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1  Executive Summary 

This study describes a new technology for discerning the gravity fields and mass distribution of a solar 
system small body, without requiring dedicated orbiters or landers. Instead of a lander, a spacecraft 
releases a collection of small, simple probes during a flyby past an asteroid or comet. By tracking those 
probes from the host spacecraft, one can estimate the asteroid’s gravity field and infer its underlying 
composition and structure. This approach offers a diverse measurement set, equivalent to planning and 
executing many independent and unique flyby encounters of a single spacecraft. This report assesses a 
feasible hardware implementation, derives the underlying models, and analyzes the performance of this 
concept via simulation. 

In terms of hardware, a small, low mass, low cost implementation is presented, which consists of a 
dispenser and probes. The dispenser constrains roughly 12 probes in a tube and has a total size 
commensurate with a 6U P-Pod. The probes are housed in disc shaped sabots. When commanded, the 
dispenser ejects the top-most probe using a linear motor. The ejected probe separates from its sabots and 
unfolds using internal springs. There are two types of probes, each designed for a particular tracking 
modality.  The reflective probe type, tracked by a telescope, unfolds to form a diffusely reflective sphere. 
The retroreflector probe type, tracked by a lidar, unfolds to form a corner-cube retroreflector assembly. 
Both types are designed to spherical so that their attitude doesn’t affect the spacecraft’s tracking 
performance. 

This analysis indicates that the point-mass term of small bodies larger than roughly 500 m in diameter 
can be observed from a host spacecraft that tracks locally deployed probes throughout a flyby to an 
uncertainty of better than 5%. The conditions by which this measurement is possible depends on the 
characteristics of the asteroid (size, type), the flyby velocity, and the type of tracking available (angles-
only or angles+ranging). For most encounters, a few (1-3) well placed probes can be very effective, with 
marginal improvement for additional probes. Given realistic deployment errors, an encounter may 
require roughly 10-12 probes to ensure that 1-3 achieve their target. Long duration tracking of probes 
flying by large asteroids (>5 km diameter) can sometimes provide observability of the gravity field’s 
first spherical harmonic, J2. In summary, this method offers a feasible, affordable approach to enabling 
or augmenting flyby science. 
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2 Introduction 

Asteroid gravimetry has important relevance to space-science, planetary defense, and future human 
spaceflight. Gravimetry gives insight into an asteroid or comet’s internal composition and structure, which 
cannot be studied by imagers, spectrometers, or even surface samplers. It has implications for the 
formation models of our solar system, since many small bodies are thought to be remnants of the solar 
system’s early states. Consolmagno, Britt, and Macke1 suggest that just knowing an asteroid’s or comet’s 
density and porosity can give important insights into the early solar system’s accretional and collisional 
environment. Asteroid gravimetry also has implications for human spaceflight since near-Earth objects 
are considered as targets for human exploration. There is a need to characterize our near-Earth 
neighborhood in order to select candidate targets and assess their expected material properties. There is 
value in being able to confidently predict how different handling, anchoring, or landing approaches will 
operate on a particular class of target. Likewise, small body compositional and structural knowledge is 
required for many proposed missions to mitigate asteroid impacts at Earth. For example, an asteroid’s 
response to an impactor will depend principally on its interior composition and mechanical properties. 
Asteroid interior data may suggest that certain classes of asteroids would be more safely diverted using 
other concepts, such as gravitational tugs. Asteroid composition models will improve the fidelity of 
asteroid-Earth impact predictions and thus provide a more complete understanding of the risks posed by 
different asteroids. 

A body’s gravity is typically observed by measuring its effect on the trajectory of a smaller neighbor, 
such as a moon or spacecraft.2 That is, by tracking the moon or spacecraft’s motion, one can estimate 
properties of the object’s gravitational field. If the gravitational effects are observable, then the quality of 
the estimate depends on the number, geometric diversity, and accuracy of the tracking measurements. For 
small bodies, these measurements are difficult to attain. Few asteroids have companions that can be 
tracked, so we have to rely on observations of spacecraft for high accuracy results. This is achieved by 
maneuvering a spacecraft to fly past, orbit, or land on a small body while tracking the spacecraft from the 
ground. While orbiters and landers offer the highest quality science, they require dedicated missions and 
are often constrained to a single target due to practical ∆v limitations. 

Flybys are favorable because they are often easily added to existing mission designs with little impact 
to cost or operations;3, 4 however, they present many challenges for gravimetry. Flybys are typically short-
lived events owing to relative velocities of many km/s. The magnitude of deflection from an asteroid is a 
function of the mass of the asteroid, the asteroid-spacecraft relative velocity, and close-approach range to 
the center-of-mass. For typical relative velocities (5-15 km/s) the spacecraft must pass very close to the 
asteroid to achieve a measurable deflection. The high relative velocity implies a short-time-duration 
conjunction and the asteroid exerts only a weak gravitational force that diminishes in proportion to r-2.  
The close proximity represents a risk, or operations challenge, to the mission. In addition, low-altitude 
passes may degrade the science from other instruments that cannot accommodate the high spacecraft slew 
rates required to track the object during a close pass (e.g., cameras or spectrometers). 
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Figure 1: Spacecraft flyby of an asteroid with the spacecraft tracking its ejected probes. 
 

This paper describes a method to enable or augment gravimetry during flybys of small-bodies without 
imposing a low-altitude spacecraft flyby. Instead, the spacecraft acts a host to a group of small deployable 
probes,5, 6 as shown in Figure 1. The host spacecraft releases the probes just prior to a flyby. The probes 
diverge from the host and pass the small body from a variety of ranges and directions. Each probe’s motion 
represents an independent flyby. The host spacecraft tracks each probe’s pre- and post-encounter relative 
positions and downlinks this data to the ground. Once the measurements are received, an estimation 
technique is used to solve for the best-fit orbit parameters and the small body’s mass. Given a large 
quantity of probes and a rich diversity of probe trajectories, this solution can have sufficient fidelity to 
yield a gravity model. Combining this model with a surface profile derived from optical or altimeter 
measurements may give insight into the asteroid’s mass distribution and composition. 

This approach is similar to that studied by Grosch and Paetznick7 and Psiaki8 who used a set of relative 
measurements over a series of orbits to estimate the inertial position of deployed probes and the central 
body’s gravitational terms.  Likewise, Muller and Kachmar9 analyzed the use of relative measurements of 
deployed probes to estimate inertial terms in a host spacecraft’s dynamics. The probes need only be 
trackable, which implies that they may be very simple, low-cost, and easily accommodated on-board a 
spacecraft. If properly deployed, they can yield many measurements among many independent paths, 
which improves the observability of the gravimetry problem. In addition, most measurement types benefit 
from short ranges, offering higher signal- to-noise measurements relative to the host spacecraft than could 
be achieved relative to an Earth based ground station. Finally, the probes can conceivably be deployed to 
pass within a very short range of the small body’s surface, which allows the host spacecraft to maintain a 
safe distance that is optimal for other instruments. The probes’ reduced magnitude of closest approach 
will yield a corresponding increase of their trajectory change when compared to that of the spacecraft. For 
a nominally spherical asteroid of fixed mass, the efficacy of this technique is limited by the asteroid’s 
density. Higher density asteroids will permit the probes to reduce their distance of closest approach 
(relative to the center-of-mass), thus increasing the asteroid’s perturbation of the probes from their 
nominal trajectories and improving the accuracy of the estimation results. 

