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Overview and Conclusions 
Our exploration of the feasibility of in-space production of storable propellants from resources 

available on asteroids, and also on Mars and the Moon, has considered the process of sample 

acquisition; the energy requirements for heating and volatile release; the thermodynamic behavior 

of gas release from minerals and organic polymers containing hydrogen, oxygen, carbon, sulfur, 

and nitrogen; purification of the released water and carbon dioxide; the storage and transportation 

of these materials in the condensed state; synthesis of fuels including methanol and dimethyl ether 

(DME); and the co-production, concentration, stability, and storage of the complementary oxidizer 

high-test hydrogen peroxide (HTP). We call attention to the ability of the storable 

propellant/oxidizer combination of DME and HTP to carry out deep-space missions and to perform 

retrieval and relocation of any and all space-derived resources, such as retrieving asteroidal metal 

to high Earth orbit. This study’s analyses are based on returning resources to a 

storage/processing/dispensing facility in a Highly Eccentric Earth Orbit (HEEO) with a perigee 

above geosynchronous orbit and an apogee approach or beyond the Moon’s orbit. 

The methane/LOX option, notable for good engine performance, has not been included in this 

study because our scope includes only fully storable propellants. 

This work in Phase I has led to a number of conclusions.  These are: 

1. Thermodynamic theory shows that extraction of water and carbon dioxide from carbonaceous 

(C-type) near-Earth asteroids by means of direct solar heating is feasible and efficient. This is in 

agreement with experiments carried out by Joel Sercel in an independent NIAC Phase I project, 

using both CM type meteorite material and a C-type asteroid simulant that we have developed at 

DSI and the University of Central Florida under an SBIR grant running concurrently with this (and 

his) NIAC grant. 

2. The same theory also predicts that attempts at full extraction of volatiles from a C asteroid will 

require calciner temperatures of at least 700 K, at which temperature not only does the native 

organic polymer in the C asteroid material react with magnetite (Fe3O4) to generate carbon dioxide 

and water vapor, but also these gases react with coexisting sulfide and sulfate minerals to release 

copious amounts of sulfur dioxide. This prediction has also been qualitatively verified by Joel 

Sercel’s work on meteorite and DSI simulant materials. At these temperatures, release of H, C, O, 

N, and S produces gases amounting to about 40% of the total mass of the asteroidal material. 

3. The principal sulfur gas released, sulfur dioxide, is a source of some concern for several reasons. 

It is a toxic and offensively odorous gas that must be removed from water intended for life-support 

or hydroponic use. It also spontaneously generates elemental sulfur and sulfuric acid, highly 

undesirable materials that can corrode or clog water-handling systems such as Solar Thermal 

Propulsion engines. Further, some of these sulfur compounds can poison the catalyst beds used in 

several critical processing steps in manufacture of propellants and metal products. 

1 



   

 

  

 

 

 

 

 

                

        

       

                

  

            

      

   

             

  

       

      

    

  

           

       

  

      

     

     

      

  

                

  

    

   

               

         

   

      

       

              

    

      

   

Deep Space Industries Inc. In-Space Production 

NNX15AL85G of Storable Propellants 

4. Sulfur impurities may be removed on the asteroid from freshly generated impure water to make 

it safe and suitable for these uses. The application of Reverse Osmosis (RO) or other relevant 

technology provides the requisite purification in a simple and safe manner, using equipment of 

high TRL. The purified water is then suitable for use in everything from STP thrusters to chemical 

reagents to chemical propellant manufacture to life-support fluids. 

(4alt.) Alternatively, SO2 release may be minimized by using lower calcining temperatures, which 

also severely limits CO2 release. This option suggests retrieval of only water to HEO on the first 

mission, with production of only H/O propellants. Such a mission would also provide an 

opportunity for retrieval of unprocessed asteroid material to HEEO for use in process-development 

experiments there, relegating CO2 and SO2 production to HEEO. 

5. The “rejected” sulfur compounds from water purification are a valuable feedstock for 

manufacture of industrial grade sulfuric acid, a critically important and useful chemical reagent 

for mineral and metallurgical use, and do not represent waste. We have not yet studied the handling 

and processing of this sulfur-rich material since it is not the main focus of this project; for present 

purposes we envision sequestration and storage of sulfuric acid against future demands. In scenario 

4, the sulfuric acid would be made and stored on the asteroid; in scenario 4alt this would take place 

on the HEEO facility. 

6. Manufacture of HTP and DME (or methanol) requires only CO2 and H2O as raw materials, in 

the proportion of 2 CO2 molecules per 9 molecules of H2O for making DME/HTP (1:5 for 

methanol/HTP). Several candidate processes are available for manufacture of each product, all 

requiring the presence of hydrogen and oxygen gas. Thus electrolysis of water is an essential step 

in storable propellant manufacture. This process is carried out routinely as part of the life support 

(oxygen recovery) system of the International Space Station, and has a very high TRL, with years 

of flight experience. 

7. CO2 and H2O can be co-condensed as a methane clathrate hydrate, CO2
.6.75H2O, close in 

composition to the desired ratio for coproduction of HTP and DME, with some excess water. 

Hydrate formation appears to be a very useful way of storing and transporting its component gases 

for in-space industrial use, and may be a patentable process. If clathrate formation proves too 

challenging in our Phase II laboratory tests, transport as solid CO2 and H2O is feasible. 

8. Production of methanol can be effected by passing a mixture of hydrogen and carbon oxides 

(either CO or CO2) through any of several types of industrially validated catalyst beds. DME can 

be produced efficiently either by dehydration of methanol (one common practice is dehydration of 

methanol by reaction with sulfuric acid) or using a two-layer catalyst bed with the methanol 

product being immediately passed at higher pressure through a gamma-alumina catalyst layer to 

manufacture DME.  Either methanol or DME is a credible propellant. 

2 
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9. Most terrestrial manufacturing schemes for HTP use organic catalysts of questionable utility in 

space; however, one proposed (and partially patented) scheme is simply an adaptation of 

conventional H/O fuel cell technology optimized for HTP production rather than electrical energy 

generation. Further development of this scheme and validation of various candidate electrode 

materials looks very promising for efficiency, robustness, and simplicity. 

10. The essential on-asteroid processing steps and flow diagrams (heating, condensation, reverse 

osmosis, and freezing for transport) seem readily manageable, whereas the ensuing processing 

steps for co-production of HTP and DME are a mixture of high-TRL and low-TRL steps of a 

higher degree of complexity. It would seem prudent to carry out these steps in near-Earth space 

where human-tended or tele-operated equipment would carry out the synthesis. 

11. HTP production in this scheme is remarkably free of sources of contaminants that could 

catalytically destroy HTP during storage. We have developed a quantitative model of the kinetics 

of HTP decomposition that shows extremely low decomposition rates (order of 10-4 to 10-5 %/year) 

when stored in appropriate containers near or below the freezing point with ppm concentrations of 

sodium or potassium stannate as stabilizer. 

12. The insensitivity of propellant performance (for example, the Isp for DME/HTP fueling) on the 

water content of HTP makes extreme purification of the HTP to <5% H2O unnecessary. 

13. It appears that the best system architecture would involve water production and purification at 

the asteroid, use of STP with water as the working fluid for the retrieval of large masses of 

asteroidal material to Earth orbit, and processing of retrieved water and carbon dioxide in Earth 

orbit to manufacture storable (or cryogenic) propellants for use in outbound missions to asteroids 

or any other destination. 

14. C asteroid processing schemes (but not sample acquisition schemes) would be applicable to 

any source of CO2 and H2O, including lunar polar volatiles and Martian volatiles. 

15. Whether future missions will employ deep cryogens (LH2/LOX), mild cryogens 

(methane/LOX), storables, or simply water for STP or NTP use, retrieval and purification of 

asteroidal volatiles (water and carbon dioxide) is a key technology. 

16. Water-based STP, with its low power (governed by the solar flux), has sufficient Isp (at least 

200 s) to serve well for launching a water payload from an asteroid and directing it to Earth 

intercept, but lacks the acceleration to be effective in capturing into Earth orbit at approach speeds 

too high for lunar capture. Chemical propulsion, with its high thrust level, is better suited for both 

Earth capture (via inverse Oberth effect at low altitude) and Earth departure to deep-space targets. 

Initially, carrying some of the propellant derived from earlier missions to assist in Earth capture 

may be desirable. 

3 
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16alt. In the same way, Earth capture via aerobraking with or without a lunar swingby is an 

extremely promising way to improve overall performance (mass payback ratio) of the system. 

Aerobrake manufacture and use are not within the scope of this study. 

17. Looking forward, manufacture of propellants at the asteroid target will require significant 

experience in Earth orbit to validate and fully automate the processes, suggesting that it will be 

significantly farther downstream and that current research should concentrate on improving the 

low-TRL parts of the processing scheme in Earth orbit. 

18. Development of the technologies for in-space propellant manufacture can easily be approached 

as a stepwise, evolutionary sequence.  The logical sequence appears at present to be: 

a) Extraction of water from an NEA and return to Earth orbit via Solar Thermal Propulsion using 

part of the water as the STP working fluid. All water processing into marketable products 

would occur in HEEO. Products available in Earth orbit would include water, hydrogen, 

oxygen, and hydrogen peroxide, addressing markets such as radiation shielding (water), 

life support (water and O2), cryogenic propellants (LOX/LH2), and monopropellants for 

station-keeping and microsatellite propulsion (H2O2). Critical technologies include water 

extraction and purification, development of a water-based STP system, adaptation of ISS 

water-electrolysis technology, and production of high-test peroxide (>95% purity H2O2; 

HTP). If deep-cryogen propellants are desired, then liquefaction of oxygen and hydrogen 

are required. 

b) Extraction of carbon dioxide from the same NEA and return of water and CO2 via water-based 

STP to HEEO, quite possibly transporting these materials as a solid clathrate hydrate. With 

water and carbon dioxide available as feedstocks, carbon-based storable propellants such 

as dimethyl ether (DME) or methanol (CH3OH) can be co-produced with hydrogen 

peroxide. Results from Phase I indicate that the first missions actually may be able start 

with this phase – combined water and CO2 harvesting – and a critical part of the Phase II 

research is verifying that this leap is feasible. 

c) Using the same starting materials, methane/LOX production in HEEO becomes possible. This 

is an attractive intermediate between deep cryogens (LH2) and fully storable propellants 

(HTP/DME) in terms of both technical difficulty and performance. 

19. In the longer run, once experience in storable propellant manufacture is in hand, it would be 

desirable to transfer that process to the surface of the asteroid where mining and extraction are 

taking place. This would open up a variety of new mission opportunities to, for example, Belt 

asteroids and the outer planets. 

4 
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Introduction 
The idea of using asteroidal materials as an economic resource can be traced back to the writings 

of Konstantin Tsiolkovskii in 1903 and Robert Goddard in 1908, although without any details or 

examples of such processes and uses. The extraction of materials, notably water, from 

carbonaceous near-Earth asteroids (NEAs) for propellant manufacture was explored in the 1990s1,2 

in sufficient detail to generate substantial interest in the process. In parallel, numerous studies of 

the orbital and thermal evolution of Jupiter family (short-period) comets established the principle 

that many bodies in the NEA population may be ice-rich dormant comets with dirty-ice cores, 

shielded by a “lag deposit” of fluffy, opaque, poorly conductive carbonaceous dust with a thickness 

of one to several meters, left behind by evaporation of near-surface ices during multiple perihelion 

passages. The literature on this subject has been ably reviewed by Weissman, et al.3 Several studies 

by Eugene Shoemaker, Richard Binzel, and other asteroid experts have proposed that 40 to 60% 

of the NEAs may be former short-period comets, each of which in turn may contain 60 to 80% 

readily extracted volatiles. Such extinct or dormant comets would be extremely dark, spectrally 

similar to carbonaceous chondrite meteorites, due to the lag deposit of carbonaceous dust coating 

their surfaces. Thus an “asteroidal” target may well be a rich source of cometary volatiles. 

1. Available Feedstock on C-cadre Asteroids 
There are several classes of very dark asteroids in the near-Earth population, collectively referred 

to as the C-cadre asteroids. These include the B, C, D, F, G, P and T spectral types. All are very 

dark, with albedos (reflectivities) in the range 0.10 down to 0.023), and some show an absorption 

feature in the 3 μm spectral region due to water. Of these asteroid types, only one is well-

represented by meteorite samples: the spectra of the C asteroids correspond closely to those of the 

CI and CM carbonaceous chondrite meteorites. The unique Tagish Lake meteorite may also be a 

spectral match for the D asteroids, many of which have orbits indistinguishable from those of 

short-period Jupiter-family comets. The Almahatta Sitta meteorite, which fell in the Sudan in 2008, 

was observed astronomically before impact, and indeed the impact was predicted based on a short 

run of tracking data on it in its short career as a known NEA, cataloged as 2008 TC3. The spectrum 

measured during its approach to impact was found to resemble the F-type asteroids. Most of the 

material recovered from this fall belongs to the very dark ureilite achondrite family of meteorites, 

which are quite dry but contain up to 3% by mass carbon. 

Most dark asteroids belong to the C type, which are notable for a highly disequilibrium low-

temperature mixture of minerals of very diverse formation conditions. This asteroid spectral type 

corresponds to the CI and CM meteorite classes, which contain 5 to over 20% by weight 

chemically bound water and 3 to 6% black polymeric organic matter. They also contain about 6% 

sulfur, including sulfides, sulfates, elemental sulfur and organic sulfur, plus abundant  magnetite 

5 
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containing extractable oxygen totaling about 12% of the meteorite mass. The CI chondrites contain 

a grand total of about 40% by weight extractable H-C-O-N-S volatiles. 

Astronomical observations4 of comet 67P/Churyumov-Gerasimenko made several years before 

Rosetta’s arrival found the albedo of its nucleus to be 0.04 ± 0.01. The recent Rosetta4 mission 

observations have found a global average albedo of 0.06 ± 0.01 just before perihelion passage. 

This is of course not compatible with fresh ices, but is entirely compatible with the surface being 

dominated by a lag deposit of C-type material. 

The B, G and T asteroid spectral types appear to be thermally altered C material, but unfortunately 

are without convincing representation in our meteorite collections. The T and D asteroids, 

however, are known to be common among the NEAs whose orbits are most similar to those of 

short-period comets. The P asteroids are very common at the outer edge of the asteroid belt, but 

none are known in the NEA swarm. 

In addition to these unambiguously dark objects, there are many asteroids that are assigned to the 

X type. These are objects for which there are no albedo data, but the spectrum is known to be quite 

flat and featureless. The spectral types compatible with the X-type designation include the very 

bright E-type asteroids, the moderately-bright M type (metallic) asteroids, and the very dark D-

type (cometary) bodies. The large X-type NEA 2013 UQ4, roughly 10 km in diameter, is in a 

retrograde orbit with a perihelion at 1.08 AU. Its reported albedo is 0.04, which, if verified by 

other observations, is compatible with it being both a short-period comet and a D-type NEA. It is 

a member of the Damocloid family of dormant Jupiter-family comet nuclei, of which at least 60 

have been identified, only five of which approach closely enough to the Sun to qualify as NEAs. 

The type example, 5335 Damocles, formerly 1991 DA, has a perihelion of 1.58 AU and is not 

presently an NEA, although numerical integration of its orbit suggests that it should spend about 

25% of its time in Earth-crossing orbit. 

2. Energy Requirements forHeating Feedstock 
Water and carbon dioxide, the essential and dominant carriers of H, C, and O in carbonaceous 

asteroids, must be released from their parent asteroid regolith by solar heating. The released gases 

are complex in composition, reflecting temperature, time, heating rate, gas back-pressure, andthe 

kinetics of poorly-understood chemical reactions. 

