

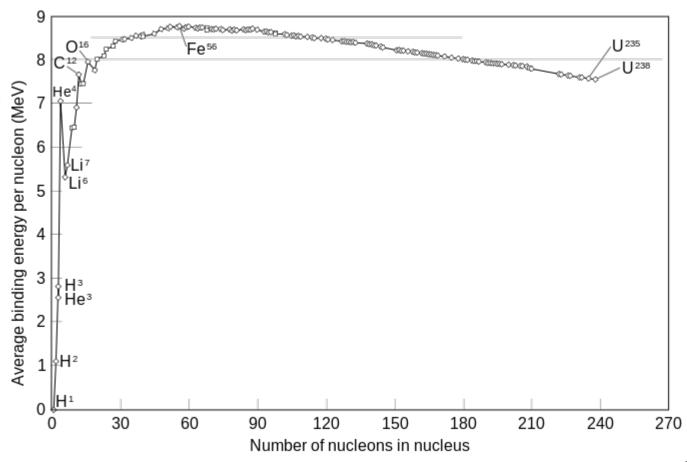
Pulsed Fission-Fusion Propulsion System

Robert B. Adams, Ph.D. **ER24/Propulsion Research and Technology Branch George C. Marshall Space Flight Center National Aeronautics and Space Administration**

Jason Cassibry, Ph.D. **Propulsion Research Center Department of Mechanical and Aerospace Engineering University of Alabama in Huntsville**

Challenges and Underlying Physics of Nuclear Processes

Fission and Fusion Energy Release


Marshall Space Flight Center

- Mass Defect = Mass of free nucleons mass of assembled nucleus
 - Nuclear force (residual strong force) stronger than electrostatic
- **Nuclear Binding Energy**

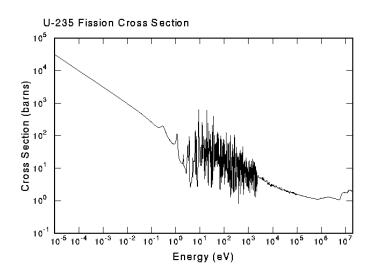
•
$$\frac{E}{A} = \frac{\Delta m}{A} c^2$$