This report describes a set of candidate system architectures, including a variety of tracking methods 
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and a candidate deployment technique, which are analyzed via simulation. The analysis includes a 
definition of the state vector, the dynamics model of the flyby, several different measurement models, an 
appropriate estimation algorithm, and a covariance simulation. The simulation and estimation approach 
are evaluated over a trade-space that assesses relevant parameters. 
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3 System Architecture 

The system is composed of three principal components: the tracking method, the probe design, and the 
deployment method. A successful architecture addresses each of these components in a manner that results 
in high-quality gravimetry while imposing as few constraints or burdens on the host spacecraft or mission. 
The tracking method and probe design are tightly coupled and are presented together, while the 
deployment method is considered separately. 

 
3.1 Tracking Method and Probe Design 

The host spacecraft must detect and track each probe throughout the flyby. For large numbers of probes, 
the tracking method should ideally facilitate differentiation among the probes and measurement 
attribution. Alternatively, one could pursue multiple hypothesis models that would consider each 
measurement’s association with each probe. Table 1 lists six candidate tracking methods. In addition to 
the parameters listed, the options also differ with respect to the required burdens to the host spacecraft and 
required complexity of the probe design. Each of these approaches is described in greater detail below. 

 
Table 1: Candidate Tracking Methods 

Sensing Type Power Source Measurement Type Differentiation 
Optical Sunlight Reflection (Sun) Angles Challenging 

 LED Illuminators (Battery) Angles Possible 
 Laser Irradiation (Host Spacecraft) Angles and Range Built-In 

Infrared Powered Heaters (Battery) Angles Possible 
Radio RF Beacon (Solar, Battery) Doppler and/or Range Built-In 

 Radar Reflection (Host Spacecraft) Doppler and/or Range Possible 
 
 

1. Sunlight Reflection - One favorable candidate method requires that the probes be reflective to 
sunlight. The host-spacecraft then uses its on-board imager to detect and track the probes as they 
drift away from the spacecraft and flyby the small body. This approach requires a low solar phase 
angle (the angle connecting the sun-probe-imager points) so that the probes’ reflections are visible 
to the spacecraft. This can be achieved by deploying the probes in the anti-sun direction. The 
reflection is dependent on the probe’s shape, size, and reflectivity properties. 

2. LED Illuminators - In this method, light-emitting-diodes (LED) are tracked by their optical 
signature. These can operate independently of the sun-relative geometry. The probes would consist 
of batteries and flashing LEDs. Here, the probes’ detectability depends on the number and 
brightness of LEDs. This is reminiscent of the Japanese FITSAT-1 cubesat,10 which was observable 
at ranges of 100’s of kilometers using standard telescopes with long integration times. 
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3. Lidar - Ranging lasers were used on the Gravity Recovery and Climate Experiment11 (GRACE) 
and Gravity and Interior Laboratory12 (GRAIL) missions.  This implementation offers the highest 
quality measurements, but imposes requirements on the host spacecraft, which must accommodate 
and point a laser. In this instantiation, the probes could consist of assemblies of corner-cube 
retroreflectors,13, 14 which would give very high returns at nearly any attitude. This would help to 
mitigate the losses associated with range (d-4). It may be possible to use an existing laser altimeter 
designed for surface science. 

4. Powered Heaters - If the host spacecraft carries a focal plane sensitive to infrared wave- lengths, 
it may be possible to detect heated probes’ thermal signatures. The performance and duration of the 
probes are limited by the available on-board power storage. For practical battery sizes, the effective 
tracking range is relatively short. In addition, the tracking accuracy is likely low given the poorer 
relative quality of available infrared focal plane arrays. 

5. Radio Frequency (RF) Beacons - If each probe is equipped with a radio-frequency beacon, it could 
be readily identifiable with an on-board radio subsystem. Differentiation would be straightforward 
via time-division, channel-division, or code-division multiple access approaches. One likely 
challenge is the measurement quality associated with an on-board oscillator. The change in relative 
velocity is quite small between the probes and the host-spacecraft. This requires a very stable probe 
oscillator during the whole encounter. Otherwise, thermal variation in the oscillator could 
overpower any induced frequency variation. 

6. Radar Reflectors - If each probe is reflective in an RF sense, it may be possible to detect and track 
very simple probes over long ranges using a radar instrument on the host spacecraft. Here, the 
signature is defined by the probe’s radar cross section. One probe implementation could consist of 
simple metal dipoles,15 as is used in radar chaff or was used in Project West Ford.16 A higher return 
design would use corner cube retroreflector13 assemblies.14 The longer wavelength of the radar 
signal eases the probe’s reflection and flatness tolerances, which facilitates production. This 
approach burdens the host spacecraft with carrying a dedicated radar payload, of which many space-
qualified designs currently exist. 

 
Two feasible deployable probe concepts were designed.  The first probe design addresses the sunlight-

reflection case and constitutes of an expanding, 10 cm diffuse sphere. The exterior is a white fabric 
wrapping a thin spring-metal frame. When compact, the probe fits in between two sabots, which house it 
prior to ejection. This is illustrated in Figure 2. 

The second probe design applies to the lidar and radar tracking methods. This design consists of a 
central mirrored disc, with 8 unfolding mirrored sides. The compacted shape is a thin disc that fits within 
two sabots. Once the sabots are removed, the probe’s sides unfolded (via torsion springs), and the 
assembly consists of 8 corner-cube retroreflectors as illustrated in Figure 2.  

Both probe designs are spherical, such that they give a high signal-to-noise return in any orientation. 
Additionally, this facilitates the characterization, calibration, and estimation of solar radiation pressure, 
which is treated as an error source in this analysis. 
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3.2 Deployment 

The host spacecraft must release each probe onto a trajectory that passes within a short range of the target 
body along an independent, diverse path without subsequently interfering with the host spacecraft. Given 
the very low values of imparted ∆v by the low-mass small-bodies, the probability of a probe recontacting 
the spacecraft is insignificant. 