Energy is absorbed during the process of baking the regolith, partially as heating of the solids 

(CpΔT) and partially as the heat of decomposition (water vaporization) of the phyllosilicate 

(ΔHo
vap). Both numbers vary slowly with temperature, and vary in opposite senses. Uncertainties 

in predicting gas release profiles (emitted gas flux and composition vs. temperature during heating) 

are introduced by the complex nature of, and lack of thermodynamic data on, the organic polymer 

and by the poorly characterized phyllosilicates, which commonly exhibit a diffuse X-ray powder 

6 
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pattern implying a wide range of structures, compositions, and thermodynamic properties (i.e., 

water vapor pressure) of coexisting, and probably interleaved, layer-lattice silicates. 

Thermodynamic calculations on the release of volatiles from heated CI material are only 

suggestive because true equilibrium is not attained in the time/temperature regime of interest; 

nonetheless H2O, CO2, and SO2 are produced along with a few percent H2S (H2S/H2O = 0.03) and 

a fraction of a percent of H2 (H2/H2O = 0.003 at 1200K (927 oC). Of these gases, the ones of 

greatest immediate economic interest and utility are water vapor and carbon dioxide. There is 

reason to prefer relatively low-temperature (below 700 K) extraction of water vapor to avoid the 

complications introduced by the vapor chemistry of sulfur, however at this lower temperature 

carbon dioxide release is also lower. 

The principal sources of thermodynamic data on reactants and products used herein are the JANAF 

Thermochemical Tables5 (principally for gases), Domalski’s6 tables (for organic compounds), and 

Robie and Hemingway’s7 U. S. G. S. Bulletin 2131 (for the thermodynamic properties of minerals). 

A set of detailed process simulations has also been conducted by our collaborator Sam Spencer 

(examples included later in this report) using mining/oil/gas industry-grade process- modeling 

software, namely SysCAD v9.2 (http://www.syscad.net/) and HSC v5 for thermodynamic data 

(http://www.outotec.com/en/Products--services/HSC-Chemistry/). For the results of these 

simulations, see Section 17. 

Water: Heating bulk CI material from ambient asteroidal surface temperatures (about 200 K) to 

the point at which large-scale evolution of water vapor occurs (about 700-800 K) depends on the 

heat capacity of the bulk solids, which we estimate as roughly 1200 J/kg.K, or 720 kJ/kg, or 720 

MJ/tonne. The heat of decomposition (“water vaporization”) of the hydrous silicates, which must 

also be included, is not the usual heat of vaporization of water, but the overall enthalpy change of 

the reaction which releases water vapor, including all reactants and products. 

The first example of water vapor release is simply the evaporation of water (sublimation of ice): 

H2O(s) ➔ H2O (g)
 
ice Ih water vapor
 

An equally simple example of a mineral decomposition reaction is the heating of brucite: 

Mg(OH)2 ➔ MgO + H2O(g)
 
brucite periclase water vapor
 

This reaction produces a water partial pressure of 1 bar at 540 K (267 oC). 

7 
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Other simple dehydration reactions producing a water partial pressure of about 1 bar at 540 K (267 
oC) include: 

Fe(PO4).2H2O ➔ Fe(PO4)2 + 2 H2O(g)
 
strengite ferrous phosphate water vapor
 

MgSO4.7H2O ➔ MgSO4 + 7 H2O(g) 

epsomite magnesium sulfate water vapor 

CaSO4.2H2O ➔ CaSO4 + 2 H2O(g)
 
gypsum calcium sulfate water vapor
 

More realistic is the dehydration of serpentine (as lizardite or chrysotile) and/or of talc: 

5Mg3Si2O5(OH)4 ➔ 6Mg2SiO4 + Mg3Si4O10(OH)2 + 9H2O(g) 

serpentine forsterite talc water vapor 

Mg3Si4O10(OH)2 ➔ 3 MgSiO3 + SiO2 + H2O(g), 

talc enstatite quartz water vapor 

which delivers 1 bar partial pressure of water vapor at 800 K. 

Typical of clay minerals is kaolinite, which decomposes to kyanite, quartz and water vapor upon 

heating via the reaction: 

Al2Si2O5(OH)4 ➔ Al2SiO5 + SiO2 + 2H2O(g), 

kaolinite kyanite quartz water vapor 

which has an enthalpy cost of 135.4 kJ mol -1 of kaolinite at 800 K (thermodynamic data from 

USGS Bulletin 2131)7. This is equal to 0.52 kJ per gram of kaolinite, which is 14 % water by mass. 

Thus decomposition of a pure kaolinite feedstock would absorb 520 MJ per tonne and release 140 

kg of water. The average heat capacity of kaolinite over the range 200-800 K is about 1.2 J/gK, or 

720 MJ/tonne. Thus the total energy cost of extracting the water is 1240 MJ per tonne of solids, or 

8.7 GJ per tonne of water. Much of this heat, at least 50% and perhaps 75%, can be recaptured by 

using the heat content of the spent solid charge and heat of condensation of water to heat incoming 

asteroidal material. Cooling water vapor from 800 K down to the condensation point releases about 

4300/0.2392x18 J/g (1.00 GJ/tonne). The heat of condensation of liquid water at 298 K is 582 

cal/g (2.43 GJ/tonne), and for direct condensation to water ice Ih, it is about 2.84 GJ/tonne at ­

10oC. (Total heat release from the cooling and condensing water therefore ranges from 3.4 to 3.8 

GJ/tonne of water.) Heat release from the residual solids is on the order of 480 MJ/tonne solids, 

but the mass of spent solids is 86/14 times the mass of water, so the perfect 

8 
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recovery of heat from the solids left after extraction of 1 tonne of water provides 2.85 GJ/tonne of 

water, giving a total heat content of about 6.5 GJ/tonne water. 

Another phyllosilicate found in CI chondrites is montmorillonite, a clay of the smectite family 

nominally having the formula Al4Mg6(Si4O10)4(OH)8
.nH2O, which is commonly also host to 

variable amounts of sodium, calcium, potassium, iron and other minor cations. Sodium-bearing 

montmorillonites are strong absorbers of water, with very complicated and composition-dependent 

affinity for water and consequently with very complex water-release behavior. Montmorillonite is 

a voracious host of interlayer water, which leads to swelling of the clay to several times its “dry” 

volume. Commercial bentonite, a “swelling clay”, consists largely of montmorillonite. The water 

content of sodium-bearing varieties can be as high as several times the dry mass of clay. All clays 

in this family have a remarkable ability to exchange ions with interstitial solutions, enhancing the 

compositional diversity of the clays. As little as 2% montmorillonite in the CI parent body could 

hold enough water to account for 10% water in the total mineral mix. Most of this water would be 

rather loosely bound and therefore vulnerable to easy loss and to chemical and isotopic exchange 

with Earth’s atmosphere. The water release profile of smectite clay cannot be calculated from basic 

principles, and must be measured for each specific clay composition. 

An important process in the history of CI chondrites was the serpentinization of the high-

temperature minerals olivine and pyroxene by reaction with liquid water. Serpentine (as 

represented by the structurally and chemically similar minerals chrysotile, lizardite and antigorite)7 

and coexisting brucite (or any thermodynamically compatible Mg-rich clay) would release water 

upon heating, reconstituting forsterite olivine: 

Mg3Si2O5 (OH)4 + Mg(OH)2 ➔ 2 Mg2SiO4 + 3 H2O(g) 

serpentine brucite forsterite water vapor 

Thermodynamic data are available for this reaction7 in USGS Bulletin 2131. 

Poorly characterized iron oxide species in carbonaceous chondrites and C asteroids probably 

include goethite and maghemite (both with formula FeOOH), which decompose upon heating to 

release water via: 

2FeOOH ➔ Fe2O3 + H2O (g)
 
goethite hematite water vapor
 

A graph of the water pressure curves for a variety of hydrous minerals is given in Fig. 1: 

9 



   

 

  

 

 

 

 

 

 

 
        

        

     

    

      

       

 
                  

                 

      

        

     

   

                  

   

   

   

 

   

Deep Space Industries Inc. In-Space Production
 
NNX15AL85G of Storable Propellants
 

Fig. 1 Decomposition pressures of various hydrous mineral phases. The equilibrium vapor pressures over liquid 

water, goethite/hematite, serpentine, brucite/periclase and talc/enstatite + quartz are shown as a function of 

temperature. The important decomposition behavior of montmorillonite cannot be graphed because of the extreme 

compositional variability of the clay and the several modes of water attachment to the clay. Equilibrium is 

unattainable at low temperatures because of the structural complexity of CI chondrites; however, note that even at 

700 K the pressures of all these water buffers lie above 1 bar (105 N/m2). 

The solar energy required to extract water (8.7 GJ per tonne of water) over a one-year period could 

be supplied by a solar reflector with a collection area sufficient to provide 8.7x109/3x107 J/s = 290 

W; for 1000 tonnes of water we require 290 kW continuous power. At 1 AU from the Sun, 1 m2 

of solar collector provides 1350 W; at 3.16 AU the power drops to 135 W per square meter. To 

produce enough thermal power to generate 1000 tonnes of water in one year at 3.16 AU requires 

2150 m2 of collector area, a circle 52 meters in diameter. If the water extraction is done at 1.0 AU 

from the Sun (such as on a low-eccentricity NEA), a solar collector with a diameter of 17 m would 

suffice over one year of exposure. 

Carbon dioxide release can occur via several different reactions. First, and easiest to quantify, is 

the relatively minor amount of CO2 released by thermal decomposition of carbonates8 such as 

siderite (FeCO3), dolomite (CaMg(CO3)2) and calcite (CaCO3). 

Siderite can decompose directly upon heating by two different pathways: 

10 
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FeCO3 ➔ FeO + CO2 the siderite/wuestite buffer 

3FeCO3 ➔ Fe3O4 + 3 CO2 + CO. siderite/magnetite equilibrium 

Since siderite in carbonaceous meteorites coexists with magnetite, either or both of these 

decomposition reactions may be relevant. The thermodynamic data on siderite are incomplete and 

of rather low quality, making accurate calculation of the gas release behavior impossible. 

Both calcium and magnesium carbonates are also found in CI chondrites, mainly as calcite and 

dolomite, although magnesite (MgCO3) has also been reported. The relevant decomposition 

reactions are: 

MgCO3 ➔MgO + CO2 magnesite/periclase buffer 

CaMg(CO3)2 ➔ CaCO3 + MgO + CO2 dolomite/calcite/periclase buffer 

CaCO3 ➔ CaO + CO2 calcite/lime buffer 

Strictly speaking, carbonates are usually destroyed by reaction with silica-bearing minerals via 

reactions that take up the highly reactive periclase and lime, schematically: 

MCO3 + SiO2 ➔ MSiO3 + CO2. 

However, since there is no free silica in carbonaceous chondrites, this reaction path requires 

intimate contact between carbonate minerals and silicate phases from which they can extract silica 

with thermodynamic activities far less than 1.000 (the case of pure coexisting silica). This is 

generally not the case and is not considered in this study. 

At higher temperatures we also have CO2 released by the reaction of organic polymer with 

abundant magnetite, effectively 

CxH2y + Fe3O4 ➔ xCO2 + yH2O + 3Feo. 

The latter CO2 source cannot be modeled quantitatively at lower temperatures because of lack of 

both thermodynamic and kinetic data on the polymer; however, the organic polymer would char 

and eventually graphitize at elevated temperatures, suggesting that a graphite activity of 1.0 would 

be a reasonable approximation above 1000 K. Note that this process of oxidizing organic matter 

by reaction with magnetite also releases the sulfur and nitrogen contained in the polymer. One 

example of this is the oxidation of the trace amino acid alanine: 

8 CH3CH(NH2)COOH + 15 Fe3O4 ➔ 24 CO2 + 28 H2O(g) + 45 Fe(s)  +  4 N2 

alanine magnetite carbon dioxide water vapor iron nitrogen 

Sulfur Dioxide: With rising temperatures the mineral assemblage changes from the assemblage 

pyrite/pyrrhotite/magnetite/anhydrite at 800 K to pyrrhotite/magnetite/anhydrite or (with more 
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oxidation) pyrite/magnetite/anhydrite/magnesium sulfate at 1000 K. The equilibrium phase 

diagram for the relevant minerals at 800 (Fig. 2) and 1000 K (Fig. 3) in the Fe-S-O system, graphed 

on a format of log pS2 vs log pO2, is marked with x to show the sequence of mineral changes and 

gas composition as a function of the degree of oxidation. 

Fig. 2 Projection of the Fe-S-O phase diagram on the p(s2)-p(O2) plane at 800 K. The strong solid lines demarcate 

the stability fields of Fe metal (kamacite), FeO, Fe3O4 (magnetite), Fe2O3 (hematite), FeS (troilite), Fe1-xS (pyrrhotite), 

FeS2 (pyrite), Sl (liquid sulfur), CaSO4 (anhydrite) and MgSO4. The diagonal lines give contours of the log10 of the 

equilibrium SO2 pressure from 10-25 b (lower left to 1015 b in the upper right. The line marked x, progressing from left 

to right, marks the trajectory of mineral compositions followed during sequential oxidation. Note that the sulfur vapor 

pressure (S2) and the SO2 pressure both reach maxima at the point at which magnesium sulfate first appears. The 

equilibrated mineral assemblage in a CI chondrite would lie near this point. Note that at 800 K the sulfur vapor 

pressure reaches about 0.01 b and the SO2 pressure reaches about 10 b. Other sulfur gases including H2S and COS 

may also be important. 

At any relevant temperature, the SO2 partial pressure goes through a maximum, which also occurs 

at the point of maximum partial pressure of sulfur vapor (S2). Beyond 1000 K, at somewhat higher 

temperatures, pyrite melts incongruently at 1083 K, forming solid pyrrhotite and a liquid sulfur-

rich melt. As temperatures are raised from 800 K to 1000 K all sulfur-bearing gas pressures 

increase: the 800 K assemblage produces about 0.01 b SO2 and the 1000 K mineral suite yields 

about 0.05 b; further oxidation beyond the appearance of magnesite and disappearance of sulfides 

yields an abundance of S2 vapor that is about 10% of SO2 at the 800 K point and roughly equal to 

SO2 at 1000 K. 
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Fig. 3 Projection of the Fe-S-O phase diagram on the p(s2)-p(O2) plane at 1000 K. The strong solid lines demarcate 

the stability fields of minerals as in Fig. 2. The dashed lines give contours of log10 of the SO2 partial pressure in b. The 

peak equilibrium SO2 pressure occurs at an oxidation state that corresponds to the coexistence of CaSO4, MgSO4, 

Fe3O4 and the pyrrhotite-pyrite boundary, consistent with equilibration of the minerals seen in CI chondrites. The S2 

partial pressure at that point is about 0.1 b, compared with about 100 b for SO2. 

At slightly higher oxidation states the partial pressures of sulfur gases drop rapidly due to the 

formation of low-volatility sulfates such as anhydrite (CaSO4) and MgSO4. Sulfur gases are 

therefore likely to be significant contaminants in the water and carbon dioxide released at all 

temperatures. Certain sulfur gases, such as hydrogen sulfide, sulfur dioxide, carbonyl sulfide and 

sulfur trioxide, would impart unpleasant and even toxic smells and tastes to water. Sulfur dioxide 

dissolves extensively in cold water (228 grams per liter of cold water at 1 bar partial pressure of 

SO2) to make the weak acid H2SO3, sulfurous acid. The SO3 
2-(sulfite) ion in sulfurous acid is 

unstable and spontaneously disproportionates into sulfate and elemental sulfur: 

3H2SO3 ➔ 2H2SO4 + H2O + So. 

H2SO4, sulfuric acid, is of course a strong acid. Disproportionation is the process by which one 

unstable oxidation state splits into products with both higher and lower oxidation states.  It could 
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equally well be called a self-oxidation-reduction reaction. Here S4+ disproportionates into S6+ and 

So (schematically, 3S4+ 
➔ 2S6+ + So). This happens spontaneously and requires no other reactant, 

occurring even when there is no oxidizing agent added. Certain materials act as catalysts to 

accelerate the disproportionation reaction. Sulfuric acid, the main product of disproportionation, 

is a problem because it threatens corrosion of metal plumbing, reaction vessels, tanks, etc. Any 

additional oxidizing agent that may be present simply accelerates the conversion of sulfite into 

sulfate. Elemental sulfur, most likely rhombic sulfur, can also create problems by depositing as 

solid sulfur dust in the gas system. Rapid quenching of a gas rich in sulfur vapor (principally S2) 

causes precipitation of a glassy polymeric sulfur phase, an even worse contributor to clogging of 

pipes and valves. Some materials may act as catalysts and accelerate the rate of disproportionation 

of sulfite, but without changing the results. 