Fusion

Energy release by combining nuclei
 Fission
 Energy release by splitting nuclei

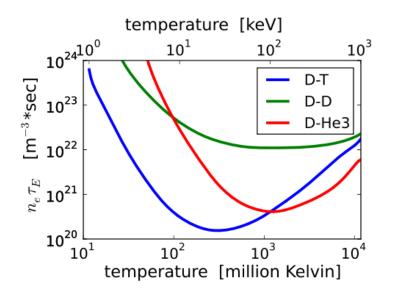
Fission and Fusion Reaction Space

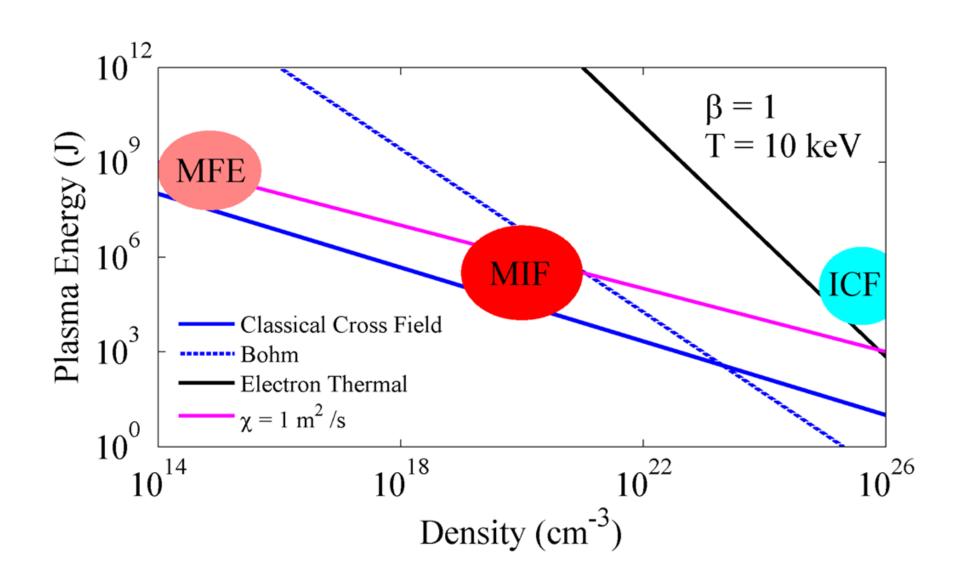
																	Marshall Space	ce Fligh
♠ ™ Ti	(1)	2 _D	+	3 ₁ T	\rightarrow	⁴ ₂ He	(3.5 MeV)	+	n ⁰	(14.1 MeV)				
	(2i)	2 ₁ D	+	2 ₁ D	\rightarrow	3 _T	(1.01 MeV)	+	p^{+}	(3.02 MeV)			50%	
	(2ii)				\rightarrow	3 2He	(0.82 MeV)	+	n^0	(2.45 MeV)			50%	
	(3)	2 _D	+	3 2He	\rightarrow	⁴ ₂ He	(3.6 MeV)	+	p^{+}	(14.7 MeV)				
	(4)	3 1T	+	3 1T	\rightarrow	⁴ ₂ He				+	$2 n^0$				+	11.3 MeV		
	(5)	3 2He	+	3 2He	\rightarrow	⁴ ₂ He				+	2 p ⁺				+	12.9 MeV		
	(6i)	3 2He	+	3 ₁ T	\rightarrow	⁴ ₂ He				+	p^{+}	+	n^0		+	12.1 MeV	57%	
	(6ii)				\rightarrow	⁴ ₂ He	(4.8 MeV)	+	2 1D	(9.5 MeV)			43%	
Percent yield O	(7i)	2 ₁ D	+	6 3Li	\rightarrow	2^{4}_{2} He	+	22.4 MeV										
0.0	(7ii)				\rightarrow	3 2He	+	⁴ ₂ He		+	n^0				+	2.56 MeV		
http rojec Pow http	(7iii)				\rightarrow	7 3Li	+	p^{\dagger}							+	5.0 MeV		
	(7iv)				\rightarrow	⁷ ₄ Ве	+	n^0							+	3.4 MeV		
	(8)	p^{+}	+	6 3Li	\rightarrow	⁴ ₂ He	(1.7 MeV)	+	³ ₂ He	(2.3 MeV)				
	(9)	3 2He	+	6 3Li	\rightarrow	2 ⁴ ₂ He	+	p^{+}							+	16.9 MeV		n/
	(10)	p^{+}	+	¹¹ ₅ B	\rightarrow	3 ₂ ⁴ He									+	8.7 MeV		
																		i


Ignition Requirements

Marshall Space Flight Center

Fission


- Criticality is a function of
 - fission cross section
 - Number density
 - And geometry
- Neutrons must balance
 - Lost outside reactor
 - Absorbed through photon capture
 - Fission events


Fusion

- Breakeven is a function of
 - Fusion cross section
 - temperature distribution
 - density
- Lawson Criterion

