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Challenges and Underlying Physics of Nuclear Processes 
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Fission and Fusion Energy Release 



http://en.wikipedia.org/wiki/Nuclear_binding_energy 3 
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 Fission  Fusion 

Fission and Fusion Reaction Space 

http://www.propagation.gatech.edu/ECE6390/project/Fall2010/P
rojects/group10/MANTIS_2010_SatCom/MANTIS_2010_SatCom/
PowerSys/default.html 
http://www.mwit.ac.th/~physicslab/hbase/nucene/fisfrag.html#c1 

http://fusionforenergy.europa.eu/understandingfusion/ 

http://en.wikipedia.org/wiki/Nuclear_fusion 
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

Ignition Requirements 

Fission 
Criticality is a function of  

fission cross section 
Number density 
And geometry 

Neutrons must balance 
Lost outside reactor 
Absorbed through photon capture 
Fission events  

http://t2.lanl.gov/nis/tour/sch002.html 
http://en.wikipedia.org/wiki/Lawson_criterion 
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Fusion Confinement Parameter Space 
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
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Benefits of MIF Parameter Space 

Fusion reactivity scales with 
n2 

Magnetic field suppresses 
thermal conduction losses, 
reducing driver power 
Reactor volume much 
smaller than MFE 
These effects lead to 
potentially much lower cost, 
smaller fusion reactor, as 
suggested by Lindemuth and 
Siemon, Am. J. Phys., 77(5), 
May 2009 
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PuFF Concept 
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Introduction to PuFF 

Magnetic 
field lines 

Magnetic 
nozzle coils 

UF6 fuel 

D-T fuel 

Cathode 

Lithium liner 
and radiation 

shield 
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Operation of a Z Pinch 

I 

Vaporized Wire Array Evacuated Chamber 

Anode 

Cathode 

Plasma Cylinder 
B, Magnetic Flux 
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Fission-Fusion Energy Balance 
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Research Status 
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Heating Mechanisms Included in Model 

Bremmstrahlung and  
Cyclotron Radiation 

Axial and Radial  
Thermal conduction 

Neutron induced 
Fast fission  

reactions 

Fission 
heating power 

Fusion  
heating power

DT FRC  
Target 
Plasma 

Magnetic 
Field Lines 

Fissionable 
liner 
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Fission- Fusion Power Balance 

Synchrotron  
Radiation Dominates 

Fission Power Dominates as 
Neutron Count 

Becomes Significant 

Parameter space for 
ignition  
Greatly broadened with 
embedded magnetic field 
Marginally improved with 
6Li and thorium liners 
Significantly enhanced 
with  uranium liners (235U 
and 238U) 
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Our Approach:  Solve Maxwell's Equations Coupled to 
Multifluid (Ions, Electrons, Neutrals) Equations of Motion 

Maxwell’s Equations 

Solve with Smooth Particle Electromagnetic Variant of Finite-Difference 
Time Domain (FDTD) method 
FDTD well documented, highly accurate grid-based method for analyzing the 
time evolution of electric and magnetic fields 
Can interpolate charged fluid particles to grid to model conductivity or charge 
and current density 

Multifluid Equations of Motions 

Solve with Smooth Particle Hydrodynamics (SPH) 
Gridless Lagrangian technique 
Vacuum/plasma boundary well defined 
Leverage same engine as Maxwell Equation Solver 

Both methods yield to ‘vectorized’ coding, making 
multiprocessor (parallel) computing easy 
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Equations of motion (planned) Equations of motion (completed) 

Transport effects, 
which can be based 
on nonequilibrium 

distribution functions 
(kappa and power law) 
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Initial Pulsed Nozzle Model 
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Initial gas  
from z-pinch 

Direction of motion 

Nozzle wall 

Test thermal expansion of 
gas nozzle with various 
initial conditions 

Nozzle geometry 
Gas  

Temperature 
Density 
Radius 
Length 
Composition 

Lays ground work and 
expectations for magnetic 
nozzle 
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Preliminary results 
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Preliminary results 
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Preliminary results 
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Preliminary results 
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Preliminary results 
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NIAC Phase I Goals 
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Crewed Mars Mission Concept 

Polsgrove, T. et al. Design of Z-Pinch and Dense 
Plasma Focus Powered Vehicles, 2010 AIAA 
Aerospace Sciences Meeting 24 
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Mission Concepts 

 Mars 90 Mars 30 Jupiter 550 AU

Outbound Trip Time (days) 90.2 39.5 456.8 12936 
Return Trip Time (days) 87.4 33.1 521.8 n/a 
Total Burn Time (days) 5.0 20.2 6.7 11.2 

Propellant Burned (mT) 86.3 350.4 115.7 194.4 
Equivalent DV (km/s) 27.5 93.2 36.1 57.2 

     

Mars Orbit
Earth Orbit
Transfer Traj Orbit
Transfer Trajectory

Mars Orbit
Earth Orbit
Transfer Traj Orbit
Transfer Trajectory
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Figure 3 Mars 90 Day Transfer Trajectories 

Engine 
Isp = 19,400 sec 
T = 38 kN 
10 Hz pulse freq. 

Vehicle 
Mdry = 552 mT 
Mpay = 150 mT 
30% MGA 

Polsgrove, T. et al. Design of Z-Pinch and Dense 
Plasma Focus Powered Vehicles, 2010 AIAA 
Aerospace Sciences Meeting 25 
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Mating SPFMaX and MCNP 

 SPFMax gives 
• Ability to model 3d effects 

Can propagate magnetic fields in vacuum 
Easily editable 

•
•

 MCNP 
• Track neutron life, fission reactions 

Flexible geometries •
 Second half of NIAC is to run codes concurrently 

• synchronize neutron population vs. time 
Optimize energy output •
- As function of geometry 

As function of composition -
– Mix of UF6, D-T 

Lithium liner thicknesses –
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Single turn Magnetic Nozzle 

Direction of 
current 

Gasdynamic nozzle 
performance to be compared 
with magnetic nozzle to assess 
loss mechanisms in magnetic 
nozzles, e.g. 

Field/plasma instabilities 

Plasma detachment 
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Charger - 1 

 A test facility for high power and 
thermonuclear fusion propulsion 
concepts, astrophysics modeling, 
radiation physics 
Located in the UAH Aerophysics 
Lab at Redstone 
The highest instantaneous pulsed 
power facility in academia – 572 
kJ (1 TW at 100 ns) 




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Long Range Plans 

 NIAC Phase II 
• Complete Charger 1 refurb 

Ignite PuFF plasma 
Continue magnetic nozzle research 

•
•

 Charger II 
• Construct breadboard PuFF system capable of 10-20 Hz operation 

- Upgrade to flight weight hardware – NASA 
Optimize pulse for maximum power output – DOE 
Astrodynamics, radiation protection, other research goals - Various 

-
-
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