<text></text>	 Research Objectives Goal: Convert human waste into omega-3 fats and plastic for 3-D printing. Innovation: Yeast are a flexible platform for converting algae captured CO₂ and human waste into food, nutraceuticals, and materials. SOA: We have engineered several metabolic engineering tools for <i>Y. lipolytica</i>. Transition from TRL1 (preliminary pathway engineering) to TRL3 (highly productive systems using waste substrates).
 Approach Fundamental investigation of algal biomass and urine as a feedstock for yeast. Forward and reverse systems engineering for tolerance to feedstock inhibitors. Metabolic engineering of omega-3 from lipids. Metabolic engineering of PHA from lipids. 	 3D printable materials Potential Impact Recycling of human waste for in-situ resource utilization may reduce the materials needed to sustain long-term space travel. A flexible yeast platform may enable the production of other nutrients, therapeutics, and materials during space travel. In the process of utilizing waste, water can be recycled as well. Waste utilization can positively impact terrestrial processes as well.

.