A favorable deployment architecture consists of a combination of spacecraft pointing, spacecraft 
thrusting, and a hardware deployment mechanism. Multi-payload deployment has been demonstrated with 
cubesats, which are routinely deployed from launch vehicle upper stages without interfering with the 
primary mission payloads. Here, the vehicle points the cubesat’s compressed- spring deployer along a 
desired direction, releases a stop that allows a spring to extend and impart a relative separation velocity to 
the cubesat, and then executes a small collision avoidance maneuver to prevent any future recontacts. This 
process would be useful for the flyby application as well, in that the deployment benefits from the 
spacecraft’s high-quality attitude control and timing, to place the probe on a low-altitude pass of the small 
body. Compression springs introduce a non- negligible level of uncertainty to the deployment. As an 
alternative, a small controllable solenoid could be commanded to eject each probe. An accurate 
deployment process would include extensive pre-launch component characterization, and it would include 
a study of performance degradation due to the long storage times between assembly, launch, and use. 

A dispenser has been designed to accommodate the two types of probes. The dispenser consists of a 
tube that contains roughly 12 probe assemblies. The probes are contained within low-friction disc sabots. 
When commanded, the top-most probe assembly is ejected using a linear motor. The motor pushes the 
probe assembly completely out of the “chamber” and then returns to a rest-state. The next probe assembly 
is then pushed into place for ejection by a compression spring. The size (35 cm x 25 cm x 15 cm) and mass 
(< 8 kg) of the dispenser is meant to be commensurate with a 6U P-Pod CubeSat deployer. The linear 
motor requires 20-200 W of power at the time of ejection. The housing and sabots were rapid-prototyped, 
as shown in Figure 3. 



 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Conceptual designs for dispensed optically reflective probe (top) and corner-cube retroreflector probe (bottom). 



 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Photograph of dispenser concept prototype. 



 

 
 
 
 
 

4 Analysis 

4.1 System State Definition 

The following analysis is based on models of the probes, host spacecraft, and the asteroid. The parameters 
that define these models are referred to as the states of the system. These states can be combined to form 
one system state vector with the following definition: 

 

                             (1) 

where ri is the 3-by-1 position vector of probe i for i = 1–N, ri̇ is the 3-by-1 velocity vector of probe i, gj 

is the jth coefficient of a yet-to-be-defined parameterization of the asteroid gravitational field for j = 1–M, 
and *T is the transpose of the quantity *. The terms ri  and ri̇ are defined as: 

                                                                           (2) 

                                                                         (3) 

The selection of the reference frame and the gravity model are deferred until the next subsection. The 
following analysis is based on two different types of state-space models:17 a dynamics model and a 
measurement model. The dynamics model describes the way that all of the states change over time, and 
the measurement model defines the functional dependence of the measurements on those same states. 

 
4.2 System Dynamics 

The dynamics of the probes are modeled as obeying the following equation: 
 

                                                                             (4) 
 

where r̈ is the second time derivative of the position vector r, f (r) is the position dependent gravitational 
acceleration, and d is the acceleration term associated with all other perturbations, including solar gravity, 
n-body gravity, and solar radiation pressure. 

The secondary accelerations modeled by d, while non-negligible, are treated as constant over the 
period of the flyby encounter among all the probes. This assumes that the value of these terms is insensitive 
to variation in each probe’s local position over the encounter. In the case of solar radiation pressure, this 
assumes that a campaign was conducted to characterize the optical parameters for each probe prior to 
launch. Alternatively, the probes can be designed such that the solar radiation pressure acting on each 
probe is attitude-independent and consistent among all of the probes. 

This work uses the center of mass of the asteroid as the center of its coordinate system. For this 
analysis, gj consists of the first M coefficients in a spherical harmonic expansion. 

The system state vector’s nonlinear time derivative is: 



 

 

  (5)  
 

where the bottom subvector indicates that the gravitational parameters are constant throughout the 
simulation. f (ri) is a 3-by-1 vector that represents the computation of the small body’s nonlinear position-
dependent gravitational acceleration for the ith probe. 

The system state vector’s Jacobian A = ∂Ẋ/∂X, which is necessary to compute the model’s state-
transition-matrix, takes the form: 

 

                                                          (6) 

Recognizing that gravity is dependent on position only, and that the gravitational parameters are 
constant, many of these terms simplify: 

 

                                                 (7) 

and where:  

       (8) 

                                         (9) 

Here, ∂f(ri)/∂ri is the 3-by-3 matrix that represents the linearization of the ith probe’s gravitational 

acceleration as a function of its position ri. The matrix ∂r̈i/∂ri is diagonal because every probe is assumed 

to have a negligible gravitational attraction on every other probe. 



 

As an example, for the point-mass case: M = 1, g1 = µ, f(ri) = −μri/|ri|
3, the linearization is 

defined as 

                                         (10) 

                                                               (11) 

Models and linearizations for spherical harmonic representations of gravity, such as J2, are available in 
Ref. [18]. 

The propagation from one time to another, say tk to tk+1, is defined using the standard linear systems 
equations: 

                                                           (12) 

where it has been assumed that there is no process noise or control inputs perturbing the state, and Φ is the 
state-transition matrix. The inclusion of Xk in Equation (12) denotes a nonlinear dependence on the state 
vector. The matrix Φ can be computed using any one of a variety of numerical integration techniques.19, 

20, 21 
 
4.3 Measurement Models 

The six different tracking methods presented earlier in this paper are categorized by measurement type as 
either angles, range, or Doppler shift. This section presents models of the measurements’ dependence on 
components of the state vector X. There are multiple hardware designs that can produce each of the 
following measurement types, and the following measurement models are appropriate for a very wide 
range of design possibilities. 

 
4.3.1 Angles 

Four different tracking methods can generate angle-type measurements: sunlight reflection, LED 
illumination, lidar, and powered heaters. The observable quantities in these tracking methods are the 
azimuth (θ) and elevation (φ) angles. The model of the functional dependence of these measurements on 
the state vector is the following: 

 

                                                               (13) 
 
 



 

     (14) 
 

Equations (13) and (14) are nonlinear functions of the probe states. Standard estimation techniques 
approximate the nonlinear equations with Taylor series expansions that are typically truncated after the 
first derivative. The resulting approximation is linearly dependent on the system state vector. Therefore, 
the partial derivatives of the above equations with respect to the state vectors are required: 

 

                                                     (15) 

                                                (16) 

4.3.2 Range 

Three different tracking methods can generate range-type measurements: lidar, RF beacons, and radar 
reflectors. The model of the functional dependence of the angle measurements on the state vector is the 
following: 

 

 (17) 

with the resulting partial derivatives:  

  (18) 
 
 
4.3.3 Doppler Shift 

Two different tracking methods can generate Doppler shift-type measurements: RF beacons and radar 
reflectors. The model of the functional dependence of these measurements on the state vector is the 
following: 

 (19) 

where ρ̂iH is the line-of-sight unit-vector from the host to probe i. 
The partial derivative of the Doppler-shift measurement with respect to the state vector is: 

 

                                         (20) 



 

                                                                        
(21) 

 
 

4.3.4 Line-Of-Sight Obscuration 

It is possible that at some times the asteroid of interest will pass between the host spacecraft and a probe. 
During these times the host spacecraft will not be able to make measurements of the probe. This line-of-
sight obscuration and resulting measurement loss has been included in the results presented in this paper. 
Fortunately, this obscuration is brief and causes a negligible loss in the total number of measurements. 