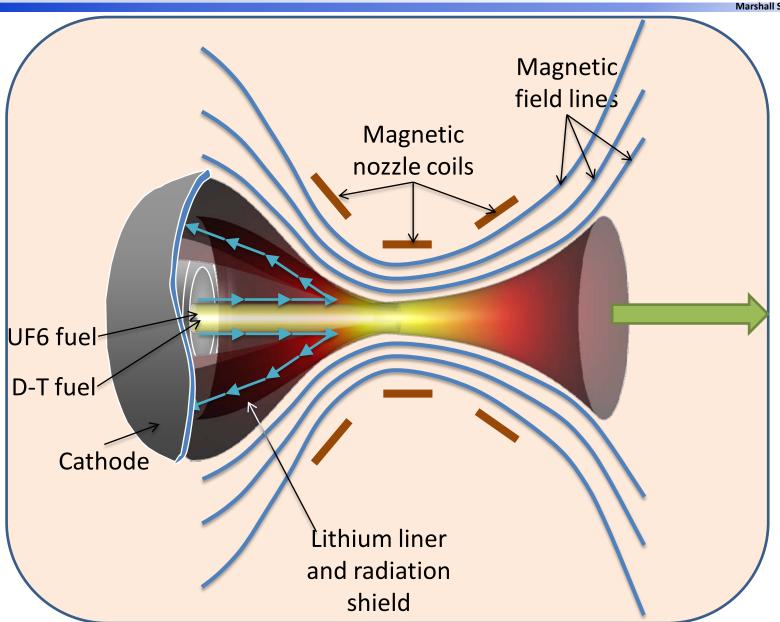
-
$$n_e \tau_E \ge \frac{12k_B}{E_{ch}} \frac{T}{\langle \sigma v \rangle}$$

Benefits of MIF Parameter Space

- Fusion reactivity scales with n²
- Magnetic field suppresses thermal conduction losses, reducing driver power
- Reactor volume much smaller than MFE
- ◆ These effects lead to potentially much lower cost, smaller fusion reactor, as suggested by Lindemuth and Siemon, Am. J. Phys., 77(5), May 2009

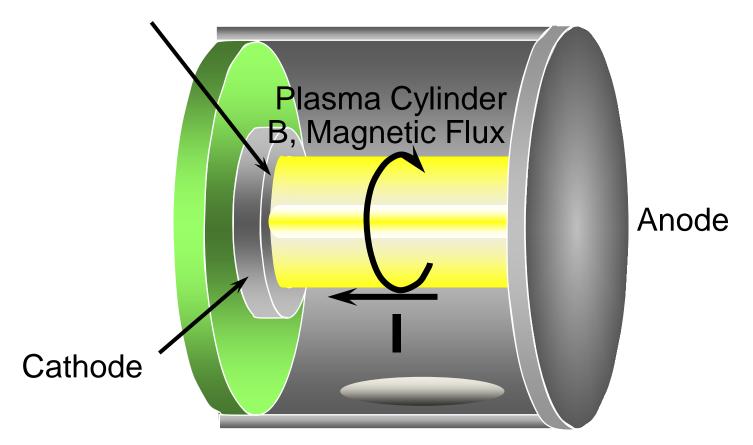
Table II. Fundamental physical parameters and cost for fusion systems discussed in text.

