Super Ball Bot - Structures for Planetary Landing and Exploration

Vytas SunSpiral (Stinger Ghaffarian Technologies)

Adrian Agogino

David Atkinson

(David Atkinson - University of Idaho)

NASA Ames Research Center (ARC) Intelligent Systems Division (Code TI) Intelligent Robotics Group (IRG) Robust Software Engineering (RSE)

Background & Overview

- Hardware Developments
- Landing Analysis & Tests
- **NTRT Simulator**
- **Controls Research**
- **Future Work**
- Media and Papers

Tensegrity

First explored by Kennith Snelson in 1960's

Named by Buckminster Fuller: "Tension" + "Structural Integrity"

Tensegrity and Biology

Donald Ingber, Harvard U.

Steve Levin's Biotensegrity

Copyright 2006 Tom Flemons

Copyright 2006 Tom Flemons

Tensegrity Force Distribution Properties

Slight increase in force

- High Strength to Weight Structure
- Minimize points of local weakness Applied force
- No lever arms to magnify forces
- Passive Global Force Distribution

Multi-Function: Unpacking, Landing, & Mobility

Planetary Exploration Mass Chart

	Pathfinder	MER	MSL	Huygens	Tensegrity
Entry Mass (kg)	587	831	3301	320	140
Landed Mass (kg)	372	540	943	223	100
Rover Mass (kg)	11	175	943	0	100
Science Payload and Support Avionics (kg)	8	146	723	223	70
Productive Science Mass Percentage	1%	17%	22%	69.7% No Mobility	50%

- Background & Overview
- **Hardware Developments**
- Landing Analysis & Tests
- **NTRT Simulator**
- **Controls Research**
- **Future Work**
- Media and Papers

ReCTeR Prototype

New Design: Modular "End-Cap"

New Design: Modular "End-Cap"

- Background & Overview
- Hardware Developments
- Landing Analysis & Tests
- **NTRT Simulator**
- **Controls Research**
- **Future Work**
- Media and Papers

Prototype Drop Tests – 10m (30')

Lander w/ Payload

Payload Protection Analysis

Payload Mass Drives Spring Stiffness

Instrumented Drop Tests

- Background & Overview Hardware Developments Landing Analysis & Tests **NTRT Simulator** Controls Research
- Future Work
- Media and Papers

NASA Tensegrity Robotics Toolkit (NTRT)

- Uses Bullet Physics Engine
- Controls for complex environmental interactions
- First community hub to share software for tensegrity robots.

Open Source Release Status and eventual download at: http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/

Calibration of NTRT w/ Motion Capture

Good accuracy during Dynamic Motions

- Background & Overview Hardware Developments Landing Analysis & Tests
- **NTRT Simulator**
- **Controls Research**
- **Future Work**
- Media and Papers

Control Problem

Challenging Control Problem

- Many control points
 - Up to 30 on simple design
 - Many more on complex structures
- Controls nonlinear
- Controls coupled
 - Move one component and most others move
- Control is oscillatory
 - Structure oscillates after control move is done

Solution

- Distributed Control: have each component control itself
- Learn / evolve control parameters

Open Loop Controls

Closed Loop Control & Goal Directed

- Sense environment
- Make control decisions based on state

Advantages:

- Can head towards targets
- Can move based on terrain conditions
 - Get out of tough spots
- More flexible control

"Flop and Roll"

- Determine orientation of ground elements
- Choose flop action to go to desired direction
- Mapping from state to action determined by neural network with evolutionary algorithms

Possibilities

 Already: Rolling hills, small obstacles, up 7% grade, follow target, multi-robot coordination

Possibilities:

- Adjust to terrain/environment conditions
- Change control style for steep hills
- Change shape to maneuver tight spaces

- Background & Overview
- Hardware Developments
- Landing Analysis & Tests
- **NTRT Simulator**
- **Controls Research**
- **Future Work**
- Media and Papers