 
4.3.5 Combined Measurement Model Formulation 

The following mathematical formulation and subsequent explanation are facilitated by stacking the 
measurements by type into a combined column vector: 

 

         (22)
 
  

 
with the corresponding linearized measurement model: 

  
        (23) 

where H is defined as: 

 (24) 
 

  
 
 
and v is the measurement noise. The measurement noise statistics are approximated as zero-mean, white, 
and Gaussian: v ~ N (0, R). The covariance matrix R is assumed to be a diagonal matrix due to the 
uncorrelated noise between different probes and different measurement types:   
 

 (25) 
 
where: 



 

 

  (26) 

 
and with each measurement having the same covariance (σ*i = σ*j). If only a subset of the measurement 
types are used, e.g., a camera or a radar, then the above equations would have the appropriate lines 
eliminated. 

 
4.4 Simulation and Estimator 
This paper’s simulation assumes that no process noise and no control inputs perturb the state vector. 
Therefore, the system’s behavior is fully defined by the initial state vector. This formulation suggests 
that a batch-type estimator should be used for state estimation. This work estimated the state vector X 
using a Maximum A-Posteriori batch estimator that is similar to the algorithm of Tapley, Schulz, and 
Born.22 The Maximum A-Posteriori estimator requires an initial state estimate and associated covariance. 
That initial state estimate is refined using the simulated measurements in a least square process. 

 
4.4.1 Initialization and Prior Distribution 

To initialize the estimator, the system’s state vector covariance is required. If each probe’s initial 
uncertainty is associated with the expected knowledge of the location and imparted separation velocity 
at the time of deployment, it can be represented using additive, zero-mean Gaussian errors. 

 

                                                       (27) 
 

If the position and velocity errors are uncorrelated and zero-mean, then the errors er and eṙ  can be 
modeled as vector-valued Gaussian random variables: 

 
 (28) 
 (29) 

 
where: 

 (30) 

Likewise, the gravitational field uncertainty can be represented using additive zero-mean Gaussian 
errors with error covariance Pg . 

An a-priori (6N +M ) × (6N +M ) system state uncertainty can then be constructed: 

                        (31) 
 
 



 

4.4.2 Estimation Algorithm Details 

The derivation of the Maximum A-Posteriori batch estimator is provided in moderate detail in the next 
few paragraphs. However, more information can be found in the references22, 23 regarding similar 
estimators. 

If the prior distribution and the measurement noise distribution are both modeled as vector- valued 
Gaussian random variables, then the likelihood function is given by:22 

                           (32) 

                              (33) 

 
where f (*) is the probability density function (pdf) of the quantity * and l is the total number of 
measurements. The subscript js in Equations (32)–(33) indicate quantities associated with the state vector 
at the initial time. The e* operator has been placed on yj and Hj to denote a stacking of all of the 

measurements and measurement sensitivity matrices through the simulation into a single quantity with l 
rows: 
 

                                                         (34) 

                                                          (35) 

where measurements are assumed to be received k number of times and the H matrices’ dependence on 
the state vector has been shown explicitly. 

Equation (33) can now be optimized with respect to the state, i.e., we wish to select the state X with 
the highest likelihood. Maximization of Equation (33) is mathematically equivalent to the minimization 
of: 

       (36) 

which is referred to as the Maximum A-Posteriori cost function. The optimization has the necessary 
condition that the first partial derivatives of J (Xj ) with respect to the state are zero at the optimum: 

 

                                                                       (37) 
 



 

Equation (33) is a linearized version of a nonlinear function. This nonlinear function must be driven to 
zero to satisfy the optimization conditions. This requirement is commonly accomplished with the 
Newton-Raphson technique for root-finding, where the function is approximated by its Taylor series 
expansion and then minimized in an iterative manner. Unfortunately, in addition to the Jacobian matrix 
this method requires the computation of the Hessian tensor because the Newton-Raphson method requires 
the computation of ∂2J(Xj)/∂Xj2. It is common practice22 to approximate the Hessian as zero. This is 
true when the solution to nonlinear cost function is very close to the optimum, under certain assumptions. 
This method is commonly referred to as the Gauss- Newton method. Although not explicitly stated, this 
appears to be the method used by Tapley, Schutz, and Born22 to arrive at their estimator. 

The above derivation results in an iterative procedure with the following solution for a given 
linearization state X0

q: 

                                                               (38) 

                    (39) 
 

where X0
q is updated after each iteration to the most recently determined X0

q+1, and that is used to 
relinearize the dynamics and measurement equations that define via Equation (36). Tapley, Schutz, and 
Born22 discuss an efficient way to compute some of the terms in Equation (36). 

This paper’s algorithm diverges from Tapley, Schutz, and Born’s algorithm at this point. One primary 
difference is that the state vector increment ∆X is guarded. The increment determined by the evaluation 
of Equation (40) is the result of a linear approximation that is valid in only some small region about the 
linearization point X0

q. If the recommended perturbation is too large then the new state vector may fall 
far outside of the linearization validity range, and the resulting state vector  X0

q+1may actually be a poorer 
fit and have a higher cost than the previous state vector X0

q+1. 
If this process is performed repeatedly, then the estimator may move within a region around the 

optimal solution, it may diverge, or it may oscillate. Convergence can be enforced by redefining the state 
vector step-size for use in an iterative procedure: 

                                                               (40) 

where α starts at 1 and is halved until the resulting state vector estimate  X0
q+1 

produces a decreased cost 
when compared to the previous cost from  X0

q  .  Once a cost decrease is realized  X0
q+1is set equal to X0

q+1, 
and then the procedure starts again. However, this convergence procedure will only be successful if the 
initial state estimate is sufficiently close to the optimal state estimate. A discussion of the criteria used to 
terminate this iterative procedure is beyond the scope of this work, but more detail can be found in the 
References.24 

 
4.4.3 Estimation Algorithm Summary 

The estimation approach requires five steps: 
1. Linearize the dynamics and measurement model equations about an initial state vector. 
2. Map each measurement’s “innovation” to initial time t0 using the state transition matrix Φ. 
3. Compute the state vector perturbation α∆X that reduces the cost function J (Xj ). 



 

4. Update the state vector estimate using α∆X and relinearize the necessary equations. 
5. Repeat steps 2-4 until the nonlinear iteration convergence criteria are satisfied. 