In addition to diatomic sulfur and sulfur oxides, the released gases must contain carbonyl sulfide 

(COS) and hydrogen sulfide (H2S). Gas-phase equilibria of sulfur-bearing gases are generally 

rapid, so the equilibrium assumption for the reactions 

H2O + ½ S2 = H2S + ½ O2 


CO2 + H2S = COS + H2O
 

is probably an excellent approximation. These reactants are also linked by the water gas reaction, 

H2O + CO = H2 + CO2 

Management of sulfur is important for four basic reasons: sulfuric acid is, as mentioned above, 

corrosive. Sulfur also poisons catalysts of several important chemical reactions and, as mentioned 

above, sulfur deposition threatens to block pipes and valves. Finally, sulfuric acid is potentially an 

extremely valuable industrial reagent for mineral processing and metal extraction, which creates a 

strong incentive to control sulfur chemistry and to conserve and manage the products. This is most 

easily done by complete oxidation of sulfur dioxide to sulfur trioxide, 

2SO2 + O2 ➔ 2SO3 

which is removed by a wet scrubber as sulfuric acid, taking advantage of the extremely 

hygroscopic nature of sulfur trioxide. 

SO3 + H2O(l) ➔ H2SO4. 

This is standard practice in terrestrial mineral industry applications. The concentrated sulfuric acid 

from the scrubber could be retained in an appropriate container such as Teflon-coated or 

chemically passivated metal for future use. 

14 
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The presence of reactive sulfur gases in the gases released by any but the mildest heating presents 

a complicating factor that cannot be ignored. One possible means of dealing with sulfur is to 

electrolyze water to generate oxygen before the extracted water can be purged of sulfur compounds 

for safe use and storage. Whether this must be done on the asteroid is an open issue. Uncertainty 

in the release behavior of sulfur and carbon oxides during heating is an issue that can only be 

resolved experimentally, an urgent task for Phase II. Alternate means of purification of water on 

the asteroid must also be studied and proven experimentally. 

Although combustion of sulfur compounds has been suggested by David Vaniman9 and coworkers 

for use in rocket engines, especially in the context of lunar-derived propellants, the molecular 

weight of the exhaust products is so high (molecular weight of 64 for SO2; 80 for SO3), and sulfur 

trioxide is so corrosive and noxious, that we must regard the use of sulfur compounds as 

propellants to be far less attractive than their industrial use. However, if some means of using 

sulfur as a propellant can be developed, it is clear that many classes of asteroidal material, which 

have 5-6% by mass sulfur, are vastly more amenable to this use than lunar surface materials, which 

average about 0.05 to 0.10% total sulfur content. Once again, as with H, C, and Fe metal, lunar 

concentrations of these marketable materials are typically several hundred times lower than in 

most meteorites and asteroids. 

Nitrogen and Ammonia: The earliest studies on the freshly-fallen Orgueil CI chondrite by Cloëz10 

and Pisani11 in 1864 reported a strong odor of “sal ammoniac” (ammonium chloride) which quickly 

dissipated over time, and which was not found in analyses a century later. Thus we may find that 

early low-temperature gas release will produce ammonia and HCl until primordial NH4Cl is 

exhausted. (NH4Cl itself does not exist in the gas phase.) Release of nitrogen from the polymer as 

it is oxidized by reaction with magnetite will further complicate the issue, but ammonia will be 

destroyed at these temperatures and this oxidation state, generating molecular nitrogen. There is a 

further possibility that the ammonium ion NH4
+, which has the same ionic charge and virtually the 

same ionic radius as potassium ion K+, may populate alkali metal sites in phyllosilicates. The 

equilibrium constant for the exchange reaction: 

NH4
+ (aq) + K(phyllosilicate) = K+(aq) + NH4(phyllosilicate) 

is known to be close to 1 for a variety of host minerals, including feldspars; thus “fossil” 

ammonium ion may still reside in solid silicates and salts even after the loss of the much more 

volatile ammonium chloride. The spectral signature of ammonium ion is in the same spectral 

region as the 3-μm “water band”, the fundamental stretching frequency of the O-H bond. The 

Dawn mission’s studies of the thermally altered carbonaceous asteroid Ceres show the possible 

spectral signature of ammonium ion. 
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The organic polymer has a nitrogen content equivalent to about one N atom per 6 to 10 C atoms, 

totaling about 0.6% by mass of the total meteorite. Some of the nitrogen is bound in heterocyclic 

aromatic fragments, some as nitrile groups –CN, and some as amine groups –NH2. Thermal 

deamination of the amines and decarboxylation of carboxylic acid groups will release ammonia 

and carbon dioxide at relatively low temperature, accompanying water release from organic -OH. 

Hydrolysis of nitriles with release of HCN, cyanogen, and possibly N2 will occur at higher 

temperatures. Complete destruction (via “combustion”) of the polymer with release of structural 

N as N2 requires the highest temperatures, probably close to 1000-1200 K. Oxidation appears to 

be an essential step to destroy HCN to make the extracted water safe for use in life-support systems. 

Unfortunately the speciation of N in the organic matter and the temperature release behavior of 

nitrogen-bearing gases are both poorly known. 

Because of these uncertainties, release of these organic and inorganic nitrogen components from 

heated asteroidal or meteoritic material cannot be modeled with existing data except in the high-

temperature limit of complete gas release, under conditions closely approaching equilibrium, 

where the N2 partial pressure should approach 5% of the CO2 pressure. 

For study purposes the only current source of nitrogen in the C asteroid regolith is assumed to be 

the organic polymers (see carbon dioxide release). 

3. Recovered Water and its Uses 
As we have seen, there is good reason to suspect that significant traces of sulfur and nitrogen 

compounds may be present among the gases released by heating C asteroid material. At present, 

the presence of these minor constituents does not appear to compromise the immediate planned 

uses of the major released volatiles, water and carbon dioxide, but does encourage the use of 

relatively low extraction temperatures to minimize release of S and N gases and simplify the 

processing scheme. At a later stage, when propellant production is underway, higher release 

temperatures and more complete gas extraction will be required: dealing with these impurities will 

then become essential. 

In the context of the present research, our ultimate purpose in studying water extraction is to make 

available the raw materials for synthesizing storable chemical propellants. However, it is also 

obvious that water itself is a storable propellant that can be utilized by several different types of 

propulsion systems that derive their energy from sources other than chemical combustion. 

There are several notional electrical propulsion schemes for using water as the working fluid, all 

at an early stage of development. All depend on the generation of large levels of electric power by 

means of photovoltaic arrays (or nuclear reactors). The principal alternative to electric propulsion 

is Solar Thermal Propulsion using water, in which a lightweight solar collector focuses sunlight 

onto a highly refractory rhenium thrust chamber and heats it to very high  temperatures, 
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2800 to 3000 K. Water is then run into the thrust chamber where it flash-evaporates and exits from 

the thrust chamber nozzle as extremely hot water vapor. Specific adaptations of STP technologies 

can deliver specific impulses as high as 400 to 1100 s. STP is a very high thermal stress 

mechanism, so it is hard to design a spacecraft that uses it. Studies by James Shoji and coworkers, 

beginning at Rocketdyne in the 1960s under NASA and USAF funding12, and recent work by 

teams at Ultramet, Marshall SFC, and UAH13 on fabrication of highly refractory rhenium thrust 

chambers, are valuable beginnings, but mission concepts for STP exist only on paper. A recent 

survey by Kennedy14 summarizes the prospects for STP use. 

Solar Thermal Propulsion is singularly suited to moving massive bags of material (water, storable 

propellants, metals, radiation shielding, and raw materials) from one place to another. In addition 

to moving asteroid material to HEEO, there will be a need to move large amounts of mass from 

LEO to GEO, the Moon, or to Mars for exploration or settlement. At high propellant flow rates 

and chamber temperatures similar to that of a hydrogen-oxygen flame, the water exhaust can 

deliver close to 400 seconds Isp. At very high temperatures of 2800 to 3000 K and at low water 

flow rates (low chamber pressures) water vapor extensively dissociates into H and O atoms, 

causing a decrease of the mean molecular weight of the exhaust from 18 to 6. The combined effect 

of the higher temperature and the lower molecular weight is to increase the specific impulse to 

over 600 seconds at the sacrifice of high thrust levels. The ability of rhenium to resist oxidative 

attack by water vapor under these extreme conditions is problematic, suggesting consideration of 

thoria (ThO2) as the thrust chamber material. The performance of such a propulsion system, 

whether using rhenium or thoria, should be relatively insensitive to the presence of trace impurities 

such as ammonia and sulfur dioxide. 

A very important point is that a propulsion system that uses sunlight directly has about a factor­

of-5 advantage over solar electric systems because of the low conversion efficiencies of the latter, 

irrespective of distance from the Sun. 

4. Electrolysis of Water for STP or Direct Combustion 

Water can be electrolyzed into oxygen and hydrogen, and then the hydrogen liquefied for use in 

STP engines, in place of water. This achieves partial dissociation of molecular hydrogen, 

producing an exhaust with mean molecular weights between 1 and 2, and realizing Isp values ofat 

least 1000 seconds. STP technology, whether based on water or hydrogen, is obviously worth 

pursuing with the clear goal of using it specifically for our stated purpose of moving large loads 

of material. Each kilogram of exhaust from a water-driven STP engine contains nine times the 

mass and one third the velocity of the exhaust from a hydrogen STP engine operating at the same 

temperature,  therefore  delivering  three  times  as  much momentum as the hydrogen-driven 
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alternative. However, it is water we would be mining, not hydrogen: the amount of exhaust 

momentum (total impulse) per kilogram of mined water for the water exhaust system is 27 times 

as high as for the hydrogen exhaust system. Clearly, grasping for the highest possible Isp is the 

wrong strategy: maximum total impulse from our mined water is what we require. This does not 

rule out the use of hydrogen-exhaust STP systems for specialty applications, but does emphasize 

that the better performer, and also by far the simpler of the two alternatives for moving large 

masses, is direct use of water as the exhaust. 

Electrolysis of water and burning of the gases can provide 300 to about 380 seconds Isp. This 

technique can be implemented either by electrolysis of water and refrigeration/liquefaction of 

hydrogen and oxygen on the asteroid, or by real-time combustion of the electrolysis products in 

flight. Again, the most difficult part is in designing an electrolysis and refrigeration/liquefaction 

system that produces cryogenic liquid oxygen and hydrogen. The technology of H/O thrusters is 

of course well understood, so long as the propellant enters the thruster as cryogenic liquids. 

Mason Peck’s version of this scheme15 (with the evolved gaseous H2 and O2 from electrolysis going 

directly into the combustion chamber), which can roughly be characterized as “storable” in the 

sense that it is non-cryogenic, probably has a slightly lower Isp than the cryogenic version, but 

promises lower overall mass and greater reliability through simplicity for the engine and 

propellant-handling system because cryogenics are avoided. The problem with this “prompt use” 

scheme arises from the need to do large-impulse burns, such as for Earth capture, quickly: this 

requires accumulating a large mass of gaseous hydrogen and oxygen, which while avoiding the 

penalties associated with liquefaction and refrigeration, incurs a compensating penalty because of 

the large tank volumes and masses needed to contain the gases until their use. 

The closely related HYDROS16 thruster from Tethers Unlimited is a pulsed gaseous O2 + H2 

thruster with a very low level of complexity and an Isp of about 300 s. It is possible to make a rocket 

out of this mechanism, but difficult to make a good one. In any case, avoidance of cryogenics is a 

great simplifying factor; however, here again the requirement for storage of large masses of gas to 

make short, high-impulse burns implies high tank volumes and pressures and thus incurs 

countervailing tankage penalties. 

The use of gaseous hydrogen and oxygen also implies that cryogenic liquids are not available for 

regenerative cooling of the thrust chamber. We envision the use of water for any required cooling 

of such engines. Obviously care should be taken to minimize the sulfuric acid content of the 

coolant stream. 
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5. Electrolysis of Water for Manufacture of Storables 
Production of fuels and oxidizer from asteroidal feedstocks requires the use of water and carbon 

oxides to manufacture combustible organic fuels and hydrogen peroxide oxidizer. The 

manufacture of fuels inevitably requires the use of hydrogen and carbon oxides; the production of 

H2O2 requires the use of water and oxygen. Production of the necessary hydrogen and oxygen 

gases is by means of electrolysis of water. Since water itself is a poor electrical conductor, low 

concentrations of electrolytes such as salts, ammonia, sulfuric acid, or alkali metal hydroxides 

must be present in the water, a condition that is likely to be met automatically in water condensed 

from a CI or CM source. Hydrogen is released at the cathode and oxygen is released at theanode. 

In terrestrial applications, gravity naturally separates the evolved gases from the liquid electrolysis 

medium; in space, as on the ISS17, where electrolysis of water is used to regenerate oxygen for 

breathing, the equipment design incorporates a method of separating gases from liquid and keeping 

the evolved gases separate from each other to avoid producing explosive mixtures. This is a mature 

high-TRL technology with years of flight heritage. 

The energy (enthalpy) cost of liquid water electrolysis is 286 kJ per mole (15.9 GJ/tonne) of water, 

which must be supplied by photovoltaics. (Note that electrolysis of water is more energy-intensive 

than extracting the water from its host minerals.) We shall first consider a system architecture in 

which electrolysis of water takes place on an asteroid. A typical asteroid with a useful (volatile­

rich) composition and an accessible orbit (low i; q close to 1 AU) may have aphelion distance Q 

between 2.5 and 3.3 AU; for the moment, we shall use 3.16 AU for purposes of illustration 

(although obviously lower aphelion distances would be preferable). The intensity of sunlight at 

aphelion then would, as above, be 10% of the Solar Constant at 1 AU, or a thermal flux of 135 

Wt/m
2. Assuming 20% conversion efficiency for sunlight into bus power, we can expect 27 We/m

2 

of solar array area. At these large distances from the Sun, it is highly desirable to save weight by 

using a large, light-weight reflector to concentrate sunlight onto a much smaller area of solar cells: 

a 10:1 concentration ratio and a collection efficiency of 85% permits 1 MWe electrical power 

generation at 3.16 AU by collecting 6 MWt of sunlight, which requires a collector area of 4x104 

m2, a circular reflector with a diameter of 226 m. The photovoltaic array would then cover 3700 

m2, a 61 m square. Over one year, this system at 3.16 AU could electrolyze 1875 tonnes of water, 

or about a half tonne per square meter of photovoltaic cells. However, the requirement to spend 

one entire year on propellant synthesis may be a serious detriment to the economics of the mission, 

forcing the use of non-optimum launch windows for both the outbound and inbound legs. 

During the processing of water, there is also a possibility of electrolyzing water vapor by means 

of solid-state electrolysis, using yttrium-doped zirconia membranes. This technology is virtually 

identical to that developed for use in high-temperature gas-phase electrolysis of carbon dioxide 

into CO and oxygen for use in propellant production on Mars. Conduction of the O2
- ion through 

the membrane permits separation of oxygen from hydrogen. The gas-phase electrolysis of water 

vapor also requires less electrical power than liquid-phase electrolysis of water, since the    vapor 
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already has a substantial heat content. Although the total energy cost of production of hydrogen 

and oxygen is unchanged, electrolysis of the vapor leads to a more favorable (lower) ratio of 

electrical to thermal energy demand, which reduces the mass and complexity of the electrical 

power generation equipment.  This advantage is lost if the heating is provided electrically. 

At 1 AU from the Sun, the preferred location of the propellant manufacturing and storage facility, 

the solar flux is 10 times as large and the area and mass of all solar collectors and photovoltaic 

arrays are 10 times smaller than those that would have been required at the asteroid’s aphelion. 

