
NASA Engineering and Safety Center Technical Bulletin No. 23-06
National Aeronautics and Space Administration

Considerations for Software Fault Prevention and Tolerance 
Mission or safety-critical spaceflight systems should be developed to both reduce the likelihood of software faults pre-flight and to 
detect/mitigate the effects of software errors should they occur in-flight. New data is available that categorizes software errors from 
significant historic spaceflight software incidents with implications and considerations to better develop and design software to both 
minimize and tolerate these most likely software failures.

www.nasa.gov For more information, contact Lorraine Prokop, lorraine.e.prokop@nasa.gov. 09/19/23    DOC ID: 20230013383

New Historical Data Compilation Summary 
Previously unquantified in this manner, this data characterizes a set of 
55 high-impact historic aerospace software failure* incidents. Key find-
ings are that software is much more likely to fail by producing erroneous 
output rather than failing silent, and that rebooting is ineffective to clear 
these erroneous situations. Forty percent (40%) of software errors were 
due to absence of code, which includes missing requirements or capabil-
ities, and inability to handle unanticipated situations. Only 18% of these 
incidents fall within the software discipline itself, with no incidents related 
to choice of platform or toolset. The origin of each error is categorized 
to focus specific development, test, and validation techniques for error 
prevention in each category. This new data focuses on manifestations of 
unexpected flight software behavior independent of ultimate root cause. 
It is provided for considerations to improve software design, test, and 
operations for resilience to the most common software errors and to aug-
ment established processes for NASA software development.

Implications and Considerations 
These findings indicate that for software fault tolerance, primary consid-
eration should be given to software behaving erroneously rather than 
going silent, especially at critical moments, and that reboot recoverability 
can be unreliable. Special care should be taken to validate configurable 
data and commands prior to each use. “Test-like-you-fly”, including 
sensor hardware-in-the-loop, combined with robust off-nominal testing 
should be used to uncover missing logic arising from unanticipated situ-
ations. Some best practice strategies to emphasize pre-flight and during 
operations based on this data are shown below.

Best Practices for Safety-Critical 
Software Design
Although best efforts can be made prior to flight, software behavior re-
flects a model of real-world events that cannot be fully proven or pre-
dicted, and traditional system design usually employs only one primary 
flight software load, even if replicated on multiple strings. Like designing 
avionic systems to protect for radiation and mistrusted communica-
tion (Byzantine-faults**), safety-critical systems must be designed for 
resilience to erroneous software behavior. NASA Human-Rating re-
quirements call for in-flight mitigation to hazardous erroneous software 
behavior, detection and annunciation of critical software faults, manual 
override of automation, and at least single fault tolerance to software 
errors without use of emergency systems. Each project/designer must 
evaluate these requirements against safety hazards and time-to-effect 
and then invoke appropriate automation fail-down strategies. Common 
mitigation techniques during flight are shown below.

Summary
Significant software failures have occurred steadily since first use in 
space. New data has characterized the behavior of these failures to bet-
ter understand manifestation patterns and origin. The strategies outlined 
here should be considered during vehicle design, and throughout the 
software development and operations lifecycle to minimize the occur-
rence and  impact of errant software behavior.

Terminology
*Software Failure – Software behaving in an unexpected manner 
causing loss of life, injury, loss/end of mission, or significant close-call
**Byzantine – Active, but possibly corrupted/untrusted communication

Erroneous Fail-Silent
Error Manifestations 85%

2%Reboot Effectiveness

Error Origin, % of Total
Code / Logic
Configurable Data
Unexpected Sensor Input
Command/Operator Input

Other Categories, Individually % of Total
Absence of Code
Unknown-unknowns
Computer Science Discipline

15%

58%

15%

40%

38%

16%

11%

16%
18%

Software Error Prevention Strategies
• Utilize a disciplined software engineering and assurance approach with 
  applicable standards 4,5

• Employ logic for handling off-nominal sensor and data input, handling 
  exceptions, and performing check-point restart

• “Test like you Fly” with hardware-in-the-loop, especially sensors, over 
  expected mission durations if possible
• Employ two-stage commanding with operator implication acknowledgement 
  for critical commands

• Validate mission data prior to each use

• Perform off-nominal scenario, fault, and input testing to expose missing 
  code not covered by requirements alone, with multidisciplinary involvement

In-Flight Software Error Detection and Mitigation Strategies
• Provide crew/ground insight, control, and override

• Employ software backups (targeted to full) which are:
         ○ Simple (compared to primary flight software)
         ○ Dissimilar (especially in requirements and test)
• Enter safe mode (reduced capability primary software subset)
         ○ Examples: restore power/communication, conserve fuel
• Uplink new software and/or data (time permitting)
• Design system to reduce/eliminate dependency on software
• Reboot (often ineffective for logic/data errors)

• Employ independent monitoring of critical vehicle automation
         ○ Manual or automated detection, followed by response

References
1. Historical Aerospace Software Errors Categorized to Influence 

Fault Tolerance, Releasing March 2024, https://ntrs.nasa.gov/
citations/20230012909

2. Software Error Incident Categorizations in Aerospace, Aug 2023,               
NASA/TP-20230012154, https://ntrs.nasa.gov/citations/20230012154

3. NPR 8705.2C, Human-Rating Requirements for Space Systems,            
Jul 2017, nodis3.gsfc.nasa.gov/

4. NASA Software Engineering Requirements, NPR 7150.2D, Mar 2022, 
nodis3.gsfc.nasa.gov/

5. Software Assurance and Software Safety Standard, NASA-STD-8739.8, 
9 Sep 2022, standards.nasa.gov

mailto:%20lorraine.e.prokup%40nasa.gov?subject=
mailto:lorraine.e.prokop%40nasa.gov?subject=NESC%20Technical%20Bulletin%2023-06
https://ntrs.nasa.gov/citations/20230012909
https://ntrs.nasa.gov/citations/20230012909
https://ntrs.nasa.gov/citations/20230012154
http://nodis3.gsfc.nasa.gov/
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2D
https://standards.nasa.gov/standard/NASA/NASA-STD-87398