 
 

4.4.4 Covariance Simulation 

Covariance simulations can provide estimates of state estimation error statistics without generating 
simulated noisy measurements. In this method, the covariance is propagated and updated in the standard 
Maximum A-Posteriori manner: 

                                                            (41) 

but the state is not estimated. The statistics of the estimation method can be accurately determined if the 
true state is known, as is the case with truth-model simulations. Issues such as nonlinear convergence 
and estimator pull-in range are not considered in this method. Therefore, the covariance simulations 
constitute a lower-bound on the estimation error covariance. Fortunately, testing with the previously 
discussed estimator showed that the nonlinear nature of this system is mild, and the estimator converges 
on a very consistent basis. Therefore, the covariance simulation results presented in this paper are a 
good representation of the expected performance of the estimator when many different realizations of 
the system are averaged together. 



 

 
 
 
 

5 Results 

The previously described equations were implemented in a MATLAB simulation and the results of that 
simulation are provided here in the form of a parametric trade study. 

 
5.1 Parametric Trade Study 
This study explores the following quantities for the trade-space of an asteroid flyby: measurement type, 
asteroid classification, asteroid size, and spacecraft-asteroid relative flyby velocity. Three different 
measurement classes are considered: a camera, a camera and radar, and a lidar. Four different asteroid 
classes are examined: C (carbonaceous chondrite), S (chondrite), M (metallic), and P, with densities2 of 
1.0, 2.0, 4.0, and 0.8 g/cm3, respectively. The asteroid sizes vary from a radius of 0.1–10 km, and the flyby 
speed spans 5–15 km/s. 

 
5.1.1 Success Criteria 

The trade-space is cast in terms of the number of probes required to satisfy a given error requirement. This 
study uses the 1 σ estimation error standard deviation associated with the asteroid’s gravitational parameter 
as the metric, and sets the threshold to be 5% of the true value. For ex- ample, if four probes provide an 
estimate of the asteroid’s gravitational parameter that is accurate to only 10% (1 σ) of its true value, then 
the number of probes are increased until the estimation error standard deviation is less than or equal to 5% 
. The maximum number of probes that could be used in any one flyby was limited to 100 probes. 

 
5.1.2 Deployment Budget and Methodology 

The probes are deployed from the host spacecraft prior to the asteroid flyby. Earlier deployments require 
less deployment ∆v, while later deployments allow less time for errors to accumulate. The approach taken 
in this study was to identify many of the sources of error in the deployment process and combine them in 
a root-sum-of-squares approach. This approach assumes an unbiased Gaussian error model for each error 
source. Table 2 summarizes the deployment budget and the approximate expected magnitude of each error. 
The derivation and equations used to compute each quantity is omitted for the sake of brevity, but they are 
mostly derived from simple linearizations of nonlinear equations. The final deployment standard deviation 
using these approximations is 5.3 kilometers for a deployment 1.75 days prior to close-approach. 

For the purposes of a trade-study, the probes were assumed to be deployed perfectly and in such a way 
that they created a ring about the asteroid at their closest approaches. This eliminates variation associated 
with stochastic deployment errors. The probes were simulated to pass the asteroid at 15 kilometers above 
the equivalent spherical radius of the asteroid. The 15 kilometers act as a buffer that is approximately 3 σ 
of the deployment budget, allowing for a significant deployment error.  It is very unlikely that any of the 
probes will impact the asteroid.  A perfect deployment will not occur in practice, but even the non-ideal 
deployments will provide similar results for a very high percentage of the samples of the stochastic 
(Gaussian) deployment budget. 

 



 

Table 2: Deployment control budget components for a flyby speed of 15 km/s, a 
deployment speed of 3 m/s, and a lead time of closest approach of 1.75 days. 

 

Error Source Error Magnitude Propagated Error 
Spacecraft   

Relative Position Knowledge 3000 m 3000 m 
Relative Velocity Knowledge 0.1 m/s 1512 m 
Attitude Knowledge 5 × 10-5 rad 23 m 

Deployment Mechanism 

 

  

      Alignment  Knowledge 8.7 × 10-3 rad 

 

3959 m 
      Impulse Knowledge 0.001 m/s 151 m 

       Timing Knowledge 0.001 s 15 m 
Environment   
     Mismodeled Accelerations 1 × 10-7m/s2 1143 m 

   
 
5.1.3 Baseline Simulation Parameters 

The simulation parameters used in the baseline scenario are listed in Table 3. The range of the camera, 
radar, and lidar were derived from several known instrument designs. The camera baseline is the Long 
Range Reconnaissance Imager25 (LORRI) that is on the New Horizons spacecraft. Given a one second 
integration time, a 10 cm diffuse sphere is observable at 2000 km. For this duration, the imager is sensitive 
enough to identify stars of at least 15th magnitude, which improves the measurement accuracy by 
removing spacecraft pointing uncertainty. The radar is taken to be Ku band pulsed transmitter with 20W 
peak power for 400 µs. The antenna is a 1.5 m parabolic dish, which could be dual-purposed as the 
spacecraft’s communications high-gain antenna. For a 10 cm retroreflector assembly, this radar could 
achieve detection at roughly 200 km. The lidar is modeled as a 1064 nm source with 0.5 mJ, 5 ns pulses 
and a beam divergence of 0.1 mrad. These values are not unlike the laser altimeter flown on the Near Earth 
Asteroid Rendezvous Mission.26 The silicon avalanche photodiode detector can operate in one of two 
modes: linear amplification and Geiger mode. The linear mode, which is traditionally used, offers ranges 
of roughly 200 km to a 10 cm retroreflector. The Geiger mode is extremely sensitive, achieving detection 
ranges of over 2000 km, but generates false-positives that must be reduced statistically by integrating 
multiple returns and cooling to reduce thermal noise. 

The trajectory of the host spacecraft and the probes is depicted in Figures 4 and 5. The host spacecraft 
is at bottom of the figure, the asteroid is in the top right, and the probes are arranged in a ring and are about 
to pass-by the asteroid.  The figure is meant as a visualization aid only; none of its components are to 
scale. 



 

Table 3: Simulation parameters used for the trade-study. 
   
 

Simulation Parameter Value 

A priori asteroid mass estimate (1 σ) 100% 

Simulation Duration 10 days 

Time Between Measurements  10 minutes 

Spacecraft/asteroid closest 
approach
  

500 km 

Probe position deployment accuracy (1 σ) 1 m 

Probe velocity deployment accuracy (1 σ) 0.1 m/s 

Camera angular measurement accuracy (1 σ) 0.75/3600 deg 

Camera maximum measurement range 2000 km 

Radar range measurement accuracy (1 σ) 0.5 m 

Radar velocity measurement accuracy (1 σ) 1 m/s 

Radar maximum measurement range 200 km 

Lidar angle measurement accuracy (1 σ) 0.1 mrad 

Lidar range measurement accuracy (1 σ) 10 cm 

Lidar maximum measurement range 2000 km 

Asteroid density, C Class 1.0 g/cm3 
Asteroid density, S Class 2.0 g/cm3 
Asteroid density, M Class 4.0 g/cm3 
Asteroid density, P Class 0.8 g/cm3 

 
  

 
5.1.4 Baseline Results 

The number of probes that are needed to estimate the asteroid’s gravitational parameter to a 5% threshold 
with the given set of parameters is shown in Figure 6. The number of probes required for each parameter 
combination is depicted by the color. The white area indicates that the maximum considered quantity of 
100 probes were insufficient to recover the gravity information to the required threshold. The number of 
probes needed to accurately estimate the gravitational parameter decrease as the asteroid increases in size, 
as the flyby speed decreases, and as the density increases. The rows of contour plots each indicate the type 
of tracking used (camera, camera and radar, or lidar). The columns of contour plots indicate the class of 
the asteroid that is being considered (C, S, M, or P). 