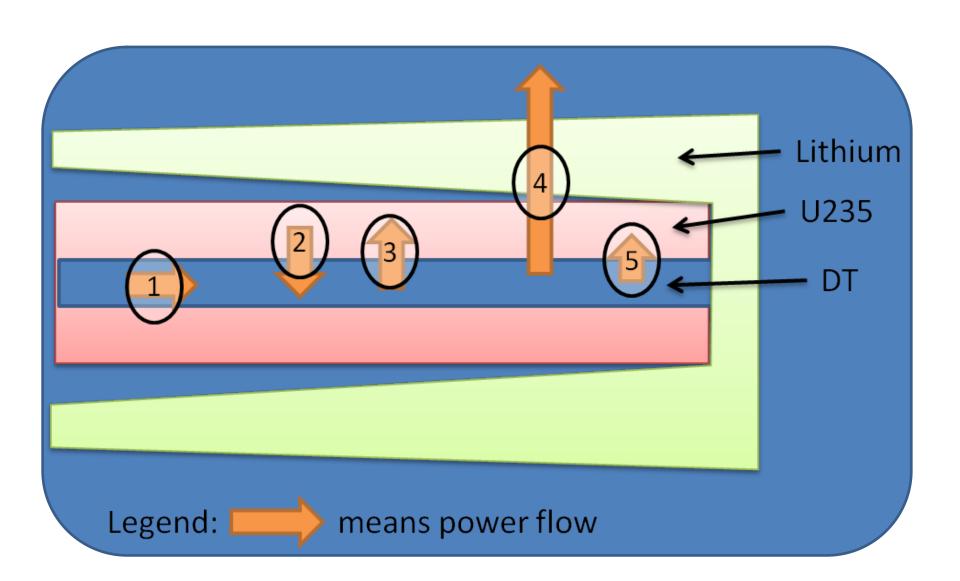
	ITER	MTF example	NIF
Geometry	Toroidal	Cylindrical	Spherical
Cost (\$M)	10,000	51	3000
$n_t (/\text{cm}^3)$	10^{14}	10^{20}	1.4×10^{25}
$\rho (g/cm^3)$	4.2×10^{-10}	4.2×10^{-4}	57
T (keV)	8	8	8
p (atm)	2.6	2.6×10^{6}	3.6×10^{11}
B (kG)	50	1000	0
τ_L (s)	0.9	9×10^{-7}	6.6×10^{-12}
M (mg)	350	1.7	0.01
a (cm)	240	0.6	3.5×10^{-3}
$V(m^3)$	8.3×10^{2}	4.0×10^{-6}	1.8×10^{-13}
E_{plas} (J)	3.2×10^{8}	1.6×10^{6}	9.3×10^{3}
P_{heat} (W)	1.3×10^{8}	9.0×10^{10}	1.1×10^{14}
I_{heat} (W/cm ²)	18	1.0×10^{10}	7.5×10^{17}