Further, the time available for processing becomes both longer and more flexible. In, for example, 

highly eccentric Earth orbit (HEEO) or an Earth-Moon Lagrange point, a 5 MWt solar collector 

would require a diameter of only 70 m. 

6. Where Should we Make Propellants? 
To attempt the manufacture of storable propellants on a pioneering asteroid-mining mission is to 

depend on a complex mechanical and chemical system operating on an imperfectly characterized 

feedstock in a hostile environment in which we have little relevant experience. The task of carrying 

out an early synthesis and retrieval of propellants should not be entrusted to such a complex 

autonomous system. We strongly favor the use of the first retrieval mission to extract sufficient 

impure water for use of a Solar Thermal Propulsion system to return 100 tonnes of water (and a 

sample of unprocessed asteroidal material) to Earth orbit, where experiments to optimize the 

processing scheme for that exact composition type can be carried out. After the first retrieval 

mission, we envision massive extraction of impure water and CO2 at the asteroid, which enables 

the use of solar thermal propulsion to return hundreds of tonnes of these materials to the Earth-

Moon system. It is more realistic to imagine the processing steps that manufacture propellants as 

occurring at 1 AU from the Sun, in Earth orbit, under direct human supervision or via teleoperation. 

The propellants thus produced would then be available close to the site of their greatest demand, 

in LEO, GTO, GEO, and HEEO (for crewed missions to Mars, because assembly and final fueling 

in HEEO has some advantages over marshalling the units in LEO). 

7. Storage and Transportation of Water and Carbon Dioxide 
Carbon dioxide readily forms a clathrate hydrate under easily accessible conditions. At elevated 

CO2 pressures (about 30 bars) the solid hydrate even forms spontaneously18 from liquid water at 

temperatures up to 281 K. At 10 bar pressure, liquid carbon dioxide and water ice form a solid 

hydrate of approximate formula CO2
.5.75 H2O that is stable between 230 and 273 K, and at 1 bar 

pressure the hydrate is stable from 192 to 218 K (Fig. 4), close to typical NEA surface 

temperatures. It is useful to note that the clathrate hydrate, once formed, is resistant to gaseous 

CO2 loss even outside its equilibrium stability range: when solid clathrate hydrate is heated to 240 
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K (22 K above the phase stability boundary in Fig. 4) at 1 bar pressure, only 3% loss of gas 

occurs 18. With further heating at 1 bar, the hydrate persists metastably up to 271 K, at which 

temperature it decomposes rapidly. 

Fig. 4 The equilibrium stability field of CO2 clathrate hydrate (H; the red-shaded area) vs. pressure and temperature. 

At temperatures below the lower stability of the hydrate water ice coexists stably with liquid or solid CO2; at 

temperatures above the stability field, there is insufficient CO2 pressure to force formation of the hydrate. However, 

the hydrate, once formed, has a high activation energy barrier for loss of CO2 and can persist metastably up to about 

271 K at 1 b pressure. 

The observed metastable persistence of the hydrate outside its equilibrium stability field is due to 

the high activation energy for escape of carbon dioxide molecules from their clathration sites. 

Alternatively, cooling the hydrate from formation conditions within the equilibrium stabilityfield 

and storing the hydrate at lower pressures is even less risky because the lower temperatures inhibit 

the, diffusion of CO2 molecules out of the clathrate lattice even more strongly. 
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Several trace gases may accompany (and substitute for) the carbon dioxide in the hydrate: nitrogen 

and hydrogen sulfide are possibilities. Note that clathrate hydrates form from molecules with small 

or zero dipole moments. The polar molecule ammonia, if present, can form a hydrate NH3
.H2O 

which is not a clathrate; however, in the presence of a probable very large excess of CO2 it would 

form NH4HCO3 (ammonium bicarbonate) or NH4CO2NH2 (ammonium carbamate) instead. The 

former would evaporate to give off ammonia, water vapor, and carbon dioxide. The latter would 

vaporize to release carbon dioxide and ammonia or, at higher temperatures, dehydrate to form urea 

(H2NCONH2). Carbon monoxide can also react with ammonia to make formamide, HCONH2, a 

molecule found at the level of 3.73% of the gases detected by the Rosetta mass spectrometer 

experiment (COSAC) being released from the comet Cheryumov-Gerasimenko. Formamide can 

decompose into CO and ammonia, or into water and HCN, in either case making highly toxic 

products. 

8. Methanol/Dimethyl Ether Synthesis 
Using selective catalysts, hydrogen and carbon oxides can be used to make storable methanol 

(CH3OH), or other combustible organic molecules such as methane (a “soft” cryogen) or dimethyl 

ether (H3COCH3), with high efficiency. The most common method for making methanol involves 

reacting a gas stream of hydrogen and carbon monoxide (or dioxide) on a catalyst bed consisting 

of CuO and ZnO on an inert support such as alumina (2H2 + CO ➔ CH3OH). High yields are 

encouraged by having an excess of hydrogen, which also allows the use of CO2 along with, or in 

place of, CO. Moderate pressures (a few atmospheres) and temperatures (250 to 300oC) in the 

reaction vessel are sufficient19. Of course, recycling of the (dried) unreacted gases is essential to 

achieve overall process efficiency. 

We favor reactions that can utilize either carbon monoxide or dioxide; if CO is demonstrably 

superior for thermodynamic or kinetic reasons, it can be produced from CO2 via the use of Solid 

Oxide Electrolysis, with hydrogen being produced from standard electrolysis of water: 

Electrolysis (67°C) 

2 H2O(l) + Energy ➔ 2 H2 + O2 

water hydrogen oxygen 

Solid Oxide Electrolysis (850°C) 

2CO2 + Energy ➔ 2CO + O2 

carbon monoxide oxygen 

Dimethyl ether (DME) is either synthesized directly from CO and hydrogen by passage over an 

alumina catalyst, or can be made by dehydrating methanol with concentrated sulfuric acid: 

(CH3OH + HOCH3 ➔ CH3OCH3 + H2O).  The former, a two-stage process in which the reactant 
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gases make a single pass through a two-layer catalyst bed, appears to hold much more promise 

because of its simplicity and efficiency20. That direct synthesis from CO and H2 is most efficient 

in the presence of methanol. Methanol production requires lower pressures than DME production, 

and may be preferable despite its somewhat inferior performance as a propellant (lower Isp). 

Kinetic modelling of the synthesis of dimethyl ether in a single reaction step21 from (H2 + CO) and 

from (H2 + CO2) shows that the reaction of CO is faster and more efficient over a 

CuO−ZnO−Al2O3/γ-Al2O3 bifunctional layered catalyst, in which the first catalyst layer makes 

methanol and the second (γ-alumina) layer dehydrates methanol to DME. This model fits well the 

experimental results obtained in an isothermal fixed bed reactor over a wide range of operating 

conditions:1 225−325 °C; 10−40 bar; space time, 1.6−57.0 (g of catalyst) h (mol H2)-1. The rate-

limiting step is the synthesis of methanol from (H2 + CO). Synthesis from (H2 + CO2) is much less 

important. Methanol dehydration by the γ-Al2O3 catalyst is very fast but requires high pressures. 

Water in the feedstock has an inhibiting effect on the synthesis of methanol and the formation of 

hydrocarbons. This single-step, two-catalyst process permits attainment of yields higher than 60% 

of carbon converted into DME and 5% into methanol, when (H2 + CO) is fed at 30 bar and 275 

°C. The unreacted gas is dried and recirculated through the reactor. Note that, at higher reactor 

temperatures, hydrocarbons (mainly methane) are produced. 

If the feedstock is rich in carbon dioxide, a modification of this scheme is required. A study of 

another bifunctional catalyst system22 using CuO-ZnO-Al2O3-ZrO2 plus HZSM zeolite (where the 

γ-Al2O3 catalyst is again responsible for conversion of methanol into DME) was used for the 

conversion of a CO2-H2 mixture. Conversion efficiencies of CO2 into DME reached 21% with a 

methanol yield of 5.9% when the reaction was run at 5 MPa and 523 K. They also found that, not 

surprisingly, recycling of the dried CO made in this process was desirable for improved efficiency. 

Separation of the DME from the methanol and water is required and can be conducted using a 

molecular sieve process. 

A large-scale commercial application of DME production via CO2 recovery is underway in 

Iceland23, where Misubishi has opened a plant for conversion of captured CO2 into methanol and 

thence into DME in a two-stage process utilizing the same basic chemistry as the previous system. 

They process CO2 emitted from a ferrosilicon plant, scrubbing the flue gases to remove sulfur as 

sulfuric acid in order to protect the catalyst bed. The source of hydrogen gas is electrolysis of 

water. Again, the last step in the process is making DME via the dehydration of methanol using a 

γ-Al2O3 catalyst. 

DME is the more desirable product because it has a higher heat of combustion (both per mol and 

per gram) than methanol and, unlike methane, is not a cryogen. There are distinct advantages to 

storing DME at local (asteroidal) ambient temperatures (-20 to -60 oC) because its normal boiling 
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point is -24.81 oC and the vapor pressure of DME at 0 oC is 5 atm24. The vapor pressure equation 

calculated from measured temperature points down to -25 oC is given by log10 pv(DME) = 7.69056 

– 1909.75/T(K), with pressures in atmospheres. At -50 oC the vapor pressure is only 0.135 atm. 

DME’s freezing point of -138 oC (135 K) is so low that maintaining DME as a liquid would not 

be difficult.  The freezing point of methanol is 40 degrees higher. 

All that is lacking is a storable oxidizer that can be co-produced from the same reactants (water, 

carbon oxides) as DME: we propose hydrogen peroxide. 

9. Conventional (Earthside) H2O2 Synthesis 
Commercial hydrogen peroxide synthesis generally uses the anthraquinone process, which is 

dependent on an organic catalyst that has limited lifetime and cannot be replenished from sources 

in space. A conceptually appealing alternative, direct synthesis of H2O2 from H2 and O2, is a 

relatively new process that is not without problems of its own, but which is under active 

development25. Interestingly, recent research has shown the advantage of carrying out the direct 

synthesis of hydrogen peroxide in a methanol medium26. 

Very recent research shows that using a palladium catalyst in an acidic medium26b in which the 

acid functional groups or halogens are bound to a catalyst bed such as sulphated zirconia, or using 

a Pd-Au catalyst, improves the efficiency of hydrogen peroxide direct synthesis. Recent research 

has focused on the adaptation of this system to a continuous-flow rather than a batch reactor. A 

selectivity of 90% has been demonstrated with such a continuous reactor26c: as much as 90% of 

the reactant flux emerges as H2O2, and 10% as water. Higher concentrations of H2O2 would require 

low-temperature distillation to remove unwanted water, or the solution could be used exactly as 

produced. The hazard of using a hydrogen/oxygen gas mixture was avoided by using a large 

amount (80%) of carbon dioxide as the carrier gas. As sanguine as the abstract of their article is, 

the text is more sobering, in that the observed selectivity declines with time after a brief startup 

interval. This scheme must be regarded as being in the preliminary research stage, definitely not 

ready for use in a production plant. Its suitability for space-based application is not yet 

demonstrated. 

Edwards, et al.26d of the University of Cardiff have found that directly synthesized H2O2 can be 

stabilized against further hydrogenation (reduction to H2O) driven by the very same catalysts used 

in the H2O2 synthesis. Their technique is a simple acid pretreatment of the carbon support for the 

gold-palladium nanoparticle catalyst. This treatment blocks the sites of the reduction reactions, 

giving high selectivity for peroxide synthesis. 
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10. Space-based direct synthesis of H2O2 

H2O2 synthesis from H2 and O2, which is required for space-based storable oxidizer production, is 

a new alternative to existing terrestrial practice for production of hydrogen peroxide. Advances 

made in the pursuit of space-based direct synthesis will feed back into terrestrial H2O2 production, 

potentially accelerating the replacement of chlorine-based oxidizing and bleaching agents. Of the 

many suggested processes for direct synthesis of hydrogen peroxide, the one that appears most 

promising for space-based use is an electrochemical cell. 

Recent fuel-cell research has been inspired by the automobile industry’s efforts to develop fuel-

cell powered vehicles as replacements for internal combustion engines. Fuel cells oxidize a fuel 

such as hydrogen or hydrocarbons under controlled conditions to generate an electric current 

without the undesirable byproducts of normal combustion, such as partially oxygenated unburned 

hydrocarbons (aldehydes, ketones, carboxylic acids) and nitrogen oxides. 

The ideal fuel for fuel cell use is hydrogen. The end product of the power fuel cell reaction is 

water. However, the reactions in the fuel cell proceed in two stages: the first stage produces 

hydrogen peroxide, and the second converts all the H2O2 to water. For road vehicles, there is a 

strong incentive to maximize energy output by avoiding formation of H2O2. However, the same 

fuel cell technology could also be optimized for H2O2 production. Research on this alternative is 

at an early stage. Professor David Schiffrin, director of Liverpool University’s Center for 

Nanoscale Science, undertook an investigation of optimizing hydrogen peroxide production, 

initially using quinones rather than platinum catalysts. Schiffrin and his colleagues have a patent 

pending for co-generation of electricity and hydrogen peroxide27. Their experiments to date on 

electrode development have been very successful, but no attempt has been made to adapt these 

electrodes to a complete H2O2 production cell, let alone for space applications. For use in space, it 

would also be desirable to avoid dependence on degradable catalysts (such as anthraquninone) that 

would require resupply from Earth. Schiffrin’s patent application specified the use of a platinum-

group metal for the hydrogen oxidation electrode and “oxides of cobalt alloys”, carbon with 

attached anthraquinone derivatives, or “transition metal complexes ( e. g. cobalt porphyrin), gold, 

copper, mercury, or platinum” for the oxygen-reduction electrode. As a side benefit, electricity 

produced by the process permits the chemical potential energy change of the cell reaction to benefit 

both hydrogen peroxide synthesis and energy production, thus recapturing part of the energy 

expended in making hydrogen and oxygen by water electrolysis. This technology, although very 

promising as a route to efficient synthesis of H2O2, is still in the early stages of development and 

needs to be adapted to use in space, an important goal for Phase II. 

Their success to date does however give grounds for optimism that a simple and capable system 

may be attainable. Unfortunately, Prof. Schiffrin is now retired and no longer maintains a 

laboratory.  Experimental facilities at the University of Arizona can continue this research. 
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11. Long-Term Storage of Hydrogen Peroxide 
Decomposition of H2O2: Hydrogen peroxide spontaneously decomposes into water and oxygen 

with substantial release of heat, a trait that makes it valuable as a rocket monopropellant. Its 

structure, HO-OH, is analogous to that of hydrazine, H2N-NH2, an even more powerful 

monopropellant that is much harder to make in space because of the low availability of nitrogen. 

The heat released upon decomposition of hydrogen peroxide at 298 oC is -98.21 kJ/mol. The rate 

of decomposition of high-test peroxide (HTP; a name usually reserved for solutions with 90% 

purity or higher) depends on temperature, exposure to light, catalytic impurities, and exposure to 

some solid surfaces. 

Storage container materials: Many plastics and certain stainless steel alloys are useful containers 

for long-term storage of HTP. One favored tank material for hydrogen peroxide storage is 1060 

aluminum alloy.  Teflon or Teflon-coated tanks are also very successful. 

Light: Hydrogen peroxide is vulnerable to destruction by near UV in sunlight, and is for this reason 

stored in opaque containers. Food-grade (35%), hair bleach (6%) and drugstore (3%) H2O2 are sold 

in opaque containers or brown bottles to inhibit destruction by light. 

Base- and metal-catalyzed decomposition of H2O2: Alkaline solutions of H2O2 are degraded by 

exposure to hydroxide ion. Strong acids are also detrimental; much practical experience shows that 

the optimum pH for H2O2 storage is about 6 (weakly acidic). A wide variety of metal cations, 

including Ca2+, Mg2+, Al3+, and transition metal ions, also catalytically destroy H2O2. Since the 

favored tank material is an aluminum alloy, it is essential to regulate the pH of the solution so as 

to minimize the dissolution of Al, not only to protect the tank from excessive corrosion and 

eventual failure, but also to protect the H2O2 in it from catalytic decomposition. This requirement 

also mandates a near-neutral pH, since Al metal is dissolved in both strongly acidic (as Al3+) and 

strongly basic (as Al(OH)4
-) solutions. Catalytic degradation can be prevented by assuring that the 

peroxide stream is free of particulates, dissolved metals and sulfuric acid. 

