Sample Return Systems for Extreme Environments

R. M. Winglee, C. Truitt, M. Pfaff, R. Hoyt

NIAC Phase 1 Review and Phase 2 Efforts

Standard Way: Soft Landing

Preatices / MEF / JAXA - ISAS

Standard Way: Soft Landing

Realises / MEF / JAXA - ISAS

New Way: Hard Impactor

Multi-Object Mission

Penetrator Attached to Tether

Penetrator Attached to Tether

Penetrator and Tether down to Target

Tether pulls the sample back onto spacecraft

Sample stored on spacecraft

Tether is Readied for Next Sample

Key Innovations

- Development of Energy Absorbing Material for High Velocity Impacts
- Tether retrieval for survivable electronics not required
- Detailed Computer simulations
- Ground testing of the system

NIAC Phase 2 Modeling

Without Energy Absorbing Material, System will Crumple (simulations using ANSYS material package)

B: Explicit Dynamics

Total Velocity Type: Total Velocity Unit: m/s Time: 5.2293e-005 1/21/2014 4:28 PM

NIAC Phase 2 Modeling

	10000 Max	
	700	
H	646.15	
Н	592.31	
Н	538.46	
Н	484.62	
Н	430.77	
Н	376.92	
Н	323.08	
Н	269.23	
Н	215.38	
\square	161.54	
	107.69	1 m of surface material
	53.846	i in orsunace material
	0 Min	equivalent to sandstone

1 m of subsurface material equivalent to Ryolite

Field Test: Nevada March,2013

NIAC Phase 1 Results

- Gravedigger 1: impact velocity <200 m/s
- Impact angle ~30° from normal, penetration depth ~5 ft
- Feed ports failed to open due to low velocity
- A post-impact analysis of the penetrator showed it remained almost completely intact, despite the impact angle.

NIAC Phase 1 Results

- Gravedigger 2 successful test of Rockite system and feed ports
- Penetrator impacted at ~400 m/s, to depth of ~7 ft though motor punched through the penetrator
- Seismic Signal detected at 2 stations 50 m and 500 m

Impact Site 2 with Seismometer

"Gravedigger 2" Impact Series

NIAC Phase 2 : Faster and Harder, July 2014

• Phase 2 will be lifted by tethered balloon to 2500 ft.

NIAC Phase 2 : Impact Testing, July 2014

Naval Air Weapon Station, CA - Into Rocky Terrain

NIAC Phase 2 Optimization of Impactor

Two Types of Coring: surface to middle, middle to depth.

NIAC Phase 2: Tether Pull

- Standard launch will test tether capacity under supersonic velocities: Black Rock, NV, March 2014
- Rocket will be tethered to filled Sample Return Casing on surface of playa
- Test is made difficult due to heating of the tether by the rocket motor

Sample Return from Extreme Environments

- With NIAC Support, Concept has become close to reality despite ones initial reaction to survivability of supersonic impacts
- Advances in Energy Absorbing material allows survivability of interior components up to impact speeds of 1 km/s
- Tether recovery should allow return of core samples of a few kg
- Computer modeling indicates the objectives are doable
- Initial field testing looks promising and more field testing to occur into summer of 2014 and into 2015.