Figure 7 shows the results of the same computation, but using the estimation error threshold on the g2 

term, which corresponds to the first zonal harmonic, J2. The point-mass term can be more readily estimated 
than the g2 term because its effect drops-off at a rate proportional to r-2 instead of r-3. Several probes are 
always required to estimate the g2 term. 



 

5.1.5 Time-Dependence Estimation Results 

The accuracy of the estimation results improves as the probes are tracked for a longer period of time after 
the flyby. Figure 8 has been included to illustrate this point, which gives estimation accuracy as a function 
of time. The results are shown for the camera and the lidar using the simulation parameters mentioned 
previously. The combined radar and camera case is identical to the camera-only case in performance, 
owing to the radar’s short effective range. In this simulation the spacecraft is moving parallel to the probes 
past a 1.0 km radius asteroid with a closest-approach of 500 kilometers and a flyby velocity of 10 km/s. 
With the camera and lidar, the host spacecraft can always detect the probes. 

The estimation error begins at 100% because it is assumed that the asteroid’s gravitational parameter 
can be estimated to at least that well using a priori information, i.e., before any measurements are taken 
of the probes. The simulation was ended after 8 days because it is very likely that mismodeled 
accelerations, such as solar radiation pressure, will accumulate sufficiently to degrade the estimation 
results. The accuracy in the figure improves dramatically once the flyby occurs, near 1 day. The 
improvement is very significant over a time-span of approximately 1/2–1 day for the lidar case but requires 
more time for the camera. This observation motivates a second trade-study, one with a series of maneuvers 
that bring the spacecraft closer to the probes and keeps them in close proximity for a significant amount 
of time. 

 
5.1.6 Trade-Study Results from a Scenario with a Maneuver 

This trade study uses the maneuver portrayed in Figure 9. The spacecraft starts approaching the target 
asteroid directly. A small thrust is performed to move the spacecraft downward in the figure, then an equal 
thrust is provided in the opposite direction to move halt the spacecraft’s lateral motion with respect to the 
asteroid. This second maneuver occurs once the spacecraft has moved sufficiently distant that it is in no 
danger of collision with the asteroid. Once the flyby occurs another thrust is performed to move the 
spacecraft upward in the figure. Once the spacecraft has come close to the probes the thruster is again used 
to halt the spacecraft’s lateral motion. The distance between the host spacecraft and the asteroid at flyby 
was approximately 500 kilometers, and the distance between the centroid of the probes and the host 
spacecraft post flyby was approximately 75 kilometers. Each thrust can be very small if the first one is 
initiated far in advance. This simulation used a ∆v of 10 m/s for each thrust, but half of that amount, or 
even less, would be possible. The sensor resolutions are the same as in the previous no-maneuver case, 
but their effective range requirements are significantly reduced: a range of 100 kilometers for the camera 
and radar, and 200 kilometers for the lidar. These reduced range requirements are easily met with heritage 
sensors. 

Figures 10 and 11 show the results of the trade study for the case when the spacecraft maneuvers. As 
expected, the estimation algorithm is typically able to more accurately determine the gravitational 
parameters. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: Top view of baseline deployment of ring of probes. 
 
 
 

 
 
 
 
 
 

 
 
 

Figure 5: View along host spacecraft velocity at time of close-approach. 



 

 
 
 
 
 
 
 
 

 
 

Figure 6: The number of probes needed to estimate the point-mass gravity term to better than 5%. 



 

 
 
 
 
 
 
 
 

 
 

Figure 7: The number of probes needed to estimate the J2 gravity term to better than 5%. 



 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: Accuracy of the point-mass gravitational parameter estimate versus simulation/tracking time. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 9: Top view of maneuvered deployment of ring of probes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 

 
 
Figure 10:  The number of probes needed to estimate the point-mass gravity term to better than 5% when a maneuver is used. 



 

 
 
 
 
 
 
 

 
 
Figure 11: The number of probes needed to estimate the g2 gravity term to better than 5% when a maneuver is used. 



 

5.2   Flyby Tour Example 
An example flyby tour was generated to illustrate the effectiveness of the technology in a realistic mission 
context. In this case, the spacecraft is launched into a trajectory that is roughly tangent with the inner main 
belt asteroids. This approach has the advantage of yielding many slow (4-8 km/s) flybys. The launch is 
low energy (C3 of 21.0 km2/s2) consistent with small class Atlas or Delta launch vehicles. The trajectory 
includes 8 asteroid flybys in 4.7 years (3 apoapse passes). Shortly after each flyby, the spacecraft executes 
a trajectory correction maneuver to target the next flyby. The total ∆v is 1950 m/s, which is within the 
range of many current small spacecraft missions. As a reference, if the spacecraft were launched on an 
Atlas V 401 vehicle and were equipped with a bipropellant hydrazine propulsion system, it would have an 
available wet-mass of 1830 kg and dry-mass of 974 kg. In short, this design would be readily feasible for 
a NASA Discovery class mission. The trajectory is shown in Figure 12. 

The flybys are listed in Table 4. Little is known about these targets, other than their absolute 
magnitude. In the absence of other information, it can reasonably be assumed that they are S-type asteroids, 
since those are the most common type in the solar system. Given this, we can estimate the mean size of 
the object using published absolute magnitude values and a representative S-type V-band albedo of 0.19.27 

The resulting sizes are relatively small compared to the sizes shown to be effective in the trade-studies 
illustrated in Figures 6-7. 

The most feasible of the tracking methods is the approach that uses an on-board camera to image 
diffuse spheres against the star background. This could be easily implemented on a typical spacecraft. 
There are a variety of TRL 9 options that would be compatible with this approach, including LORRI as 
was used in the trade-study above. 

 
  Table 4: Flyby bodies in asteroid tour mission.   

 

 Name Abs. Magnitude  Radius, km Flyby Speed, km/s 
1 1998 TN30 15.1 1.47 6.32 
2 2000 QY95 16.2 0.89 8.08 
3 1996 BZ3 18.1 0.37 5.13 
4 2007 TT32 17.8 0.43 5.88 
5 2006 UA71 17.0 0.61 5.40 
6 2002 TH273 17.4 0.51 6.36 
7 2004 FR38 17.1 0.59 4.45 
8 1998 ST96 17.6 0.47 4.86 



 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 12: Sample 8 flyby trajectory. The asteroid flybys occur in the inner main-belt. The spacecraft 
completes 3 orbits. Each of the flyby asteroid orbits is colored for +/- 90 days around the flyby event. 