Temperature: Elevated temperatures accelerate the decomposition of H2O2 in any tank material. 

High-concentration H2O2, of 90 to 99% purity, with stannate stabilizer added (see below), has been 

stored successfully for many years in 1040 Al-alloy tanks, showing decomposition rates28 of about 

0.01%/year at 86oF (303 K), 0.1%/year at 151oF (339 K), and 1%/year at 212oF (373 K). These 

measured rates define the activation energy for decomposition, which permits a calculation of the 

decomposition rate at lower temperatures such as might be applicable in a space environment. Fig. 

5 shows that decomposition rates of 0.001%/year can be achieved at a temperature of about 37oF 

(3oC). 
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Fig. 5 Rate of decomposition of HTP H2O2 in Al-alloy tanks. Experimental data above 300 K are used to calculate 

the activation energy for decomposition and extend the curve to lower temperatures. The normal freezing point of 

HTP is -0.4 oC; however, because of the tendency for liquid H2O2 to supercool, the liquid can persist down to about -

40 oC, allowing the prediction that the actual H2O2 decomposition rate for the supercooled liquid may be as low as 

10-5 %/year at 233 K. See Fig. 6 for context. 

A one-tonne tank load of high-purity H2O2 at 0 oC would then lose about 10 g of material per year, 

releasing about 5 g of oxygen gas. Likewise, 100 tonnes of HTP at -40 oC would lose about the 

same amount of oxygen. There seems to be little data on how much solid H2O2 gains in stability 

relative to the liquid: the freezing point of pure H2O2 is -0.4oC (31oF). There is, however, a patent 

(U. S. Patent 3,480,557) on storage of H2O2 in the solid state using complex organic substrates, a 

technique unlikely to be of interest in space. 

Stannate preservative: Addition of sodium or potassium stannate (Na,K)2Sn(OH)6 has a strong 

stabilizing effect on H2O2, in part by reacting with, complexing, and even precipitating metal 

stannates from solution and making them unavailable to react with H2O2. US Patent 3383174A29 

is illustrative of one of many variants on the use of stannates at concentration levels of 0.001 to 

0.01% to stabilize high-purity peroxide.  The purpose of the higher concentrations is to protect 
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stored high-test peroxide against the effects of catalytic decomposition catalyzed by trace metal 

ions in the water used to dilute the peroxide for practical use, a factor absent in our proposed use. 

The mass of stannate required to stabilize 100 tonnes of 98% H2O2 destined for propellant use (not 

for dilution) is therefore on the order of 1 kg. 

Phosphates also find commercial use as stabilizers for peroxide. 

12. Effect of Peroxide Degradation on Propellant Performance 
Calculations performed on burning kerosene (jet fuel) with 98% H2O2 at 50 atmospheres chamber 

pressure show an Isp of 329 seconds28. Using hydrogen peroxide stored for about 2 years30, after 

the concentration had dropped to 96%, the computed specific impulse was found to havedropped 

only about 0.6%, to 327 s. The reason that the drop in performance was so small is that the small 

amount of additional water vapor made by H2O2 decomposition has a lower molecular weight than 

carbon dioxide, leading to an exhaust with a lower mean molecular weight and higher thermal 

velocity at any temperature. The lowering of the molecular weight of the exhaust partially 

compensates for the lower oxygen content. Thus slight (2%) degradation of the concentration of 

the oxidizer has only a very small (0.6%) effect on engine performance. 

13. Freezing and Distillation Behavior of Hydrogen Peroxide 
As mentioned above, the freezing temperature of pure hydrogen peroxide is -0.4 oC, very similar 

to that of pure water. The H2O2/H2O binary phase diagram shows a eutectic point at about -54 oC 

and 64% hydrogen peroxide, a concentration so low that serious performance degradation is 

incurred. A representation of the H2O2/H2O equilibrium phase diagram on the pH2O2-pH2O plane is 

given in Fig. 6. Each freezing-point line in the figure is the locus of coexistence between two 

phases, the liquid and the locally stable solid. Cusps in the liquidus correspond to triple points in 

the H2O-H2O
2 system. 
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Fig. 6 Equilibrium phase diagram of the H2O2-H2O system on the p(H2O2)-p(H2O) plane. The solid scalloped line 

is the freezing-point curve for aqueous H2O2 solutions; the upper right region of the diagram, that above the freezing 

point curve, is the solution stability field, within which (curved) lines of constant temperature (isotherms) and 

(straight) lines of equal solution concentration (isopleths) are shown. The region below the freezing curve on the left 

side of the diagram is the stability field of pure solid H2O2; the region below the freezing curve at the bottom of the 

diagram is the stability field of water ice Ih. A solid hydrate of hydrogen peroxide is stable in the small region at the 

lower left. See text for further interpretation. 

The diagram shows that a 60% solution at 0 oC has a hydrogen peroxide partial pressure of 10 

N/m2 and a water vapor partial pressure of 180 N/m2, so the vapor has a water:peroxide ratio  of
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18:1, far higher than the ratio in the liquid (0.4:0.6, or 0.66). Thus removal of vapor (distillation) 

increases the concentration of H2O2 in the liquid. Low-temperature (vacuum) distillation of the 

solution therefore provides a straightforward way to evolve the liquid toward pure-H2O2 

composition. Alternatively, given a low level of artificial gravity (acceleration) it may also be 

desirable to take advantage of the two-phase region to freeze out pure H2O2 and separate it from 

residual liquid via flotation or filtration. 

Freezing of hydrogen peroxide, however, is dependent upon the presence of suitable nucleation 

sites, in the absence of which the liquid high-test peroxide (HTP) can be severely supercooled31, 

often remaining as a liquid down to -40 oC. Thus pure peroxide, once made, can be stored as a 

liquid even far below its normal freezing point, at temperatures similar to the ambient temperatures 

on the surfaces of Near-Earth Asteroids, without incurring the handling complexities caused by 

freezing into an icy solid. A further benefit is that the lower the storage temperature, the slower 

the rate of hydrogen peroxide decomposition. By reference to Fig. 5, we see that extension of the 

decomposition rate curve into the supercooled liquid region (under the assumption of a constant 

enthalpy of activation) predicts that the rate of decomposition of liquid HTP at -40 oC is only10-5 

%/year, fully 100 times slower than the rate at the normal freezing temperature. 

14. Raw Materials Requirements for Storable Propellant Synthesis 
The overall stoichiometry of synthesis of DME and H2O2 from H2O and CO2 is: 

9 H2O + 2 CO2 ➔ 6H2O2 + (CH3)2O. 

The 9:2 molar ratio of water to carbon dioxide implies a mass ratio of (9x18)/(2x44) = 1.84 tonnes 

of water per tonne of CO2; synthesis of 1000 tonnes of propellant requires 648 tonnes of water and 

352 tonnes of CO2. 

There is a stable and easily produced solid hydrate of carbon dioxide, water clathrate hydrate, that 

serves as a means of transporting both CO2 and water (see Fig. 4). The hydrate provides 5.75 water 

molecules per carbon dioxide molecule, somewhat more than the stoichiometric ratio of 4.5:1 

desired for propellant synthesis: 

11.5H2O + 2CO2 ➔ 2CO2
.5.75H2O(s). 

Return of sufficient hydrate materials to make 1000 tonnes of propellant would require carrying 

an extra 141 tonnes of water beyond the 648 tonnes calculated above for propellant synthesis, 

necessitating a total mass return of 1141 tonnes. The 141 tonnes of “extra” water can be used in 

any of a wide variety of ways, such as in life support, hydroponics, as an industrial reagent, and in 

electrolytic manufacture of LOX and LH2. To this total should be added the amount of water 
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needed by the propulsion system (water-based STP) to return the load to Earth orbit. That amount 

is highly mission-dependent, and must be stored separately from the clathrate. 

Since water release is efficient at relative low calcining temperatures, and efficient CO2 release 

requires temperatures so high that SO2 is also produced abundantly, there is a strong incentive to 

seek propellant production schemes that use a high ratio of water to CO2. The following table 

illustrates the availability of fuel/oxidizer pairs vs. the mole fraction of CO2 in the retrieved payload 

of asteroidal volatiles. 

Table 1. Potential fuel/oxidizer pairs compared to feedstock composition 

Fuel Oxidizer Production reaction Mole fraction CO2 

A H2 O2 2H2O ➔2H2 + O2 0 

STP (H2O STP) H2O 0 

B H2O2 mono 2H2O ➔ H2O2 + H2 0 

C CH4 H2O2 CO2 + 6H2O ➔CH4 + 4H2O2 0.143 

feedstock CO2 + 5.75 H2O ➔CO
.
2 5.75H2O 0.148 

D CH3OH H2O2 CO2 + 5H2O ➔CH3OH + 3H2O2 0.167 

E C2H6 H2O2 2CO2 + 10H2O ➔C2H6 + 7H2O2 0.167 

F DME H2O2 2 CO2 + 9H2O ➔ (CH3)2O + 6H2O2 0.182 

G C2H5OH H2O2 2 CO2 + 9H2O ➔C2H5OH + 6H2O2 0.182 

H C3H8 H2O2 3CO2 + 8H2O ➔C3H8 +  4H2O2 0.273 

I CH4 O2 CO2 + 2H2O ➔ CH4 + 2O2 0.333 

J CH3OH O2 2CO2 + 4H2O ➔2CH3OH + 3O2 0.333 

K DME O2 2 CO2 + 3H2O ➔ (CH3)2O + 3O2 0.400 

L C2H6 O2 4CO2 + 6H2O ➔2C2H6 + 7O2 0.400 

M C2H5OH O2 2CO2 + 3H2O ➔C2H5OH + 3O2 0.400 

N C3H8 O2 3CO2 + 4H2O ➔C3H8 +  5O2 0.429 

It is evident from this table that there are five propellant-production schemes (C, D, E F and G) 

that have feedstock compositions that match that of the clathrate hydrate reasonably well, all of 

which involve the use of hydrogen peroxide as the oxidizer. Of these, option C employs cryogenic 

methane (normal boiling point 112 K) and E involves the mild cryogen ethane (b. p. 184 K). The 

storable fuel options are reduced to methanol and DME. 

Options A, STP and B do not depend on CO2 at all. Options A and B employ water and solar 

electrical power (for electrolysis); STP employs water and concentrated direct solar heating. 

Assuming conversion of raw solar power into electricity with an efficiency of 25%, B is preferable 

to A for most purposes when carbon is not available. The carbon-intensive fuels near the bottom 

of the list (I through N) are especially poor choices for manufacture from C asteroid volatiles: all 

also demand cryogenic LOX. 
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15. DME/H2O2 Combustion 
Since the combustion of DME with hydrogen peroxide produces only carbon dioxide and water 

vapor as products, the stoichiometry of the combustion reaction is exactly the same as the synthesis 

reaction, requiring 6 moles of H2O2 per mole of DME burned. The exhaust then has a mean 

molecular weight M of 22.7, compared to 30 to 31 for the combustion products from burning a 

long-chain hydrocarbon (kerosene) with LOX. The high H:C ratio in the combustion products 

guarantees a lower exhaust molecular weight, which in turn guarantees a higher mean thermal 

speed for any temperature. The H:C ratio in the DME fuel is 3:1 compared to 2.1±0.1:1 for long-

chain hydrocarbons (kerosene; paraffin) and 1.9 for diesel fuel. The only fuels with a higher H:C 

ratio are the deep cryogen liquid hydrogen (∞) and the soft cryogen methane (4:1). Methanol (4:1), 

although it has a favorable hydrogen content, has a poorer heat of combustion because it is already 

50% by mass oxygen – initial calculations indicate however that this deficiency is compensated 

by being closer to the feedstock ratio then DME (see previous section). This is examined further 

in Section 17. Ethane C2H6 (a soft cryogen) and ethanol CH3CH2OH also have H:C = 3:1, the same 

as DME. 

The heats of combustion of these materials (ΔHc) can be compared in the following table, which 

assumes the use of cryogenic LOX as the oxidizer for every fuel except DME and ethanol, for 

which high-grade hydrogen peroxide is assumed. All numbers assume a stoichiometric 

fuel:oxidizer ratio. The following table also gives the mean molecular weight M of the exhaust 

and a crude performance Figure of Merit (FoM) estimated from the ΔHc and molecular weight, 

based on Isp ~ vex ~ (ΔHc/M)0.5. Isp numbers from a variety of published sources are included in the 

rightmost column.  Note that this FoM refers ONLY to performance as a propellant. 

Table 2. Heats of combustion for assorted fuel/oxidizer pairs 

Fuel Oxidizer 

Heat of 

Combustion (HHV) 32 

(GJ/tonne) 

Molecular 

Weight of 

Exhaust, AMU 

FoM Isp 

(sec) 

Liquid Hydrogen LOX 134.0 18.0 2.81 390 

Liquid Methane LOX 52.4 26.7 1.44 362 
Liquid Ethane LOX 49.2 28.4 1.35 310 

Gasoline LOX 47.0 33 30.2 1.25 335 

Kerosene LOX 46.2 33 30.4 1.23 358 

Diesel Fuel LOX 45.0 33 30.6 1.21 300 

Methanol LOX 22.0 26.7 0.92 280? 
Dimethyl Ether 

(DME) 
HTP 43.8 22.7 1.18 300 

(NOTE 1) 

Ethanol HTP 42.2 22.7 1.14 290 

Methanol HTP 31.9 22.3 1.20 261 
Ethylene HTP 70.5 23.2 1.74 ? 

NOTES: 

1. DME/HTP Isp predicted to be just higher than for Ethanol/HTP. 
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This table suggests that DME/H2O2 is reasonably competitive with most hydrocarbon/LOX 

systems. If mild cryogens are considered, then methane or ethane with hydrogen peroxide would 

also be attractive options. All H2O2 combinations are somewhat inferior to methane/LOX in 

performance; their advantage is that they are cryogen-free. 

16. Schematic Processing System Architecture on an Asteroid 
The first mass-retrieval mission should be devoted to relatively low-temperature extraction of 

water for the STP system for the return of CO2 hydrate and a mass of raw (unheated) asteroidal 

material to a processing facility in Earth orbit. (Confirming the feasibility of combined water and 

CO2 harvesting on the first missions is a critical goal of the Phase II research.) The equipment that 

must be present on the asteroid includes a large solar collector to provide thermal energy for baking 

the asteroid material to release water-rich volatiles. Separation of the volatiles from residual solids 

can be accomplished efficiently by the same means widely used on Earth, a “cyclone” unit that 

spins the mixture to centrifuge the dust out of the gas and a “dust pump” to draw off the exhausted 

solids, which should be bagged and left on the asteroid for future exploitation for their content of 

residual volatiles and metals. The raw material returned to Earth orbit will be used to optimize the 

heating and processing techniques for future use on the asteroid. 

For all later missions, stronger heating (following time/temperature parameters determined from 

experiments carried out in Earth orbit on the asteroidal solids returned in the first mission) will be 

used to drive off a larger mass of gas. This evolved gas, composed mainly of carbon dioxide and 

water vapor, is cooled to condense these materials as the carbon dioxide clathrate hydrate for return 

to near-Earth space for final processing into propellants, leaving a residual incondensable gas of 

nitrogen, carbon monoxide, and probably sulfur dioxide to be vented overboard. Supplemental 

liquid water is condensed into a separate tank for use as the working fluid in a Solar Thermal 

Propulsion engine for the return to near-Earth space. 