PuFF Concept

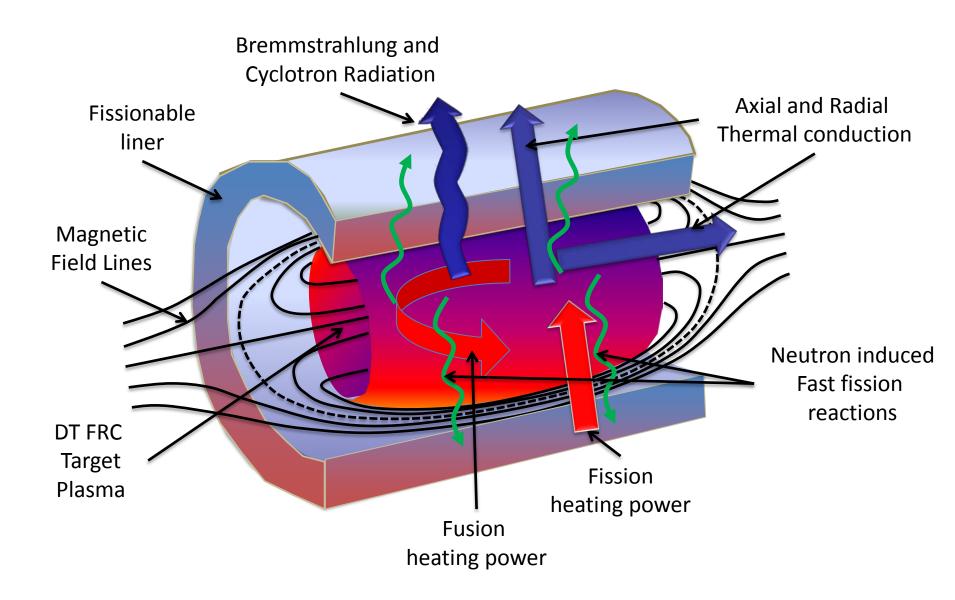
Introduction to Puff

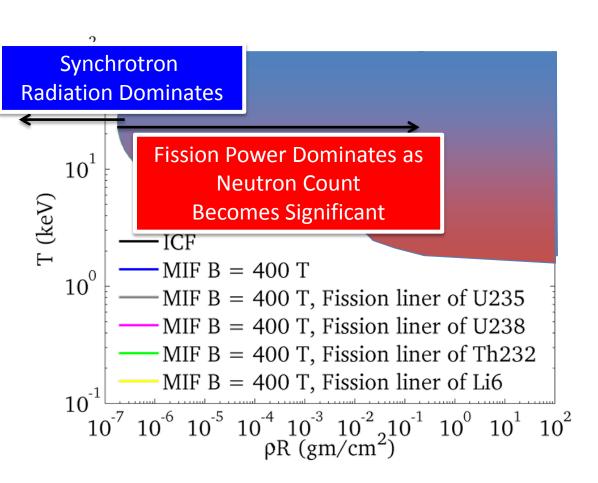



Vaporized Wire Array

Evacuated Chamber

Fission-Fusion Energy Balance




Research Status

Heating Mechanisms Included in Model

- Parameter space for ignition
- Greatly broadened with embedded magnetic field
- Marginally improved with ⁶Li and thorium liners
- Significantly enhanced with uranium liners (²³⁵U and ²³⁸U)

Our Approach: Solve Maxwell's Equations Coupled to Multifluid (Ions, Electrons, Neutrals) Equations of Motion

Marshall Space Flight Center

Maxwell's Equations

- Solve with Smooth Particle Electromagnetic Variant of Finite-Difference Time Domain (FDTD) method
- FDTD well documented, highly accurate grid-based method for analyzing the time evolution of electric and magnetic fields
- Can interpolate charged fluid particles to grid to model conductivity or charge and current density

Multifluid Equations of Motions

- Solve with Smooth Particle Hydrodynamics (SPH)
- Gridless Lagrangian technique
- Vacuum/plasma boundary well defined
- Leverage same engine as Maxwell Equation Solver

Both methods yield to 'vectorized' coding, making multiprocessor (parallel) computing easy

$$\frac{\partial}{\partial t} n_e + \nabla \cdot \mathbf{u}_e = 0$$

$$\frac{\partial}{\partial t} n_i + \nabla \cdot \mathbf{u}_i = 0$$

$$n_e m_e \frac{\partial}{\partial t} \mathbf{u_e} + \nabla p_e + e n_e (\mathbf{E} + \mathbf{u_e} \times \mathbf{B}) = -$$

$$n_i m_i \frac{\partial}{\partial t} \mathbf{u_i} + \nabla p_i - Z e n_i |\mathbf{E} + \mathbf{u_i} \times \mathbf{B}| =$$

Transport effects, which can be based on nonequilibrium distribution functions (kappa and power law)

$$\frac{3}{2}n_{e}\frac{\partial}{\partial t}kT_{e}+p_{e}\nabla\cdot\mathbf{u_{e}}=-\pi_{e}:\nabla\mathbf{u_{e}}-\nabla\mathbf{h_{e}}-\left(\mathbf{u_{e}}-\mathbf{u_{i}}\right)\cdot\mathbf{R_{e}}-Q_{i}$$

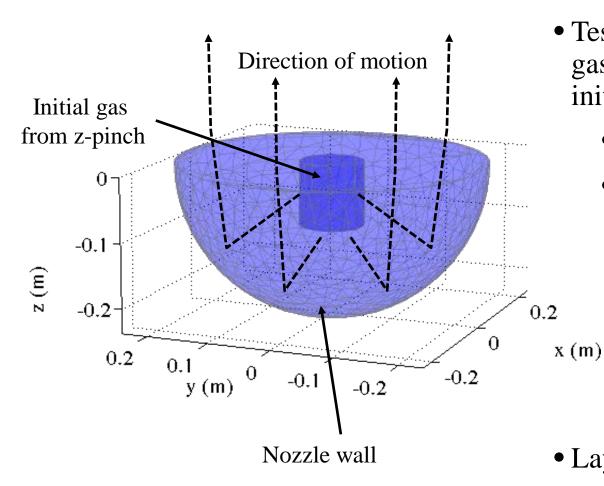
$$\frac{3}{2}n_{i}\frac{\partial}{\partial t}kT_{i}+p_{i}\nabla\cdot\mathbf{u_{i}}=-\pi_{i}:\nabla\mathbf{u_{i}}-\nabla\mathbf{h_{i}}-Q_{i}$$

$$\mathbf{R}_{\alpha} \equiv \int m_{\alpha} \mathbf{w} \sum_{\beta} C_{\alpha\beta} d\mathbf{w}$$
$$\mathbf{R}_{\alpha} \approx -\sum_{\beta} m_{\alpha} n_{\alpha} (\mathbf{V}_{\alpha} - \mathbf{V}_{\beta}) \langle \mathbf{v}_{\alpha\beta} \rangle$$