Finish end-cap/rods and build ball robot

Controls for different environments

Different Structures

Payloads

- Background & Overview
- Hardware Developments
- Landing Analysis & Tests
- **NTRT Simulator**
- **Controls Research**
- **Future Work**
- **Media and Papers**

Seven Tensegrity Papers & Two Theses

Vytas SunSpiral, George Gorospe, Jonathan Bruce, Atil Iscen, George Korbel, Sophie Milam, Adrian Agogino, David Atkinson, "Tensegrity Based Probes for Planetary Exploration: Entry, Descent and Landing (EDL) and Surface Mobility Analysis," International Journal of Planetary Probes, June 2013.

Brian Tietz, Ross Carnahan, Richard Bachmann, Roger Quinn, and Vytas SunSpiral, "Tetraspine: Robust Terrain Handling on a Tensegrity Robot Using Central Pattern Generators," In Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2013), Wollongong, Australia, July 2013.

Atil Iscen, Adrian Agogino, Vytas SunSpiral, and Kagan Tumer. "Robust Distributed Control of Rolling Tensegrity Robot" In proceedings of Autonomous Robots and Multi-robot Systems (ARMS) Workshop, Saint Paul, Minnesota, May, 2013.

Atil Iscen, Adrian Agogino, Vytas SunSpiral, and Kagan Tumer. "Controlling Tensegrity Robots through Evolution" In proceedings of Genetic and Evolutionary Computation Conference, (GECCO 2013), Amsterdam, The Netherlands, July 6-10, 2013.

Atil Iscen, Adrian Agogino, Vytas SunSpiral, and Kagan Tumer. "Learning to Control Complex Tensegrity Robots." In proceedings of Twelfth International Conference on Autonomous Agents and Multiagent Systems (AAMAS), Saint Paul, Minnesota, May, 2013.

Jeffrey Michael Friesen, Alexandra Pogue, Thomas Bewley, Mauricio de Oliveira, Robert E. Skelton, Vytas SunSpiral, "A Compliant Tensegrity Robot for Exploring Duct Systems", To Appear in Proceedings of International Conference on Robotics and Automation (ICRA), Hong Kong, 2014

Jonathan Bruce, Ken Caluwaerts, Atil Iscen, Vytas SunSpiral, "Design and Evolution of a Modular Tensegrity Robot Platform", To Appear in Proceedings of International Conference on Robotics and Automation (ICRA), Hong Kong, 2014

Steve Burt, UCSC, Masters, 2013, "Kinematics Algorithms For Tensegrity Structures"

Jérémie Despraz, Ecole Polytechnique Fédérale de Lausanne (EPFL), Masters, 2013, "Superballbot - Structures For Planetary Landing And Exploration"

Related Center Innovation Fund

Application of Carbon Nanotubes to Tensegrity Robots

In Collaboration with Michael Meador, Manager of the Nanotechnology Project Game Changing Development Program, NASA Glenn Research Center

This project will develop **multi-function tendons capable of routing power and data while also tolerating actuation and structural load transfer.**

Looking at both carbon fiber and carbon nanotube yarns

Team Tensegrity

Atil Iscen	Oregon State Universit		
Adrian Agogino	UC Santa Cruz.		
Jonathan Bruce	UC Santa Cruz.		
Steve Burt	UC Santa Cruz.		
In Won Park	KAIST Post Doc.		
Jeremie Despraz	EPFL, Switzerland.		
Ken Caluwaerts	Ghent University, Belg		
Brian Tietz	CaseWestern Reserve		
George Korbel	University of Idaho		
Sophie Milam	University of Idaho		
Kyle Morse	University of Idaho		
Drew Sabelhaus	UC Berkeley		
Kyunam Kim	UC Berkeley		
Jeff Friesen	UC San Diego		
Alexie Pogue	UC San Diego		

niversity.

Special Thanks to Terry Fong for his support!

Vytas.SunSpiral@nasa.gov Adrian.k.agogino@nasa.gov learn more: www.magicalrobot.org