 

 
 
 
 
 
 

 
 

Figure 13: Representative random samples from the deployment budget for (a) 3 probe positions and 
(b) 12 probe positions. Concentric rings of 5 km increments are shown. 

 

In the case of the trade-study, the probes were deployed with perfect accuracy in a ring with an altitude 
of 15 km above the surface of the asteroid. For this example mission, each probe is deployed with the 
same nominal ring configuration, albeit with a random error consistent with the deployment budget given 
in Table 2. In order to characterize the effects of the deployment uncertainty on the results, 20 simulations 
were conducted, each with a random draw from the deployment statistics. This is illustrated in Figure 13, 
which shows 100 representative draws from the deployment budget for 3 and 12 probe deployment target 
positions. The concentric circles show range from asteroid center in 5 km increments. 

Two sets of results are presented in Table 5. The first set includes the case of a host spacecraft 
deploying 3 probes per asteroid flyby. In this case, the results are highly dependent on the delivered flyby 
location of the probes. In deployment cases where the close-approach range for at least one of the probes 
is very low, the results show point-mass estimates with less than 5% uncertainty. In deployment cases 
where the close-approach range for all the probes is comparatively high, the measurements do not offer 
useful observability for the asteroid’s mass. 

Given the importance of delivering a probe to a low altitude, the second set of results addresses the 
case of a host spacecraft deploying 12 probes per asteroid flyby. Here, the higher number of probes is 
intended to increase the likelihood of any one probe achieving a low altitude. The results are significantly 
improved, with the mean uncertainty less than 15% for most cases. A 15% error would represent a valuable 
measurement for many asteroid applications. 



 

Though not simulated here, one could consider a potentially riskier approach, where the host would 
attempt to deploy the probes directly at the asteroid, recognizing that errors will tend to make the probes 
miss the asteroid and pass at close ranges. For a 1 km asteroid and the deployment budget used here, one 
would expect only 1 in roughly 175 probes to impact the asteroid. The operational risk is that the error 
budget could be conservative, in which case the odds of impact would be higher. Even so, if the errors 
were halved, only 1 in 45 probes would be predicted to impact. 

 
Table 5: Sample point-mass results for 20 simulations of the example asteroid flyby 
mission deploying 3 or 12 probes. Values given in percent uncertainty of point mass 
estimate. 

 

  
Name 

 
Min 

3 Probes 
Mean 

 
Max 

 
Min 

12 Probes 
Mean 

 
Max 

1 1998 TN30 0.2 9.4 53.9 < 0.1 2.9 10.6 
2 2000 QY95 0.9 12.7 64.8 0.3 4.9 19.8 
3 1996 BZ3 7.6 27.9 58.2 4.0 23.2 49.3 
4 2007 TT32 3.6 33.7 96.0 1.5 19.5 66.5 
5 2006 UA71 0.3 22.0 86.6 < 0.1 7.5 30.4 
6 2002 TH273 0.8 23.2 70.6 < 0.1 13.9 46.2 
7 2004 FR38 0.9 22.7 80.8 0.3 8.6 22.7 
8 1998 ST96 2.5 31.2 72.4 1.1 12.4 27.6 

 
 
 
 
  



 

 

 

6 Conclusions 

The mass of small bodies in the solar system is a relevant but challenging measurement to obtain. This 
analysis indicates that the point-mass term of small bodies larger than roughly 500 m in diameter can be 
observed from a host spacecraft that tracks locally deployed probes throughout a flyby to an uncertainty 
of better than 5%. Of the estimated asteroid populations, this suggests that gravimetry would be useful for 
roughly 3000 near-Earth asteroids,28 107 main-belt asteroids29 and the vast majority of known comets.30 

The conditions by which this measurement is possible depends on the characteristics of the asteroid (size, 
type), the flyby velocity, and the type of tracking available (angles-only or angles+ranging). This analysis 
indicates that a few (1-3) probes can be very effective for most encounters, with marginal improvement 
for additional probes. However, given practical deployment errors, the system may need to deploy many 
probes to ensure that at least a few arrive close to the target body. The solution accuracy is sensitive to the 
amount of post-encounter time that the probes are tracked. For some instruments, particularly angles-only 
methods, this may require that the host spacecraft maneuver in order to continue tracking the probes for 
meaningful durations (roughly 2-5 days). Long duration tracking of probes flying by large asteroids (>5 
km diameter) can sometimes provide observability of the gravity field’s first spherical harmonic, J2. In 
summary, this method offers a feasible approach to augmenting flyby science. 



 

 
 
 
 
 

7 Next Steps 

The analysis to-date has focused on establishing feasibility in practical mission contexts. Having 
determined that the approach is feasible under reasonable assumptions, there are a variety of compelling 
follow-on activities for this research. These activities can be divided into three broad categories: 
Additional Applications, Simulation Fidelity, and Implementation Readiness. 

 
7.1 Additional Applications 

The research to date has focused on exploring asteroid flybys by spacecraft on interplanetary trajectories. 
There are a variety of other relevant applications or scenarios that the technique could impact. 

 
7.1.1 Binary Flybys 

Approximately 16% of Near-Earth asteroids over 200 m in diameter are thought to be binary systems (two 
asteroids co-orbiting a barycenter).31 In this case, the mass of the system can be estimated by observing 
the orbital period of the two objects. This type of target would make an excellent experimental “control” 
for swarm flyby gravimetry, in that there would two independent methods of determining the gravity. That 
said, one would need to analyze the gravimetry concept in such a system, and characterize the system 
performance when there are two massive bodies in the system. 

 
7.1.2 Planetary Systems 

Many flyby missions operate within planetary systems, such as Galileo at Jupiter, Cassini at Saturn, or the 
proposed Clipper mission at Jupiter. Here, the spacecraft orbits the central planet in resonance orbits with 
moons of interest. The spacecraft collects science on the moon during the short flyby period. These flybys 
have produced gravity models for many moons, giving insight into interior composition. In the case of the 
proposed Clipper mission, gravity science is attempting to help understand subsurface ocean depths and 
properties of Europa. This science is being achieved using the recently developed Deep Space Atomic 
Clock. Even so, the measurements and observability are limited. Swarm flyby gravimetry could potentially 
be a feasible, low-cost means of improving this type of science. 

 
7.1.3 Collaborative Tracking 

If the flyby encounter were near enough to Earth, it’s conceivable that the ground-based assets could 
participate in the gravimetry measurement. For example, one could include radar observations from 
Arecibo or VLBI acting independently or as a component of a bistatic system. 



 

7.1.4 Flybys of Bodies that Outgas or have Atmospheres 

When flying by a moon with an atmosphere (e.g. Titan) or comet that is outgassing, the probe’s orbit will 
be perturbed by atmospheric drag or outgassing. It may be possible to estimate these accelerations in 
addition to the body’s gravity. This estimate would represent an observation of atmosphere density, 
possibly measured at a variety of altitudes simultaneously. 