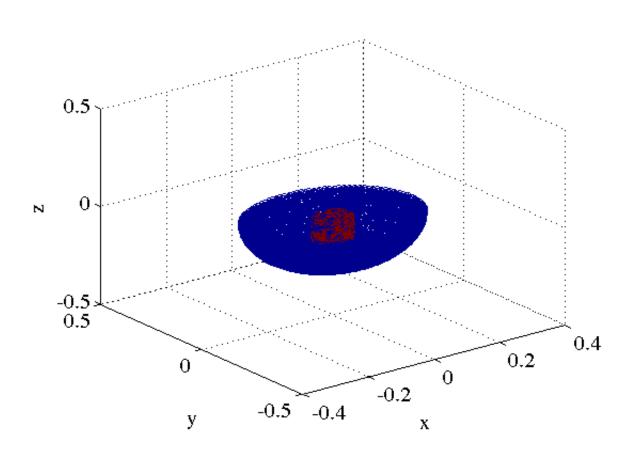
$$\mathbf{R}_{\alpha} \approx -\sum_{\beta} m_{\alpha} n_{\alpha} (\mathbf{V}_{\alpha} - \mathbf{V}_{\beta}) \langle \mathbf{v}_{\alpha\beta} \rangle$$

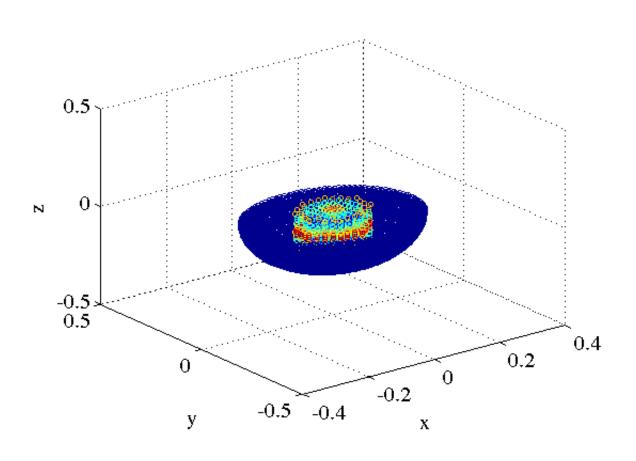
$$p_{\alpha} \equiv \frac{1}{3} n_{\alpha} m_{\alpha} \langle w^2 \rangle$$

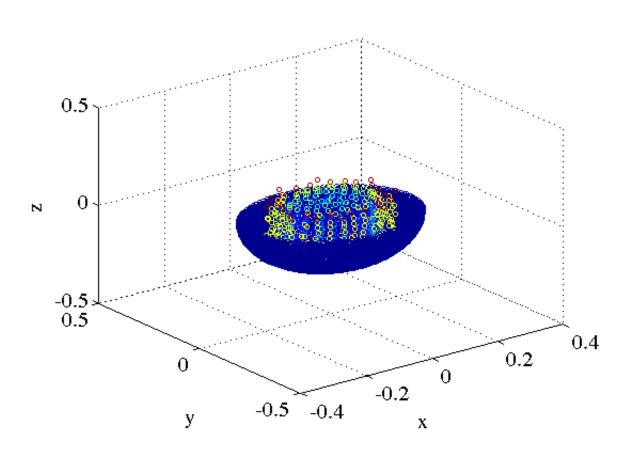
$$\pi_i \equiv n_a m_a \langle \mathbf{w} \mathbf{w} \rangle - p_a \mathbf{I}$$

