-Li Alloy

- 0.2 in. tall stiffeners
- 8 in. diameter

Increased Stiffener Spacing and Height

- Multiple stiffener shapes
- 0.75 in. tall stiffeners
- 8 inch diameter

Scaled-up 6061 Aluminum Stiffened Cylinder

17 in. diameter20 in. length

Cryogenic Tank Height Stiffeners

1 in. tall stiffeners17 in. diameter

Sounding Rocket Flight Demonstration Oct. 7, 2015

Scale-Up of Integrally Stiffened Cylinder (ISC) Process

Scale-Up to 10 ft. Diameter

- Partnering with Lockheed Martin, ESA, and MT Aerospace
- Enabled by utilizing existing infrastructure at MT Aerospace
- 10 ft. diameter stiffened cylinders have application to US and European launch vehicles

Long-Term Vision: SLS Scale Cryotanks

International Partnerships

Lockheed Martin

 US industry perspective and technology infusion into Lockheed Martin launch vehicle systems

2	mт	AEROSPACE

MT Aerospace

- Commercial aerospace manufacturer
- Spin forming expertise and collaboration throughout ISC process development

• European Space Agency (ESA)

- Future Launcher Preparatory Program (FLPP)
- Infusion of ISC technology into upgrades for Vega & Arianne rockets

• DLR (German Aerospace Center)

Partnering to explore limits of stiffener size

Leifeld Metal Spinning

- Spin forming equipment manufacturer
- Potential ISC equipment supplier for US industry

International Technologies, Inc.

• US importer of spin forming equipment

For More Information About The Integrally Stiffened Cylinder Process Or To Discuss Potential Collaboration Efforts

John Wagner John.A.Wagner@nasa.gov 757-864-3132

Wesley Tayon Wesley.A.Tayon@nasa.gov 757-864-4280 Marcia Domack Marcia.S.Domack@nasa.gov 757-864-3126

Keith Bird R.K.Bird@nasa.gov 757-864-3512