The electric power for the pumps, valves, and cyclone must be supplied by a small photovoltaic 

array sized by the need to deliver sufficient power at the aphelion of the asteroid, where most of 

this volatile-extraction processing must occur. An electrolysis unit, if required, would be 

conceptually patterned after the ISS system: it and the other pieces of equipment mentioned (and 

the ISS Sabatier reactor) function independent of gravity. It would, however, be desirable to design 

the system architecture so that electrolysis and all other forms of processing could be relegated to 

Earth orbit, not used on the asteroid. On the target asteroid, after landing, anchoring, and 

deployment of the solar collector: 
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A. Acquisition and 

loading of regolith 

(after oversize 

removal) into solar 

calciner 

B. Calcining of raw 

asteroid material 

with cyclone 

rejection of solid 

tailings 

C. Condensation 

of water for use 

as STP 

propellant for 

return trip 

D. Condensation 

of water and 

carbon dioxide 

for transport to 

Earth orbit 

Step A uses an electromagnetic regolith “pump” to deliver a stream of loose, fine regolith through 

an airlock into a calciner tube which runs the length of a trough in an elongated solar collector 

with approximately parabolic section. In Step B, the material is heated as it transits the length of 

the calciner trough and releases volatiles, the volatiles and tailings being separated by passage 

through a cyclone which expels dust into a reservoir and admits gaseous products, largely water 

vapor and carbon dioxide, through a heat exchanger (which preheats the solids entering Step A) 

into a storage volume or “water bag” which, in Step C, rejects the heat of condensation into space. 

Somewhat impure water is accumulated in the bag in step C for use as the working fluid in a Solar 

Thermal Propulsion system to return the payload to Earth orbit. Lower temperatures are used in 

step D to condense CO2 clathrate hydrate into a separate “ice bag” for transport to Earth as the 

main payload. The first processing stage, on the asteroid, has been modeled in detail for us by Sam 

Spencer, a DSI collaborator, as follows. This model, one of several produced by Spencer, deals 

with the problem of sulfur dioxide release at higher calcining temperatures by the expedient of 

using only lower calcining temperatures, which limits CO2 production as well as preventing 

massive release of SO2. (An alternative architecture involving higher calciner temperatures, 

efficient CO2 production, transport of both water and carbon dioxide to HEO, and SO2 cleanupon 

the asteroid has also been studied. A decision between these options awaits laboratory testing in 

Phase II.) 

A detailed flow chart for the on-asteroid operations, developed by DSI collaborator Sam Spencer, 

shows the complete plan.  “Area 1” is the surface of the asteroid. 
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Fig. 7 Analysis of at-the-asteroid processing identified 13 major phases. The estimates for mass, power, and 

throughput will be greatly refined during Phase II work. 

□		 Area 1 –Asteroid Mining 

o	 Water supplied at HEEO: 

□		 The basis for design is the supply of the maximum mass of water and CO2 

at HEEO – after transport, depending on the selected asteroid and return 

fuel requirements. Initial calculations indicate this may vary from 30 – 120 

tonnes of water supplied to HEEO, constrained by the mass that can be 

launched to a target on a Falcon Heavy; however significant additional 

optimization is still to be conducted. 

o	 Material Handling: 

□		 Asteroid particle size assumed to be as defined in literature of 

approximately d50 = 50 µm, d90 = 100 µm, d100 = 10,000 µm. Anything 

larger then this will be rejected at the excavator stage. 

o	 Energy Production / Removal: 

□		 Electrical energy supplied by solar photovoltaic cells with a solar cell 

efficiency of 25% and system efficiency of 80% 

□		 Thermal energy supplied by Concentrated Solar Radiation via Parabolic 

Mirrors with a mirror efficiency of 60% and a system efficiency of 80%. 
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An additional efficiency of 75% is assumed for transfer of energy to final 

user. 

□		 Energy removal is via ammonia coolant with radiative loss to space. 

□		 Incident solar radiation is calculated at the furthest distance from the sun, 

and therefore varies from one target asteroid to another. 

o	 Unit 0060 – First Fill Nitrogen: 

□		 A small amount of nitrogen (order of kg) will be bought from Earth for the 

purpose of pressurizing the system before use. 

o	 Unit 0100 – Excavation: 

□		 Excavation using external Electromagnetic Regolith Extractors (ERE), with 

internal gas assistance for solid transfer as required. 

o	 Unit 0200 – Mixing Chamber: 

□		 The solid:gas ratio for material transport is controlled to around 200-300. 

Experimental test work at zero gravity (by others) indicate that ratios up to 

6000:1 are possible, however DSI would like to use a larger ratio to 

minimize risk of blockage. 

□		 A pressure of 50 kPa will be used for all processing sections, supplied via 

gas compressor and maintained by inert-gas recycling. 

o	 Unit 0350 – Mineral Sizer: 

□		 This equipment will act as a safety device for the rest of the equipment, 

ensuring that oversize particles will be crushed and agglomerated material 

will be broken up. This equipment can be placed in any orientation, and will 

use pneumatic transfer to ensure transport through the sizer. 

□		 The operability of this equipment will need to be tested before use. 

o	 Unit 0400 – Calciner: 

□		 Operating temperature of 1000K required to optimize CO2 release at 

asteroid. Associated SO2 release will bemanaged. 

□		 Residence time not yet defined, however due to small material size this is 

expected to measure in minutes – further testwork required. 

o	 Unit 0500 – Cyclone Separation: 

□		 Cyclones work in zero gravity, so gas/solid separation should work well. 

o	 Unit 0550 – Anhydrous Solids Capture: 

□		 Solids are captured and valuable gases removed before discharge back to 

asteroid. Gas losses, largely via adsorption, are expected at 1%w/w. 

o	 Unit 0600 – Heat Recovery: 

□		 A simple heat exchanger (“recuperator”) will recover excess heat in the 

gases and heat the incoming solids. 

o	 Unit 0900 – Vapor Cooling: 

36 



   

 

  

 

 

 

 

 

       

   

 

    

   

    

   

    

              

 

    

   

    

  

 

                  

       

  

    

     

   

  

     

 

  

 

        

    

     

  

 

 

        
      

    

 

Deep Space Industries Inc. In-Space Production 

NNX15AL85G of Storable Propellants 

□		 The high level of water vapor in the gas ensures easier recovery of liquid 

water from cooling, using ammonia heat removal systems as previously 

discussed. 

o	 Unit 0950 – Gas Compressor: 

□ A simple gas compressor to provide pressure to the system. 

o	 Unit 0980 – Reverse Osmosis or comparable technology: 

□		 Water treatment to remove any dissolved impurities from the water. 

o	 Unit 0990 – Gas Transfer Membrane: 

□		 Further water treatment to remove a majority of the dissolved CO2 from the 

water. 

o	 Unit 1600 – Gas Purge: 

□		 A removal system for any additional non-condensable gases (N2, CO, etc.) 

that build up in the system during operation. These gases are expected to be 

abundant enough to exceed makeup requirements for losses. 

The next step is transport of CO2 and water to a processing facility in HEEO. We have considered 

the option of returning some solid asteroid material (either heated or unheated) for process 

development research (such as metals extraction): “Area 2” refers to the transportation step. 

□		 Area 2A – Transportation to Earth HEEO: 

o	 Thermal energy to heat water for use in Solar Thermal Propulsion (STP) as 

previously discussed. Mass of water and raw or anhydrous solids for 

experimentation are taken into account, along with all processing equipment. 

□		 Area 2B – Transportation to Earth: 

o	 Heat water in a Solar Thermal Propulsion (STP) as previously discussed. Mass of 

first-fill N2 taken into account, along with all processing equipment. 

The task of manufacturing DME and HTP is relegated to a facility in Earth orbit to minimize the 

complexity of the autonomous equipment landed on the asteroid and to take advantage of the 

higher solar flux at 1 AU. Sulfur management would logically be done at the asteroid. This removal 

must precede the fuel production step to avoid poisoning the catalysts used in DME synthesis. 

17. Schematic Processing System Architecture in Earth Orbit 
The functions of the processing facility are to manufacture, store, and dispense propellant to all 

outbound missions, including return missions to the asteroids from which further extraction will 

be attempted, manned and unmanned missions to the Moon, and manned missions to the Mars 
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system. The orbital parameters of the facility must be compatible with access from an asteroid 

return vehicle newly arrived in the Earth-Moon system and to (and from) LEO, with perigee high 

enough to avoid prolonged exposure to van Allen Belt radiation. A Moon-resonant orbit would 

also be desirable. All these factors suggest Highly Eccentric Earth Orbit (HEEO) as the preferred 

location, in accord with the arguments presented many years ago by Benton C. Clark. 

From the processing facility, an apogee burn can be used to drop the perigee of a departing 

spacecraft to as low an altitude as practical to take full advantage of executing escape burns deep 

in Earth’s potential well (the Oberth effect). HEEO is also very desirable because it is close to 

escape velocity, and also because it facilitates dropping supplies into LEO or GTO via repeated 

mild aerobraking passes. Supplying storable propellants to LEO for station-keeping, attitude 

control, and reboost and for injection of outgoing payloads into GTO and GEO, or into rendezvous 

transfer orbits to the processing/refueling facility, are all potential major markets. The use of a 

HEEO with a Moon-resonant period permits integrating it into Moon-bound traffic flow, as well 

as facilitating lunar swingbys for outbound missions. Note that this is essentially an incarnation of 

NASA’s plans for space-basing from the 1990 era. Great numbers of relevant NASA publications 

can be found by Googling NASA “space basing”. 

The fuel factory/depot would also become the logical place for production of cryogenic propellants 

as demand arises.  Cryogenics are outside the scope of this work. 

The feedstock for the propellant manufacturing scheme is CO2 clathrate (or condensed water and 

CO2). Upon arrival at the processing facility in Earth orbit, gentle heating of the clathrate hydrate 

to release CO2 gas from liquid water (at approximately 275 K), allowing good separation of the 

two. Alternatively, CO2 and H2O could be carried separately as their pure ices. Passive thermal 

control should suffice for this purpose. In order to manufacture storable fuels and oxidizer, it is 

essential that a large quantity of water be electrolyzed into gaseous hydrogen and oxygen. It is 

highly desirable that liquefaction of these gases be avoided, and that the system be designed in 

such a way that there will be no need to accumulate large masses (volumes) of these gases. For 

that reason, a continuous-flow processing system is far more attractive than batch processing. This 

material is for use as the feedstock for manufacture of storable rocket propellants in an appropriate 

Earth orbit processing facility. This facility should be in an orbit chosen for relative ease of access 

to and from Earth, the Moon, Low Earth Orbit, and Geosynchronous Orbit, such as a Moon-

resonant Highly Eccentric Earth Orbit or a lunar libration point. Some mass of completely 

unprocessed regolith should also be returned for use as scientific samples and as experimental 

feedstock for further development and refinement of processing techniques. Notionally, we choose 

to assume a payload of 100 tonnes of clathrate and 1 tonne of regolith. Depending on the choice 

of asteroid, 50-100 tonnes of H2O may be required as the SPS propellant for the return trip. 
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Some of the water is electrolyzed to release hydrogen and oxygen gases, which are used directly 

(not stored cryogenically) in the ensuing process steps to manufacture storable fuel and oxidizer. 

Schematically, 

E. Heating of 

the clathrate 

and separation 

of CO2 and H2O 

F. Electrolysis 

of water to 

make gaseous 

oxygen and 

hydrogen 

G. Solid Oxide 

Electrolysis of 

CO2 to CO and O2 

H. Catalytic 

reduction of CO 

with hydrogen to 

make MeOH or 

DME 

I. Fuel-cell 

reaction of H2 

and O2 to make 

hydrogen 

peroxide 

Step E involves warming the hydrate to release the CO2 as a gas and leave liquid water, and step 

F is essential for both fuel and oxidizer production. 

As discussed earlier, if SO2 removal at asteroid is not successful a small but poorly known fraction 

of the oxygen produced by electrolysis of water could be used to oxidize any gaseous sulfur 

compounds to SO3, which can be removed by a wet scrubber, another familiar terrestrial mineral-

industry technology. This oxidation process would also destroy any residual traces of ammonia 

and produce molecular nitrogen. The sulfuric acid produced in the scrubber is a valuable 

commodity that must be stored for future use, since the availability of sulfuric acid enables a wide 

range of mineral processing schemes. It is also an appealing idea to stockpile the nitrogen gas for 

immediate use as a background recirculating gas in the processor, as well as to allow future use as 

a fire suppressant in habitats and as a source of hydroponic nutrients. 

However, the overwhelming majority of the electrolysis products are dedicated to the hydrogen 

reduction of CO2 to manufacture methanol and dimethyl ether and to the manufacture of H2O2 from 

hydrogen and oxygen. 

After delivery to HEEO the more complicated processing stage, the manufacture of storable liquid 

fuel and oxidize, will occur. 

The HEEO processing activities (Area 3) have been modeled by DSI collaborator Sam Spencer in 

considerable detail, as the following flow chart illustrates. The scenario presented here avoids 

sulfur dioxide production at the asteroid (and hence produces limited CO2 there) by keeping 

calciner temperatures low at the asteroid and transporting asteroidal solids to HEEO for roasting 

there. This is one of many alternatives studied to date, and reflects the highest complexity of the 

HEEO processing hardware to illustrate how several of the problems that may arise (no S removal 

at the asteroid; inability to get high H2+CO2 conversion to DME) could be solved. 
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Electrolyser 

H2 H2O 

H2 

Liquification / Storage 

Auxilaries for 

Processing 

Fig. 8 The synthesis of HTP and a fuel (TBD) will be conducted in Earth orbit. 

□		 Area 3 – Processing Station at Earth HEEO: 

o	 Unit 5010 – Clathrate Heater: 

□		 The clathrate can be heated to release CO2 and H2O, with re-condensation 

of H2O conducted to recover reasonably clean water (with some dissolved 

CO2) and a clean CO2 gas stream. 

o	 Unit 4950 – Gas Compressor: 

□ A simple gas compressor to provide pressure to the system. 

o	 Unit 5000 – PEM Electrolyzer: 

□		 To produce H2 and O2 

o	 Unit 5100 – CO Synthesis: 

□		 A Solid Oxide Electrolyzer (SOE) can be used to convert CO2 to CO and 

O2 (analogue testing completed by NASA, to be tested in-situ on 2020 Mars 

mission) 

o	 Unit 5300 – DME / MeOH Synthesis: 

□		 CO and H2 can be used to produce Dimethyl Ether (DME) or Methanol via 

direct synthesis 

o	 Unit 5400 – H2O2 Synthesis: 

□		 H2O2 can be produced from the available H2 and O2 gases using direct 

synthesis 
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Combination Sabatier/SOE units may be worthwhile and have been examined and tested by 

various private enterprises, one example is from Paragon Space Development Corporation: 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140009943.pdf. 

The results from this analysis and process simulation can be seen identified below All 

calculations are based on asteroid 2009 HC orbit and assumed CI asteroid composition. 

Table 3. Analysis of producing different fuels for use with HTP. 

Description Units 

Case F 

(DME-

H2O2) 

[regolith to 

HEEO] 

Case G 

(Clathrate-

DME-

H2O2) 

Case H 

(Clathrate-

Ethanol-

H2O2) 

Case I 

(Clathrate-

Methanol-

H2O2) 

Case J 

(Clathrate-

Ethylene-

H2O2) 

Water delivered to HEEO t/period 30.0t 8.0t 8.0t 8.0t 8.0t 

Final Water available at HEEO 

after processing 
t/period 0.5t 0.2t 0.5t 0.2t 4.0t 

Fuel Production at HEEO, as 

GJ of combustion with 

specified Oxidizer 

GJ/period 79GJ 342GJ 341GJ 384GJ 383GJ 

Final CO2 available at HEEO 

after processing 
t/period 4.5t 2.4t 1.0t 0.8t 0.2t 

Energy Requirements 

MAX Thermal Energy (limit = 

100kW) 
kW 98 kW 92 kW 92 kW 92 kW 92 kW 

Solar Mirror Area m² 149 m² 140 m² 140 m² 140 m² 140 m² 

MAX Electrical Energy (limit 

= 40kW) 
kW 22 kW 26 kW 26 kW 26 kW 26 kW 

Photovoltaic Cell Area m² 80 m² 93 m² 93 m² 93 m² 93 m² 

MAX Energy Removal kW 59 kW 106 kW 106 kW 106 kW 106 kW 

Radiator Area m² 179 m² 321 m² 321 m² 321 m² 321 m² 

Propulsion 

Thrust Time from Asteroid to 

HEEO with Cargo (includes 

10% time margin, limit = 50­

70%) 

% of total 

time 
69% 49% 49% 49% 49% 

Specific Thrust (includes 10% 

time margin) 
mN/kW 

369 
mN/kW 

369 
mN/kW 

369 
mN/kW 

369 
mN/kW 

369 
mN/kW 

TOTAL Weight of Harvestor 

to Asteroid (limit = 15.6t) 
t 13.7 t 13.7 t 13.7 t 13.7 t 13.7 t 

TOTAL Weight of Harvestor 

to HEEO 
t 361 t 212 t 212 t 212 t 212 t 

These results indicate the following: 

- The effectiveness of clathrate in maximizing fuel production at HEEO for the same 

transport energy from asteroid 
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- Even though Methanol has a lower heat of combustion (see Section 15) as higher 

tonnages are produced the overall energy for propulsion available is greater than for 

DME/Ethanol. 

