"Robust Planning for Dynamic Tensegrity Structures"

PI: Kostas Bekris, Computer Science, Rutgers University

Approach

- Rigorous evaluation of methods for providing efficient gaits
- Efficient integration of local controllers with kinodynamic planners
- Provide robust trajectories that deal with uncertainty due to contact by efficient belief space planning
- Experiment on physically realistic models in simulation and on a real Super Ball Bot platform

Research Objectives

- Develop motion planners that take advantage of the dynamics of tensegrity structures
- Efficient belief-space planning under non-Gaussian noise and highly non-linear dynamics
- Provide guarantees in terms of path quality and robustness to noise and uncertainty

Potential Impact

 Progress towards more capable, impact intolerant space probes with unique locomotion abilities

• Future missions can be cheaper due to lightweight and energy efficient nature of tensegrities

Planning for a physically-simulated

tensegrity robot

- Improve motion planning methods for highdimensional, deformable robots with significant, non-linear dynamics
- Implications for use of tensegrity beyond space exploration