 
7.1.5 Second Order Measurements 

Dr. Brin of the NIAC External Council suggested that the probes could be designed to offer measurements 
via gravity-gradient torques. Here, two probes would be connected by a thin tether and the orientation 
time-history would be used as a second measurement type. This, and other second order measurements, 
may represent additional observations into the small body’s unknown gravity field. 

 
7.2 Simulation Fidelity 

 
7.2.1 Accelerations 

The current simulation has a number of assumptions and limitations that should be addressed. In terms of 
modeling accuracy, it lacks the following accelerations: 

1. “Third-body” acceleration from additional bodies, e.g. Sun and Jupiter 
 

2. Solar radiation pressure 

3. Higher order gravitational terms associated with the asteroid, i.e. beyond J2 

4. Relativity, especially for higher flyby velocities 
 
In some instances, it may also be useful to quantify or simulate acceleration contributions associated with 
comet outgassing, radiant acceleration due to reflected sunlight or thermal emission, dust impacts, ant 
atmospheric drag. 

Finally, in operation, one would use a known or generated shape model for the small-body that the 
asteroid passed. These are typically generated using the host spacecraft’s on-board imager. Given this, the 
estimation algorithms would directly estimate the density of the object, rather than the mass. That is, the 
partial derivatives would be associated with the acceleration with respect to a constant density. One could 
even consider other parameterizations of density, which would be applicable for moons within planetary 
systems. For example, one could attempt to estimate the density of an inner core and an outer shell of ice. 
This possibility is discussed more in Section 7.1.2. 

 
7.2.2 Numerical Stability 

For poorly performing flyby scenarios, the numerical conditioning of the problem can yield erroneous 
results. Currently, we accommodate these cases by checking the condition number of certain key matrices 
and excluding any results that violate a predefined value. However, a more appropriate approach is to use 
a square-root information implementation of a nonlinear Bayesian estimator, such as an extended Kalman 
Filter. These types of algorithms are known to give a square-root improvement in condition number and 
enable better numerical conditioning. In addition to improving the quality of the result, this will enable 



 

the deployment optimization study described in Section 7.2.4, the results of which are currently limited 
by numerical issues. 

 
7.2.3 Coordinate Selection 

The baseline simulation was constructed in Cartesian coordinates. For angles-only tracking there is 
evidence32 showing that curvilinear coordinates improve observability. It would be prudent to assess the 
benefits of this approach for the highly hyperbolic flyby case. 

Additionally, the simulation is currently constructed using a frame that is located at the center of a 
fixed-velocity asteroid. In truth, the asteroid’s path is nonlinear, owing to the sun’s gravity. As we increase 
the fidelity of the models, the system should be modeled in a truly inertial frame. 

 
7.2.4 Deployment  Optimization 

The current trade-study and example mission used a “ring” deployment approach, in which the probes 
were deployed in a circle centered at the asteroid. Although this approach is intuitive, it doesn’t incorporate 
known sensitivities associated with measurement range, duration, or type. For example, deploying a probe 
on the far side of the asteroid, while giving unique observability into the far side’s gravity, suffers from 
poorer measurement accuracy and shorter measurement duration (since it is drifting away from the host 
faster). Additionally, if its motion is coplanar with the host, there is high observability into the gravitational 
perturbation using range measurements and poor observability using angles-only measurements. An 
optimized deployment approach would incorporate these detrimental factors and select a location that 
maximized the information provided by the measurement set while accounting for expected deployment 
errors. 

 
7.3 Implementation  Readiness 

Although the deployment and tracking methods are likely feasible, there remain a number of key concerns 
that should be readily addressed. 

 
7.3.1 Target and Star Rendering for Camera 

The angles-only tracking associated with the camera is enabled by its high accuracy. This accuracy results 
from the ability to co-image the target and a background star-field. There is a possibility that there will be 
insufficient stars to accurately locate the probe, particularly at short integration times before the probe has 
passed the asteroid. This could be resolved using a medium-to-high fidelity scene renderer, which would 
model the telescope, focal plane, target, star-field, and glare.  

 
7.3.2 Lidar Geiger Mode 

The long range tracking of the Lidar was enabled by a so-called Geiger mode, in which the Lidar’s 
avalanche photodiode responds to as few as a single photon. This gives detection sensitivities out to 
beyond 2000 km. To our knowledge, this mode has not been operated on a spacecraft. The challenge is 
that some portion of background light or thermal noise will generate false-positives. That is, it is so 
sensitive that it will sometimes report a detection and range when none has occurred. To reduce thermal 
noise, one can cool the photodiode, though this comes at a non-trivial cost to implement on-board a 



 

spacecraft. This would need to be assessed to identify what options, including passive cooling, are 
available. To reduce background light, a narrow filter can be used on the receiving optics. Additionally, 
one can use something called “range-gating”, in which the photodiode is left inactive except for a short 
period when one expects to receive a true return. This is equivalent to filtering the incoming photons based 
on range. Even with this technique, there are false positives. However, this rate can be assessed by looking 
at a blank portion of sky and determining the background level of signal. Another approach, which has 
not been implemented to our knowledge, is to use techniques from signals-processing where a known 
time-series of pulses are transmitted and then searched for. This is analogous to pseudorandom codes used 
in GPS detection and tracking. Here, a time-independent (e.g. white noise) background can be separated 
from the time-dependent signal. The eventual goal is to develop a statistical hypothesis test for this 
measurement approach. 

 
7.3.3 Unfolding Retroreflector 

The unfolding retroreflector design illustrated in Figure 2 represents a compact way to store an 
axisymmetric (attitude independent), high reflectivity target probe shape. In it, a set of 8 mirrors would 
unfold to produce a set of 8 corner-cube retroreflectors oriented to form a sphere. There is some concern 
that the tolerances required for Lidar returns are too stringent for a folding design. It would be 
straightforward to characterize or even test these tolerances to identify the sensitivity of surface 
smoothness and orientation to detectability. Pending this investigation, we would continue to consider 
additional designs. 

 
7.3.4 Deployment  Accuracy 

The control and knowledge of the deployment state of the probe is very relevant to the system’s 
performance. From the stand-point of control, the example mission demonstrated that expected 
uncertainties can significantly affect the results, insomuch as distant probe flybys give little to no useful 
information. In terms of knowledge, the angles-only tracking method used by the camera is sensitive to 
the initial uncertainty. For example, if no information were available, the method would likely be 
unobservable for any probe flyby configuration. To this end, it would be useful to better assess and test 
the dispenser design. It would be straightforward to purchase and test the linear motor, which is relatively 
inexpensive, to identify the expected repeatability of the deployment. This test would inform the 
deployment error budget, which is a key parameter in the simulations. 
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