18.	 Hydrogen peroxide as a monopropellant 
Although the main thrust of this study is to assess the coproduction of HTP and DME as storable 

bipropellants, it is clear that HTP alone can be used as a storable monopropellant providing a 

specific impulse of about 160 seconds. HTP has the added virtue that it is far safer to handle than 

hydrazine or its derivatives. 

Since HTP synthesis requires only water as a starting material, it may be manufactured in Earth 

orbit without any requirement for carbon dioxide retrieval. HTP would be a very simple and useful 

propellant for small spacecraft. 

19.	 Applications of this Propellant Manufacturing Scheme: 

the Mars System and the Moon 

Mars: Proposed schemes for the manufacture of propellants on the surface of Mars make use of 

local atmospheric CO2, which is reacted with hydrogen imported from Earth to manufacture 

methane via the Sabatier process. However, fully half the surface area of Mars carries a permafrost 

layer that is rich in water. The use of local water and CO2 removes the necessity for importation 

of the deep cryogen liquid hydrogen, which involves many months of refrigerated storage of 

voluminous and heavily insulated liquid hydrogen tanks in space en route to Mars. The propellant 

production scheme we propose here requires only CO2, water, and power. Once installed on Mars, 

it can function autonomously, continuing to manufacture propellant and oxidizer without cryogens 

or any further resupply from Earth. 

Phobos and Deimos: The two Martian moons are of spectral type D, suggestive of short-period 

comet nuclei, and consistent with the carbonaceous Tagish Lake meteorite, but without evidence 

of a water signature in the 3μm region. A plausible explanation is that Ph/D were captured as 

volatile-rich bodies similar to comet nuclei, but aeons of collisional shock heating and reaccretion 

of the heated ejecta has led to severe depletion of volatiles such as water in the regoliths of these 

bodies. The steep gravitational potential gradient in the vicinity of the orbits of Ph/D favors 

efficient reaccretion of ejecta from orbiting debris bands, a phenomenon of negligible importance 

for asteroids. The interiors of both bodies, protected from shock heating, may still be volatile-rich, 

but present data do not allow any firm conclusions. If an exploratory mission discovers strong 

evidence for a water-bearing interior in either body, both would become credible locations for 
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storable propellant production. Even in the absence of spectral evidence for water, involatile 

organic polymers and magnetite very likely coexist in the surface regions of Ph/D. Strong heating 

of this assemblage would release carbon dioxide, water vapor, and nitrogen. The presence of 3 

wt% organic polymer implies about 0.3 % H, which upon oxidation by magnetite would generate 

2.7% water. The importance of Mars missions in current long-range planning suggests apotential 

high importance for resource evaluation and extraction missions to these satellites. 

Moon: Present techniques for detecting volatiles in the lunar polar regions are appropriate for 

detection of hydrogen compounds but insensitive to carbon dioxide. Nonetheless, since the 

volatiles in the lunar polar deposits are derived from cometary and asteroidal impactors, it is a 

virtual certainty that CO2 will be an important constituent, probably the second most abundant 

compound in the ice deposits. If some means of mining and separating lunar polar ice can be 

devised and made to function efficiently under the extremely hostile local conditions (temperatures 

close to 50 K; total darkness; extremely hard-frozen permafrost; ubiquitous highly abrasive glassy 

shards in the regolith), then the two essential ingredients for in-space storable propellant 

manufacture would be available. Launches from the lunar surface to Low Lunar Orbit (LLO) and 

to the lunar Lagrange points would be possible without any reliance on either propellant resupply 

from Earth or on production, storage, and refrigeration of cryogens. 

20.	 Mission Opportunities for Use of Storable 

Space-based Propellants 

Several transportation elements come together to enable delivery of propellant to customers in 

various Earth-orbit destinations from resources extracted from NEAs, and those elements are 

described here. 

First, the Harvestor spacecraft will transport resources to Earth’s vicinity from a NEA using STP 

with water, processed from a portion of the resources extracted from the NEA, as propellant. 

Transportation of the Harvestor spacecraft from HEEO to NEA, carrying excavation and water 

extraction equipment, is also part of the overall scenario. But it is a much smaller and less 

constraining part of the picture, and isn’t explicitly described in this section, except briefly in 

Section 20.4. 

Second, the Harvestor is captured into the Earth orbit in which the HEEO Processing Facility 

resides. The current baseline is capture via a single lunar swingby. 

Third, a HEEO is selected for the Processing and Storage Facility that is accessible from a wide 

enough range of NEA sources, is accessible to key customer destinations in Earth orbit, and is 

adequately stable over time under influences such as lunar and solar perturbation. 
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Fourth, transportation to customer destinations in Earth orbit. Destinations considered thus far are 

LEO (including staging for Mars missions), GTO, GEO, and direct injection to Mars or other 

heliocentric destinations from the HEEO Facility orbit or from other HEEO staging orbits. 

20.1 Transportation from NEAs to Earth’s vicinity. 

Most of the storable propellants for customer use are best processed at the HEEO Facility, as 

described in this report. However, propellant for use in transportation from the NEA to Earth must 

be produced while the Harvestor spacecraft is still at the NEA, and the process must thus be less 

complex and energy-intensive than those envisioned for HEEO. STP utilizing water produced at 

the NEA has been selected, with an operating temperature high enough to provide a propulsive Isp 

of 200 seconds. Though some of the propellant products described herein have higher performance 

in terms of Isp, the system currently selected for transportation from the NEA to Earth nevertheless 

delivers to the HEEO Facility a sizable fraction of the payload extracted at the NEA. Payload 

fraction delivered to HEEO also has a dependence on the thrust level available, with a stronger 

dependence on this parameter for NEA sources that have more eccentric orbits, and thus 

significantly lower power and thrust available near aphelion. Follow-on analysis will optimize 

such parameters as thrust level and operating temperature for the STP to maximize the payload 

fraction delivered to HEEO for as wide a range of NEA sources as possible. A possible outcome 

is that such parameters may need to be tailored (within limits) for each NEA mission opportunity. 

Two NEAs were examined, from a mission analysis perspective, for this study. It is expected that, 

with further analysis, many targets that yield greater mass delivered to HEEO (as a proportion of 

that departing from the NEA) will be identified. But these two serve to identify a number of issues 

pertaining to the wider class of targets that each represents. One of them, 2009 HC, exemplifies 

NEAs with semimajor axis close to that of Earth and fairly low eccentricity, so that available power 

and thrust remain near their 1 AU levels. The propulsive requirements are relatively benign during 

the mission opportunity shown but, due to the long synodic period relative to Earth, the favorable 

“season” for visitation by Harvestor and possible pre-cursors is fairly short, with many years 

between good phasing conditions. Thus the prospect of repeated visits, with possible placement of 

infrastructure at the NEA to support multiple visits, is less viable than for other classes ofNEA. 

The other NEA examined, 1998 KY26, has somewhat greater semimajor axis and eccentricity. It 

has correspondingly greater propulsive requirements for delivery to HEEO and, with aphelion 

close to 1.5 AU, lower power and thrust availability in that region of its orbit drive the desirability 

for higher thrust levels (than for 2009 HC) so that most of the orbit changing can be effected while 

the spacecraft is closer to 1 AU. The lower synodic period with Earth, though, means this is a 

better candidate for repeated visits, with possible infrastructure emplacement. These two examples 

span an important range of NEA target orbital characteristics, but the examination will be 

expanded in follow-on analysis. Both of these NEAs also have heliocentric inclination less than 

4o . As discussed in Section 20.2, this inclination may be a practical limit in scenarios where capture 

to HEEO via lunar swingby is utilized. 
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JPL’s MALTO (Mission-Analysis Low-Thrust Optimization) software was used to model the STP 

system for the heliocentric return trajectory from the NEA to Earth’s vicinity. For 2009 HC it is 

instructive to show the ballistic trajectory that served as a starting point. Figure 9 shows the two-

point boundary value solution (Lambert’s Problem) for dates given by the NASA Ames’ 

Trajectory Browser utility to minimize total ΔV. It is seen that an impulsive ΔV at the asteroid of 

110 m/s suffices to initiate the transfer that reaches Earth on the specified date. Corresponding 

modeling of the STP system shows that under 15 tonnes of propellant is used, over about 50 days, 

to push away from the asteroid and establish a trajectory reaching Earth with no further propellant 

usage, such that 94% of the departing payload is delivered to Earth’s vicinity. The problem is that 

the Earth-approach V∞ is too high, 3.66 km/s, to allow capture at Earth. When theEarth-approach 

V∞ is constrained to a lower magnitude, then it is seen in Figure 10 that the vast majority of 

propellant is used to reduce the Earth-approach V∞ to that constrained level. Here the V∞ magnitude 

is limited to 1.5 km/s, which represents the most that can likely be removed through lunar swingby, 

per the discussion of Section 20.2. But that results in only 27% of the initial propellant load being 

delivered to Earth’s vicinity. 

Figure 11 depicts the modeling, using MALTO, of the Harvestor spacecraft returning from 1998 

KY26. As in Figure 10, return from 2009 HC, the Earth-approach V-infinity is constrained to be 

reduced to 1.5 km/s, which results in most of the propellant payload being used for this purpose 

during the transfer. As discussed above the greater aphelion of this NEA target and transfer orbit 

means that much less power and thrust are available at those distances. The optimal trajectory 

thereby concentrates much of the orbit adjustment to the period immediately preceding Earth 

approach (i.e., near 1 AU). When the maximum thrust level was set to half the level used in the 

scenario of Figure 11, then thrusting was required during the entire transfer orbit (including 

portions where it was likely fairly ineffective) and the payload fraction returned to Earth vicinity 

was significantly lower than that shown here. 

Although increase of the STP Isp beyond that used here of 200 seconds may not be practical due 

to temperature limitations, these results indicate that appropriate sizing of the power and thrust 

levels will be important for being able to return acceptable fractions of the payload from a 

sufficiently wide range of NEA targets. 
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Fig. 9 Ballistic Trajectory between 2009 HC and Earth. 

Fig. 10 STP transfer between 2009 HC and Earth. Isp = 200 s, Thrust = 45N @ 1 AU 
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Fig. 11 STP transfer between 1998 KY26 and Earth. Isp = 200 s, Thrust = 80N @ 1 AU 

20.2 Capture and delivery to HEEO Processing Facility orbit via single lunar swingby. 

Though the modeling shown in the section above shows a large portion of the payload being 

expended to reduce the V∞ approaching Earth to lower levels, the returned payload would be far 

smaller still if the STP system were required to reduce V-infinity all the way to zero, or yet further 

to a negative C3 (i.e., capture by Earth; C3 = Vinf 
2). Thankfully, the presence of Earth’s Moon 

provides a mechanism, though limited, for effecting such reduction without propellant 

expenditure. 

Other, simpler, mechanisms also exist for capture into Earth orbit including propulsive braking 

close to the Earth that takes advantage of the multiplying benefit of the Oberth effect, and also 

aerocapture into Earth orbit. Propulsive braking, utilizing the Oberth effect, must be conducted 

while the spacecraft is very close to Earth, and at the speeds involved this means the maneuver 

must be performed within tens of minutes around perigee. Given the high mass and low thrust 

available this is impractical. Aerocapture utilizes a passage through the Earth’s upper atmosphere 

(around 100 km altitude TBC) to lose enough energy to be captured into Earth orbit in a single 

such passage through aerodynamic drag. A single passage is all you get else you escape again into 

heliocentric space. But for the amount of energy to be shed, protection of the payload with an 

aeroshell and/or other mass increases for structural and thermal protection, will be necessary. 

Aeroshells may be constructed from asteroid material, and the material thereof will itself be 

valuable in space. Aeroshells are thus very much a part of a robust and mature space resources 

economy, but in the early stages addressed in this scenario represent an unneeded complexityand 
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risk factor. Also, aerocapture may be untenable politically due to the risk to the Earth, whether real 

or perceived, of passing large masses through the Earth’s upper atmosphere. It should be noted 

that while aerocapture is not advocated for this early space resource utilization scenario 

aerobraking, as a facilitator of delivery of processed propellants to lower orbits, is advocated as 

described in Section 20.4. Aerobraking is distinguished from aerocapture by upper atmospheric 

passes for energy reduction after the spacecraft has been captured into Earth orbit. Since the 

spacecraft is already captured, aerobraking passes can be arbitrarily gentle, i.e., little or no mass 

added for structural or thermal protection by breaking the energy reduction up into multiple perigee 

passes. That, however, comes at the expense of added mission duration. 

Figure 12 depicts the modeling of the capture from heliocentric space into HEEO via lunar 

swingby. AGI’s STK software (Systems ToolKit, formerly Satellite ToolKit) was used for this 

modeling and targeting. A leading-edge lunar swingby was targeted to maximize the Earth-

approach V-infinity that is removed by the swingby, without being specific to a particular asteroid 

starting point. The swingby targeting described below resulted in a maximum approach V-infinity 

of 1.53 km/s (C3= +2.34 km^2/s^2) that was captured to the prescribed HEEO. The heliocentric 

approach orbit had a very low inclination, though, of about 0.1 degrees. Asteroid-specific approach 

Fig. 12. Lunar swingby trajectory. The returning spacecraft enters the frame from the bottom left (white line) 

before passing ahead of the Moon (violet then green and blue lines) to swing into a HEEO with apparently 

reasonable access to the GEO belt, and outgoing NASA missions to Mars and the outer planets. 
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trajectories (individually and as classes of asteroid orbit), and the conditions and limits these place 

on the swingby benefit, will be developed further in Phase II. The spacecraft approaches the 

leading edge of the Moon from the Earthward side, and the perilune is constrained to be no lower 

than 100 km above the Moon’s surface. The swingby conditions are adjusted to achieve two 

conditions at the first post-swingby apogee. At first apogee these conditions are that the distance 

from Earth is 1.0 Mkm (or about C3= -0.8 km^2/s^2) and that apogee coincides with crossing of 

the Earth’s equatorial plane. The latter condition facilitates use of a maneuver at apogee to rotate 

the spacecraft orbit plane into the Earth’s equatorial plane, since that is the currently desired plane 

for the HEEO Facility. The apogee maneuver is also simultaneously used to change perigee to any 

desired value. The resulting HEEO has low perigee and very high apogee; to establish the current 

baseline HEEO Facility orbit a maneuver of 153 m/s at the first apogee after the lunar swingby 

was applied to both rotate the orbit inclination into the equatorial plane, and to raise perigee from 

722 km to 36086 km (GEO +300 km) altitude. Though this maneuver is on the large side for this 

heavily-laden low-thrust spacecraft, the velocity near this apogee is low enough that most of the 

thrusting can be concentrated near apogee where it is most effective. A maneuver at the following 

perigee of 27 m/s then lowers apogee so that a period of 27.3 days is established for 1:1 resonance 

with the Moon’s orbit. The two-body state of the orbit at this perigee is then taken to be that of the 

HEEO Facility orbit, for purpose of the transfer calculations for various propellant customer 

destinations shown in Section 20.4. 