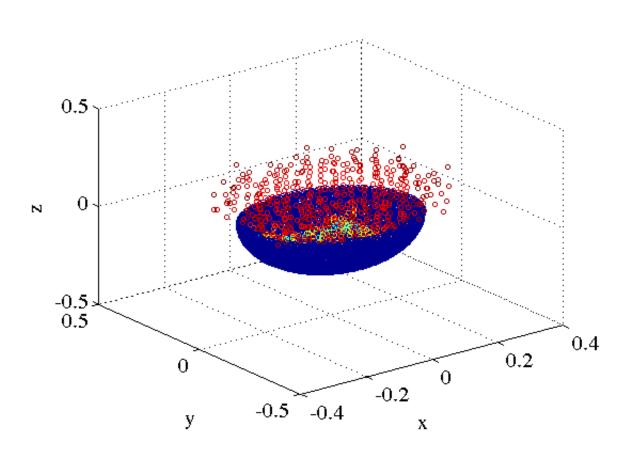

$$h_{\alpha} \equiv \frac{1}{2} n_{\alpha} m_{\alpha} \langle w^2 \mathbf{w} \rangle$$

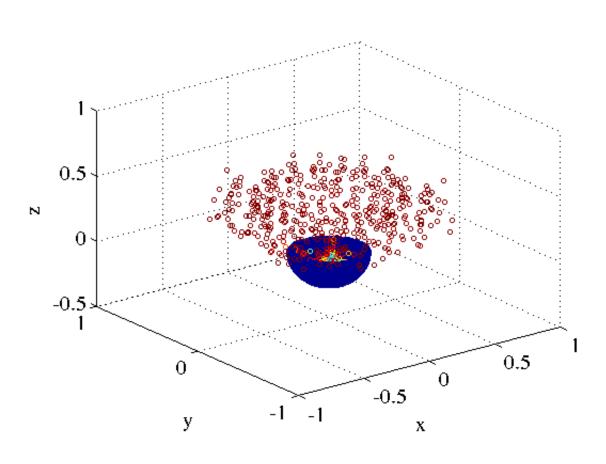
$$Q_{\alpha} \equiv \int \frac{1}{2} m_{\alpha} w_{\alpha}^2 \sum_{\beta} C_{\alpha\beta} d\mathbf{w}$$

