A Gravitational Wave Detector Based on an Atom Interferometer

Mark Kasevich, co-I Depts. of Physics and Applied Physics Stanford University

Babak Saif, NIAC Phase II Fellow GSFC, NASA

(background image, Scientific American, Oct. 2013)

Young's double slit interferometer with atoms

Mlynek, PRL, 1991

Young's double slit interference fringes

Mlynek, PRL, 1991

10 m Atom Interferometer (2013)

Wavepackets at apex

Interference at exit port

Apparatus

Ultracold atom source $>10^6$ atoms at 50 nK 3e5 at 3 nK **Optical Lattice Launch** 13.1 m/s with 2372 photon recoils to 9 m Atom Interferometry $2 \text{ cm} 1/e^2$ radial waist 500 mW total power Dynamic nrad control of laser angle with precision piezo-actuated stage Detection

> Spatially-resolved fluorescence imaging Two CCD cameras on perpendicular lines of sight

Current demonstrated statistical resolution, ~5e-13 g in 1 hr (87Rb) STANFORD UNIVERSITY

Multi-axis inertial (2 gyro., 1 accel.) operation

Interference patterns for rotating platform:

operating point.

Measurement Geometry STANFORD UNIVERSITY

Mirro

Dickerson, et al., arXiv:1305.1700, PRL (2013)

Light-pulse atom interferometry

Pulses of light are used to coherently manipulate atom de Broglie waves:

Phase shift read-out by counting atoms at each output port.

Simple model for acceleration sensitivity

As atom climbs gravitational potential, velocity decreases and de Broglie wavelength increases

Physical sensitivity limits (10 m apparatus)

Quantum limited accelerometer resolution: $\sim 7x10^{-20}$ g

Assumptions:

- 1) Wavepackets (Rb) separated by z = 10m, for T = 1 sec. For 1 g acceleration: $\Delta \phi \sim mgzT/\hbar \sim 1.3x10^{11}$ rad
- Signal-to-noise for read-out: SNR ~ 10⁵:1 per second.
- 3) Resolution to changes in g per shot: $\delta g \sim 1/(\Delta \phi SNR) \sim 7 \times 10^{-17} g$
- 4) 10⁶ seconds data collection

Satellite GW Antenna

Atom-based Gravitational Wave Detection

Why consider atoms?

- Neutral atoms are excellent proof masses

 atom interferometry
- 2) Atoms are excellent clocks- optical frequency standards

Literature: B. Lamine, et al., Eur. Phys. J. D **20**, (2002); R. Chiao, et al., J. Mod. Opt. **51**, (2004); S. Foffa, et al., Phys. Rev. D **73**, (2006); A. Roura, et al., Phys. Rev. D **73**, (2006); P. Delva, Phys. Lett. A **357** (2006); G. Tino, et al., Class. Quant. Grav. **24** (2007), Dimopoulos, et al., PRD (2008), Graham, et al., PRL (2013).

Potential Strain Sensitivity

J. Hogan, et al., GRG **43**, 7 (2011).

AGIS Instrument Risk

Noise source	Risk	
Magnetic Fields	Low	
AC Stark	Low	
Laser intensity jitter	Low	
Atom source velocity jitter	Mid	NIAC
Laser pointing jitter	Mid	NIAC
Solar radiation	Low	
Blackbody	Low	
Atom flux	Low	
Laser wavefront noise	High?	NIAC
Atom detection noise	High?	NIAC
Gravity gradient	Mid	NIAC

See analysis in Graham, *et al.*, arXiv:1206.0818, PRL (2013); J. Hogan, et al., GRG **43**, 7 (2011).

Laser frequency noise insensitive detector

Clock transition in candidate atom ⁸⁷Sr

- Long-lived single photon transitions (e.g. clock transition in Sr, Ca, Yb, Hg, etc.).
- Atoms act as clocks, measuring the light travel time across the baseline.
- GWs modulate the laser ranging distance.

Graham, et al., arXiv:1206.0818, PRL (2013)

Contrast vs. momentum recoil at 2T = 2.3 s

Ultra-ultra cold atoms

A lens for atom clouds is realized using a laser beam:

Collimated cloud has inferred temperature of <15 picoKelvin (rms velocity spread <50 microns/sec). Meets GW detector spec.

Time

Tests of QM: "Macroscopicity"

We are testing QM at unprecedented energy, length and time scales.

5 s quasi-inertial free-fall

Launched to 9.375 meters; Relaunched to 6 meters

GW impact: Enables ground-based tests of long free-fall configurations

Image of atom cloud after 5 sec nearly inertial free-fall

Satellite geodesy

Simulation of hydrology map from space-borne atom interferometer gravity gradiometer.

~ 1 cm equivalent water height resolution.

Instrument:

1 m baseline single-axis rotation compensation

Development of prototype recently funded by NASA IIP (Saif, PI); Instrument to be built by AOSense, Inc.

AOSense Compact IMU

DARPA C-SCAN, PM R. Lutwak

Operating Principle: Atom Interferometry

(Courtesy M. Cashen, AOSense, Inc.)

Sr compact optical clock

6 liter physics package.

(Courtesy T. Loftus, AOSense, Inc.)

As built view with front panel removed in order to view interior.

408-735-9500 AOSense.com Sunnyvale, CA

Collaborators

Stanford

Jason Hogan Susannah Dickerson Alex Sugarbaker Tim Kovachy Christine Donnelly Chris Overstreet

NASA GSFC

Babak Saif Bernard D. Seery Lee Feinberg Ritva Keski-Kuha

Theory:

Peter Graham Savas Dimopoulos Surjeet Rajendran

Former members: David Johnson Sheng-wey Chiow

Visitors:

Philippe Bouyer (CNRS) Jan Rudolf (Hannover)

AOSense

Brent Young (CEO)