As noted above, the lunar swingby modeled here is not specific to the approach trajectory from a 

particular NEA target. There may be other approach geometries that result in capture into favorable 

(but different) HEEO Facility orbits, and many other approach geometries for which lunar swingby 

capture doesn’t work well at all. One determining factor is the Sun-Earth-Moon angle (or lunar 

phase) at the time that the Harvestor approaches the Earth-Moon system. The Earth-approach date 

that is optimal for the heliocentric transfer (as determined here by MALTO) may not have good 

geometry for lunar swingby capture. One may have to change the Earth-approach date by plus or 

minus half a lunar period (+/- 14 days) to change the swingby conditions to ones that are usable, 

and that will come at some cost of some reduction of optimality of the heliocentric portion. For 

NEA targets with very low inclination, that change in Earth-approach date can be made with little 

penalty. For targets with higher inclinations, and modeling thus far suggest 4 degrees may be an 

upper bound, shifting the Earth-approach date comes with greater penalty. Besides inflexibility in 

shifting the Earth-approach date, another factor working against high inclination approaches is that 

lunar swingby capture is most effective (allows the most energy reduction) when conductedclose 

to the Earth-Moon orbit plane (which is about 9 degrees from the ecliptic plane). Thus, for higher 

inclination NEAs, some of the payload may also be needed to be expended to reduce the z-

component of the approach V-infinity, and not just the total magnitude of V-infinity. Despite these 

complexities and limitations, the alternative of using payload expenditure all the way to capture 

instead of lunar swingby, will usually result in less payload delivered to the HEEO Facilityorbit. 
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There are other lunar swingby geometries that may work on Earth-approach dates when the 

geometry described here won’t, thus potentially reducing the shifting needed of the Earth-approach 

date. This includes, but isn’t limited to, a close approach to Earth followed by lunar swingby 

capture. While tempting to do some propulsive braking at perigee to make use of the Oberth effect, 

the high speed of the perigee passage combined with the high-mass low- thrust condition of the 

Harvestor make the effectiveness of such braking limited. There are multiple lunar swingby 

geometries (sometimes connected by a high-apogee solar-perturbed loop) that can increase 

effectiveness beyond that which can be obtained through a single lunar swingby. Though these 

should be explored they add to the complexity and, more importantly, to the mission duration 

before payload is delivered to the HEEO Processing Facility. 

20.3 Selection of the HEEO Processing and Storage FacilityOrbit 

There is a strong business incentive to have a single Earth-orbit facility for resource processing 

and storage. That orbit must be adequately accessible both to Harvestor spacecraft escaping toward 

and returning from NEA destinations, as well as to the customer markets that the processed 

propellants serve. The current baseline HEEO Facility orbit has many positive aspects toward that 

end. To summarize, the low perigee, just above the GEO belt (GEO+300km), keeps the HEEO 

Facility out of the worst radiation of the Van Allen belts while keeping close to GEO customers. 

Further analysis in Phase II could show the perigee should be somewhat higher for adequate 

radiation protection. The trade between stability and orbit maintenance cost could also lead to 

selection of a higher baseline perigee since the HEEO, as currently chosen, is subject to some 

fluctuation of the perigee (and apogee) due to natural perturbations (mainly lunar and solar). 

The high apogee of the HEEO makes small the cost of changing perigee to that of LEO, GTO or 

GEO customers through apogee maneuvers, or to lower perigee to an altitude where aerobraking 

may be employed. The period of the HEEO, currently in 1:1 resonance with that of the Moon, 

allows for long-term stability despite the high apogee if the line of apsides is sufficiently displaced 

from the Moon’s location. The choice of resonance ratio of the period with that of the Moon and 

the needed displacement of the line of apsides from the Moon’s direction need to be part of 

examination of its stability and maintenance cost that should be explored further in Phase II. Also 

to be explored further is whether other possible HEEO choices are as readily accessible as this 1:1 

resonance with the Moon choice after the lunar swingby capture. Related to that is the phasing of 

the HEEO line of apsides away from the Moon’s direction. The propulsive cost of that could be 

small or zero by breaking up the post-lunar swingby maneuvers into multiple ones. But if this 

phasing takes several orbit periods then the time cost of this phasing could be prohibitive. 

Having the HEEO Facility orbit in the equatorial plane serves GEO customers well, as well as 

many customer service points in GTO and LEO. It may or may not serve NASA plans well for 

orbital staging of propellant for Mars missions, whether that staging be in LEO or a different 
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HEEO. If this need by NASA is the primary user of this scenario then that would drive the choice 

of HEEO Processing orbit to meet that need. Otherwise, a balance will need to be made in this 

orbit choice in order to best meet the needs of all users in a cost-effective way. Eventually, if and 

when the market bears, the best solution may be multiple HEEO Facilities in different HEEOs 

meeting the needs of disparate users of asteroid-derived propellant. 

20.4 Delivery of processed propellants to customer orbits. 

Table 4 shows Delta-Velocities, modeled impulsively in a two-body framework, to transfer from 

the HEEO Facility orbit to various destinations. The first row (a) is part of the scenario for resource 

extraction from an asteroid and would likely use STP at Isp = 200s, since that is baselined for the 

return leg in that scenario. The other rows (b-f) are all scenarios for delivery of processed storable 

propellants from the HEEO Facility to the indicated customer destinations. As such, use of 

processed propellant to effect the ΔVs for those rows in the table could give better performance 

than does STP. 

Table 4. ΔV costs (impulsively modeled) for delivery of HEEO materials to markets in other orbits. 

HEEO Processing Facility To: 
All-Propulsive 

(km/s) 

With Aerobraking 

(km/s) 

a) Harvestor to 2009 HC Rendezvous 0.894 N/A 

b) Direct Injection to Mars (C3=15 km2/s2) 0.853 N/A 

c) NASA HEO Staging for Mars 0.190 0.152 

d) NASA LEO Staging for Mars 3.319 0.229 

e) GTO (550 km perigee) 0.880 0.193 

f) GEO 1.153 1.634 

The aerobraking option assumes perigee is reduced propulsively to 120 km altitude for 

aerodynamic drag effect. Energy is then dissipated perfectly at this altitude until apogee is reduced 

to desired level. Perigee is then raised with propulsive maneuvers at this apogee until desired final 

perigee is reached. Aerobraking is assumed done “gently”, possibly over several perigee passes, 

with no requirement for an aeroshell or other mass increases to improve structural or thermal 

properties. 

Destination parameters for Table 4 are further described as: 

a)	 Harvestor to 2009 HC Rendezvous: This is the outbound rendezvous opportunity with 2009 

HC that  corresponds  to  the return  mission  depicted  in Section  20.1. The mission 
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opportunity map (“porkchop” plot) for this is shown in Fig. 20.5 and the minimum total 

ΔV from that of 0.852 km/s (= 0.646 Earth-departure + 0.206 Rendezvous) is used in the 

table. The Earth-departure ΔV includes a maneuver at HEEO apogee to lower perigee to 

100 km and thereby make better use of the Oberth effect for injection. Since the Harvestor 

is very lightly loaded, compared to the return leg, the impulsive modeling here is likely a 

good approximation. The HEEO orbit is assumed ideally oriented for the injection, so there 

is likely some additional time and maneuvering not modeled to orient and phase the orbit 

as needed. 

b)	 Direct Injection to Mars: Similar to injection to the NEA describes in (a) with perigee 

reduction to 100 km for injection and likely additional need to re-orient the orbit. Capture 

at Mars is not included in the table entry. 

c)	 NASA HEO Staging for Mars: The NASA Mars Design Reference Architecture 5.0 shows 

a propellant staging option in a High-Earth Orbit with an eccentric 10-day period, LEO 

perigee (here assumed to be 400 km) and apogee crossing lunar distance. Table values 

assume the HEEO Processing Facility orbit and this HEO Staging orbit are co-planar and 

have apsidal lines aligned. This might be possible, per discussion above, though it seems 

unlikely that these orbits would coincide exactly (driving the corresponding table entries 

to zero) since the HEEO Facility orbit, as currently envisioned, would keep perigee orbit 

much higher than the staging orbit for long-term stability and radiation protection. For 

HEO staging, the aerobraking option is shown in the table to be lower than that for all-

propulsive by 38 m/s. With this fairly small level of improvement the all-propulsive option 

may be preferred to avoid cost, operations, and risk issues. Still, with an all-propulsive cost 

shown of under 200 m/s, this seems a potentially viable alternative to launching propellant 

from Earth’s surface to the staging orbit. 

d)	 NASA LEO Staging for Mars: The NASA Mars Design Reference Architecture 5.0 shows 

a propellant staging option in LEO (here assumed to be 400 km). The all-propulsive option 

is prohibitive, consisting almost entirely of the large maneuver at LEO altitude to lower 

apogee from HEEO to LEO. However, aerobraking (as modeled) all but eliminates that 

maneuver, though it should be examined in Phase II whether energy reduction of this 

magnitude can be done without significant mass increases to protect against structural and 

thermal stresses to the payload. If it can, then bringing propellant from HEEO to the staging 

orbit in LEO becomes not much more expensive than bringing it to the staging orbit in 

HEO. Providing asteroid-derived propellants to a staging point much deeper in Earth’s 

gravity well (LEO vs. HEO) thereby offers potential for considerable savings in the net 

mass that must be launched from Earth. 

Though not included in Table 4, the cost of changing inclination to that of a LEO customer 

is straight-forward and fairly modest, as long as the LEO destination is nearly circular. For 
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the current HEEO Facility baseline, an inclination change maneuver at apogee costs 4.3 

m/s for a degree of change, and 122 m/s for a 28.5 degree change. That, however, would 

be combined orthogonally with the perigee-lowering maneuver for a smaller net cost. Thus, 

if the LEO Staging orbit at 400 km is equatorial like the HEEO Facility then the cost is as 

shown in Table 4. If the LEO orbit has an inclination of 28.5 degrees, then about 44 m/s is 

added to each of the options shown for LEO delivery. 

e)	 GTO: The aerobraking option for delivery to this destination looks quite favorable since, 

compared to GEO as the destination, the perigee needs to be raised only a few hundred 

kilometers out of the atmosphere, and not all the way to GEO. For service to satellites 

launched from fairly equatorial sites (such as Kourou or from ocean barges) the extra cost 

of inclination change will be fairly small, or will otherwise be similar to that described 

above when LEO is the destination. Since the GTO is quite eccentric, though, additional 

attention will need to be made to the alignment of the lines of apsides of the GTO 

destination and the HEEO Facility orbits. That may be easily handled by time constraints 

on the launch vehicle to GTO, rather than additional maneuvering by the vehicle making 

the propellant delivery from the HEEO Facility. 

f)	 GEO: This destination benefits, due to the current baseline selection of the HEEO 

Processing Facility to be in the equatorial plane, from not needing orbit adjustments beyond 

that modeled in Table 4. However the aerobraking option suffers, relative to an all-

propulsive one, due to the high cost of raising perigee from atmospheric to GEO altitude 

using maneuvers at GEO. That cost could be reduced by raising perigee with maneuvers at 

super-synchronous altitude, but then the aerobraking benefit is also reduced. The all-

propulsive cost is also relatively high and will need to be compared carefully to the 

alternative means of getting to GEO. 

53 



   

 

  

 

 

 

 

 

 
 

 
          

       

 

 
 

             

          

      

                  

      

    

                 

       

   

     

                

       

       

    

               

           

                 

        

  

Deep Space Industries Inc. In-Space Production
 
NNX15AL85G of Storable Propellants
 

Fig. 13 “Porkchop” Plot Showing Mission Opportunity in terms of ΔV (Total, Earth Escape & Rendezvous) 

for Impulsive Transfer from HEEO Facility Orbit (Oct 2025) to Rendezvous with 2009 HC 

A general energy-based argument suggests that the tonnage launched from Earth, for either staging 

in LEO or HEO orbits, should be about the same since the total energy to go from the ground to 

Mars-injection is about the same whether you have an intermediate staging point deep in Earth’s 

gravity well (LEO) or higher in the well (HEO). If that argument holds up then, and removing cost 

estimates from the direct comparison, one can use an estimate instead of tonnage of propellant 

needed at each staging orbit to inject the remaining infrastructure toward Mars. That propellant 

tonnage is then converted to the number of SLS launches needed to take it to the respective staging 

orbits. On the other side of the comparison, the tonnage of Mars injection propellant needed at 

each staging orbit can be expressed as a number of Harvestor payload equivalents. 

Expressed just as tonnage of ground-launched propellant replaced by asteroid resources, it seems 

a case can be made that the asteroid-derived propellant scenario is more strongly beneficial for the 

LEO-staging option over the HEO one. That’s because, for a marginally greater cost of delivery 

of propellant to LEO vs. HEO from the HEEO Processing orbit, there is a much greater need for 

propellant staged in LEO (and thus greater potential for replacement of ground-launched 

propellant vs. asteroid-derived propellants) since the delta-V needed to inject (the rest of the way) 

to Mars is much greater in LEO than in HEO. However, the delivery capability of each SLS will 

be correspondingly much greater to the LEO staging orbit than to the HEO one. From an energetic 

viewpoint (again), it may be that the number of SLS launches needed to place Mars injection 

propellant at either staging orbit is about the same, despite the greater tonnage needed for this in 

54 



   

 

  

 

 

 

 

 

               

      

      

                

   

  

 

 

   

 

     

           

        

          

    

      

             

            

                 

    

   

     

           

 

 

   
      

  

      

               

                 

  

   

   

     

  

Deep Space Industries Inc. In-Space Production 

NNX15AL85G of Storable Propellants 

LEO. If so, then the asteroid-derived propellant scenario could be more strongly beneficial for the 

HEO-staging option over the LEO one since fewer Harvestor payload equivalents will be needed 

to serve that staging location. A more detailed examination of the parameters affecting this 

comparison will be made in Phase II of this study. Regardless of which Mars Mission staging orbit 

is selected, though, use of asteroid-derived propellant can lower the cost of the mission if the cost 

per tonne of propellant delivered to the needed utilization location is low enough. 

21.	 Synergy with New-Generation 

Low-Cost Earth-Launch Technologies 

From a national perspective, in-space production of storable propellants is the key enabler for 

reusable space-based transfer stages that will complete the transportation-cost revolution begun by 

evolving launch systems from SpaceX, Blue Origin, Stratolaunch, and others. These aim for 

various levels of reusability for their first stages, but reusability for a re-entering upper stage is 

very challenging. Space-based transfer stages neatly eliminate this problem. They also eliminate 

the 30-35% propellant mass carried by comsats for GTO to GEO transfer, since space-based 

refuelable transfer stages can deliver these comsats to GEO. A more advanced system architecture, 

incorporating a LEO/HEO shuttle tug with aerobraking capability, could deliver our propellants to 

LEO and serve the large LEO to GTO market (and possibly transfer from LEO to GPS-type orbits) 

as well. The combination of decreasing launch costs and in-space propellant production 

dramatically lowers the cost of high-orbit and beyond-Earth activities. U.S. taxpayers and 

commercial concerns will enjoy reduced costs for satellite-delivered communications, 

entertainment, navigation, and Earth-monitoring services such as weather and climate forecasting. 

22. Terrestrial applications of improved H2O2 syntheses 
There are powerful economic incentives to advance the development of the technology for direct 

synthesis of H2O2 because of its environmental benefits and simplicity: hydrogen peroxide, being 

free of chlorine and chlorine oxides, is the safest and “greenest” oxidizing and bleaching agent 

known. The fuel-cell approach pioneered by Prof. Schiffrin appears to be the most promising route 

for direct synthesis of HTP. Any assistance we can render to help bring this technology to maturity 

would have wide-spread application on Earth. 

We have arranged for participation of two experimental chemical engineers, Dominic Gervasio 

and James Farrell, both of the Department of Chemical and Environmental Engineering of the 

University of Arizona, to pursue electrochemical production of hydrogen peroxide for Phase II of 

this work. 
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