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Challenges and Underlying Physics of Nuclear Processes



Fission and Fusion Energy Release
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€ Mass Defect = Mass of free nucleons — mass of assembled nucleus
* Nuclear force (residual strong force) stronger than electrostatic

€ Nuclear Binding Energy
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Fission and Fusion Reaction Space
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Ignition Requirements
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¥ Fission € Fusion
e Criticality is a function of * Breakevenis a function of
- fission cross section - Fusion cross section
- Number density - temperature distribution
- And geometry - density
* Neutrons must balance * Lawson Criterion
- Lost outside reactor 12kp T
T MeTE 2 "o
- Absorbed through photon capture
- Fission events temperature [keV]
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Benefits of MIF Parameter Space
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Table II. Fundamental physical parameters and cost for fusion systems dis-
cussed in text,

ITER MTF example NIF
Geometry Toroidal Cylindrical Spherical
Cost ($M) 10,000 51 3000
n, (/lcm?) 10 102 1.4 X105
p (g/cm?) 42X 10710 4.2x107* 57
T (keV) 8 8 8
p (atm) 2.6 2.6 X 10° 3.6x10"!
B (kG) 50 1000 0
7, (s) 0.9 9 X107 6.6 X 10712
M (mg) 350 1.7 0.01
a (cm) 240 0.6 3.5% 1073
V (m?) 8.3 X 107 4.0X107° 1.8 1071
E,. () 3.2x108 1.6 X 10° 9.3 x10°
P,... (W) 1.3 108 9.0 X 10' 1.1x 10"
I}our (W/cm?) 18 1.0 X 10" 7.5% 10"
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PuFF Concept



Introduction to PuFF

Magnetic
nozzle coils

.

[UF6 fuel
D-T fuel
Cathode /
ithium liner

and radiation
shield
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Operation of a Z Pinch ’/T&Nﬁ:}}
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Fission-Fusion Energy Balance
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Research Status



Heating Mechanisms Included in Model
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Bremmstrahlung and
Cyclotron Radiation

\ |
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Fission- Fusion Power Balance "’“
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Synchrotron

Radiation Dominates

— » Parameter space for
oL Fission Power Dominates as Iignition
= Be':fr‘;:;’gic:i‘:gnt « Greatly broadened with
y |- 2 embedded magnetic field
)| —MIFB=400T 1« Marginally improved with
—— MIF B = 400 T, Fission liner of U235 61 i and thorium liners
—MIF B = 400 T, Fission liner of U238 | .
——MIF B = 400 T, Fission liner of Th232 * Significantly enhanced
_1 MIF B = 400 T, Fission liner of Li6 with uranium liners (43U
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Our Approach: Solve Maxwell's Equations Coupled to
Multifluid (lons, Electrons, Neutrals) Equations of Motion

mal  Maxwell’s Equations

 Solve with Smooth Particle Electromagnetic Variant of Finite-Difference
Time Domain (FDTD) method

o FDTD well documented, highly accurate grid-based method for analyzing the
time evolution of electric and magnetic fields

 Can interpolate charged fluid particles to grid to model conductivity or charge
and current density

sl Multifluid Equations of Motions

 Solve with Smooth Particle Hydrodynamics (SPH)
 Gridless Lagrangian technique

» Vacuum/plasma boundary well defined

» Leverage same engine as Maxwell Equation Solver
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Both methods yield to ‘vectorized’ coding, making

multiprocessor (parallel) computing easy




Equations of motion (completed)
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e Test thermal expansion of

A A

1 . . . 1 . .
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Preliminary results
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NIAC Phase | Goals



Crewed Mars Mission Concept
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Deuterium-Tritium Tank
2.4 m dia.) 4 plcs)

SP-100 Reactor ISRl

Lithium 6 Tank {4.8 m long x Transhab

2.6 m dia. {4 ples)
Stacked Capacitor Module (2}

(10 mlong x 3.6 m x7.2 m)
(8 ples)

Two-Sided

Crew/Avionics

Radiators

(176 m2 total Surface
area) Lander Habitat

Two-Sided Med. Temp. Radiators
: {608 m2 total area)
Z-Pinch

Nozzle

Two-Sided High Temp. Radiators
(1910 m2 total area)

Lithium Hydride 4-Pod RCS 700 Ibf MR_80B 3 Hydrazine

Radiation Shield {51";? E';";'If]":z - Thrusters, RCS Tank (.86 m dia.) and RCS

(.25 m thick) : : : Helium Pressurant Tank (.64 m dia.)
{Bples - 4 Aft and 4 Forward)

Polsgrove, T. et al. Design of Z-Pinch and Dense
Plasma Focus Powered Vehicles, 2010 AIAA
Aerospace Sciences Meeting 24



Mission Concepts
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Mars 90 Mars 30 Jupiter 550 AU
Outbound Trip Time (days)

Return Trip Time (days)

Total Burn Time (days)

Propellant Burned (mT)
Equivalent DV (km/s)

* Engine
* |sp =19,400 sec

e T=38 kN
/ \ e 10 Hz pulse freq.
* Vehicle
K % / * My, =552 mT
__/ « M, =150mT
— Earth Orbit e 30% MGA

— Mars Orbit
— Earth Orbit
—— Transfer Traj Orbit

—Transfer Trajectory

[

— Transfer Traj Orbit |

/

—Transfer Trajectory

Polsgrove, T. et al. Design of Z-Pinch and Dense
Plasma Focus Powered Vehicles, 2010 AIAA
Aerospace Sciences Meeting

Figure 3 Mars 90 Day Transfer Trajectories



Mating SPFMaX and MCNP
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€ SPFMax gives
* Ability to model 3d effects
* Can propagate magnetic fields in vacuum
e Easily editable
4 MCNP
* Track neutron life, fission reactions
* Flexible geometries

€ Second half of NIAC is to run codes concurrently
* synchronize neutron population vs. time
* Optimize energy output
- As function of geometry
- As function of composition
— Mix of UF6, D-T
— Lithium liner thicknesses

26



Single turn Magnetic Nozzle

THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

arshall Space Flig enter

e Gasdynamic nozzle
performance to be compared
with magnetic nozzle to assess
loss mechanisms in magnetic
nozzles, e.g.

* Field/plasma instabilities

e Plasma detachment

Direction of
current
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@ A test facility for high power and
thermonuclear fusion propulsion
concepts, astrophysics modeling,
radiation physics

@ Located in the UAH Aerophysics
Lab at Redstone

@ The highest instantaneous pulsed
power facility in academia — 572
kJ (1 TW at 100 ns)




Long Range Plans
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€ NIAC Phase I
e Complete Charger 1 refurb
* Ignite PuFF plasma
e Continue magnetic nozzle research
€ Chargerli
* Construct breadboard PuFF system capable of 10-20 Hz operation
- Upgrade to flight weight hardware — NASA
- Optimize pulse for maximum power output — DOE
- Astrodynamics, radiation protection, other research goals - Various

29
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