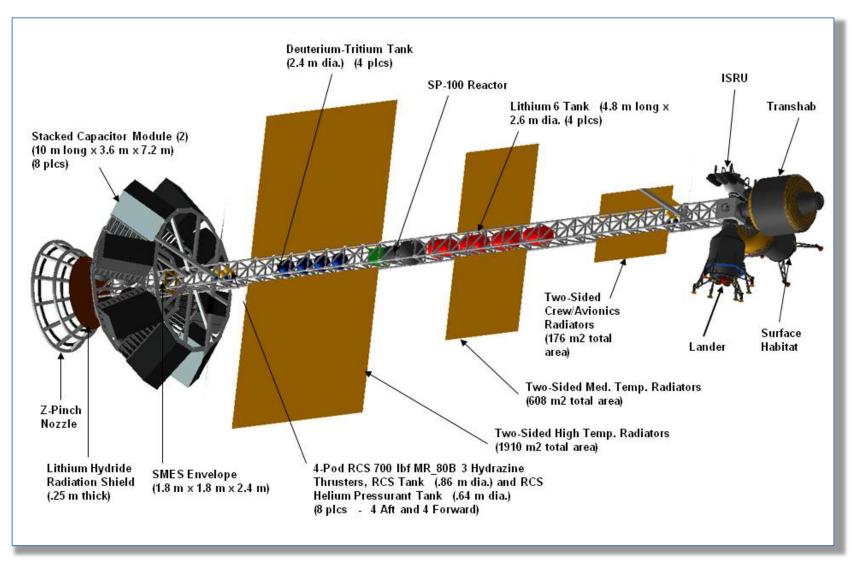



Propulsion Initial Pulsed Nozzle Model Department



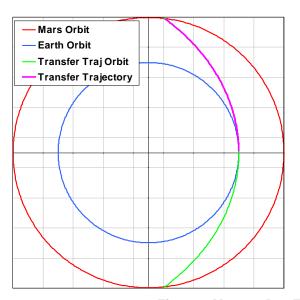



- Test thermal expansion of gas nozzle with various initial conditions
 - Nozzle geometry
 - Gas
 - Temperature
 - Density
 - Radius
 - Length
 - Composition
- Lays ground work and expectations for magnetic nozzle



NIAC Phase I Goals

Crewed Mars Mission Concept



Mission Concepts

Marshall Space Flight Center

	Mars 90	Mars 30	Jupiter	550 AU
Outbound Trip Time (days)	90.2	39.5	456.8	12936
Return Trip Time (days)	87.4	33.1	521.8	n/a
Total Burn Time (days)	5.0	20.2	6.7	11.2
Propellant Burned (mT)	86.3	350.4	115.7	194.4
Equivalent DV (km/s)	27.5	93.2	36.1	57.2

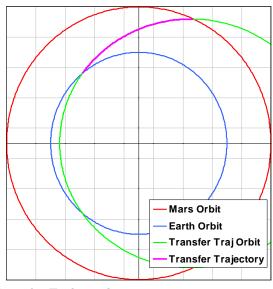


Figure 3 Mars 90 Day Transfer Trajectories

• Engine

- Isp = 19,400 sec
- T = 38 kN
- 10 Hz pulse freq.

Vehicle

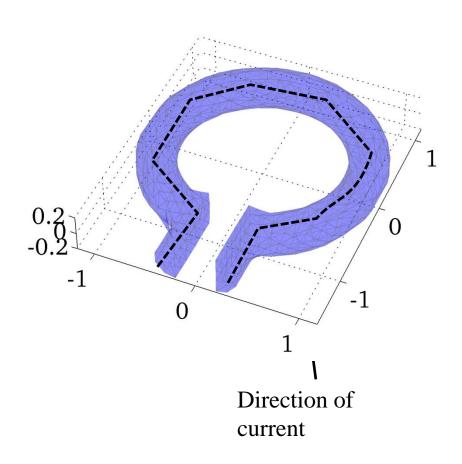
- M_{dry} = 552 mT
- M_{pay} = 150 mT
- 30% MGA

Polsgrove, T. et al. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles, 2010 AIAA Aerospace Sciences Meeting

Mating SPFMaX and MCNP

Marshall Space Flight Center

SPFMax gives


- Ability to model 3d effects
- Can propagate magnetic fields in vacuum
- Easily editable

♦ MCNP

- Track neutron life, fission reactions
- Flexible geometries

Second half of NIAC is to run codes concurrently

- synchronize neutron population vs. time
- Optimize energy output
 - As function of geometry
 - As function of composition
 - Mix of UF6, D-T
 - Lithium liner thicknesses

- Gasdynamic nozzle
 performance to be compared
 with magnetic nozzle to assess
 loss mechanisms in magnetic
 nozzles, e.g.
 - Field/plasma instabilities
 - Plasma detachment

Charger - 1

- A test facility for high power and thermonuclear fusion propulsion concepts, astrophysics modeling, radiation physics
- **Located in the UAH Aerophysics** Lab at Redstone
- The highest instantaneous pulsed power facility in academia - 572 kJ (1 TW at 100 ns)

Long Range Plans

Marshall Space Flight Center

NIAC Phase II

- Complete Charger 1 refurb
- Ignite PuFF plasma
- Continue magnetic nozzle research

Charger II

- Construct breadboard PuFF system capable of 10-20 Hz operation
 - Upgrade to flight weight hardware NASA
 - Optimize pulse for maximum power output DOE
 - Astrodynamics, radiation protection, other research goals Various