Deep Space Optical Communications

28 July 2015 Tom Glavich

Deep Space Optical Communications (DSOC)

- Deep Space Optical Communication Introduction
- Technology Development Maturation Flow
- Technology Development Progress
 - Flight System
 - Ground System
- Path to Flight Readiness

Deep Space Optical Communication Project

- The Deep Space Optical Communication Project is in transition from a technology development effort to a flight demonstration.
- DSOC is part of the Discovery 2014 AO
 - Flight Component specifications were part of the Tech Day Presentations
 - We are on a path that will have the DSOC System at TRL 6 in time to support Discovery 14 selected payloads review and delivery cycle
- The DSOC Project includes three segments
 - Ground Uplink Station
 - Flight Laser Transceiver
 - Ground Receiving Station

Flight Laser Transceiver

Deep Space Optical Communication Technology Challenges

- Deep Space Optical Communications are different from near earth communications
 - One way light times are minutes rather than seconds
 - Distances are large enough that signals are photon limited
- Communication Scenario
 - Uplink signal communicates with DSOC flight terminal by dead reckoning, providing a beacon and uplink data
 - Uplink signal at the spacecraft is photon limited
 - The flight system tracks the beacon, and using spacecraft ephemeris and attitude information calculates the point ahead angle required for downlink
 - The downlink beam is directed to where Earth will be
 - The downlink beacon is photon limited on arrival at Earth
 - The sun is often very near the field of regard of the Flight Terminal

DSOC Major Components

Flight Terminal

OCTL Uplink

Palomar 5 meter Telescope

DSOC Flight System Specification

Flight Laser Transmitter

- Laser
 - 4 W average Power
 - Wavelength 1.55 microns
- Telescope
 - 22 cm aperture
 - Capable of pointing up to 3 degrees of sun
- Mass
 - < 38 kg
- Power
 - < 100 W

Ground Systems

- Uplink
 - OCTL Telescope (1 meter)
 - 5 KW average power
 - Wavelength 1.064 microns
- Downlink
 - Palomar 5 meter telescope
 - Operates day or night
 - Can point within 12 degrees of sun
 - JPL developed superconducting nanowire photon counting detector

DSOC Technology Maturation

Optical Telescope Assembly (OTA)

- OTA includes the optical bench, primary mirror mounting assembly, bench optics assembly, and closeout plate
- OTA serves as an integrating structure for the Photon Counting Camera, Floating Platform Electronics, and Isolation and Pointing Assembly

Bench Optics Assembly

Photon Counting Flight Camera

Avalanche photodiode and ROIC

TRL 5 Detector

- Detector developed by Princeton Lightwave (PLI)/Lincoln Labs
 - Detector fabricated by Princeton Lightwave
 - Readout Integrated Circuit (ROIC) by Lincoln Labs
 - Integrated into a camera by Princeton Lightwave
 - First unit (development detector and electronics)delivered and in test at JPL
 - PLI on contract for TRL 5 delivery

Laser Transmitter

- Laser developed through series of Small Business Innovative Research Contracts with Fibertek
- Completed life-test
- Radiation testing of optical amplifier
 - Rad hard fiber
 - Other key components radiated with negligible degradation: pump combiner, WDM and seed laser
- Completed Laser Electrical Module driver update
 - Pre-cursor for space qualified design in process
- Completed a plan for LEM vacuum compatibility
- Defined fiber patch cord and output collimator
 - Identified candidate fibers and connectors

 >15% power efficiency demonstrated (electrical in → LOM optical output)

Point Ahead Mirror

- Mounts to fixture on optical bench
- Shim to center pointing down the optical axis
- Delivered by Centrac

Vibration Isolation Technology

CDI Vibration Isolated Platform

Electro-Magnetic Isolation

- Developed by Controlled Dynamics
 (CDI) under Small Business
 Innovative Research (SBIR) contracts
 - Integral actuator, sensor and electronics
 - First units to be delivered in early 2016
 - Similar implementations flown on sounding rockets, aircraft and balloons

Vibration Isolation and Pointing

TRL-3 Demonstration

Demonstrate closed loop tracking in a using laboratory development electronics and optics, developmental vibration isolation hardware and a commercial CCD camera.

- Mated FLT to disturbance emulator
- Added accelerometers to monitor disturbance
- Implemented gravity off-load using spring suspension
- Aligned FLT to beacon emitted from Laser Test Evaluation Station (LTES)

LTES used for generating 20 cm diameter collimated beacon

FLT integrated to 2-axis disturbance emulator

Gravity off-load using spring suspension (beacon path is shown in red)

TRL 6 Demo

• GROUND DETECTOR

Tungsten silicide (WSi) SNSPD Detector Array

- Verified 12-pixel array (Eff. dia. 65 μm) during LLCD
- In FY14 demonstrated 64-pixel array (Eff. dia. 160 μm)
- Developing 320 µm, 64-pixel array

GROUND SUPPORT EQUIPMENT (GSE)

- Simulate

- Spacecraft disturbance
- Anti-gravity suspension
- Ground beacon laser
- Ground Receiver

320-µm, 64 pixel WSi SNSPD Array

11-foot Thermal-Vacuum Chamber

Ground Detector Technology

Photomicrograph of 64 nanowire array

Ground Detector

- Micro devices Laboratory Development
 - 64 nanowire array
 - Functions as photon counting detector
 - Will be located at Coudé focus of 5 meter Hale telescope
 - Operates at 1K
 - Initial devices in test

Technology Demonstration Downlink Ground Terminal

DSOC Technology Readiness to Flight

Summary

- DSOC Technology Development Progress is compatible with the Discovery Program Schedule
- Moving to complete TRL 3 6 sequence while making hardware and software designs as flight like as possible
- Ensuring that the Flight and Ground Systems remain closely coupled and compatible
- Identified paths for technology development to flight and ground operational readiness