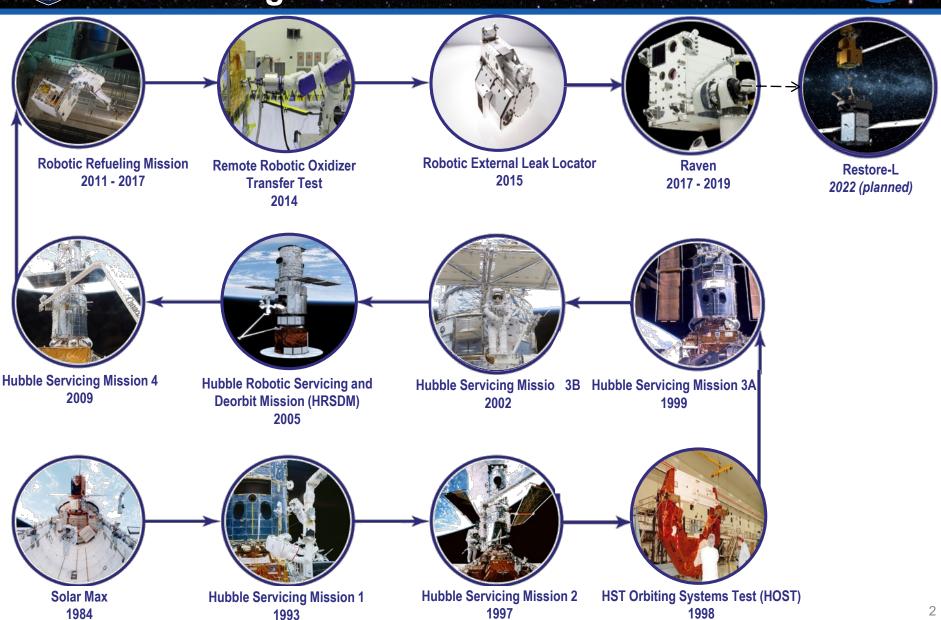


Satellite Servicing, Assembly and Manufacturing Update: Restore-L and IRMA

NAC Technology, Innovation and Engineering Committee Meeting

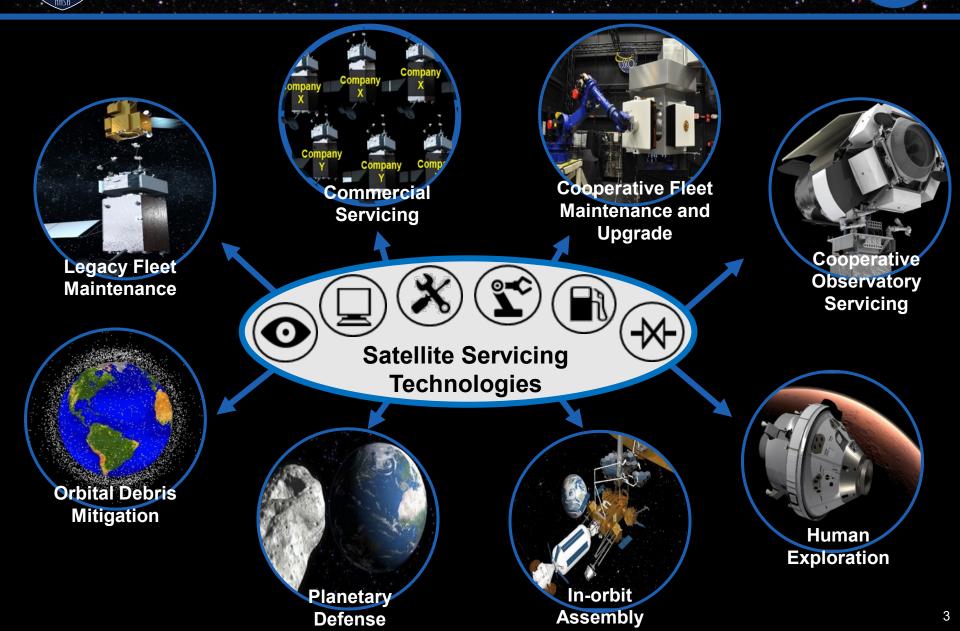
April 30, 2019

Benjamin Reed

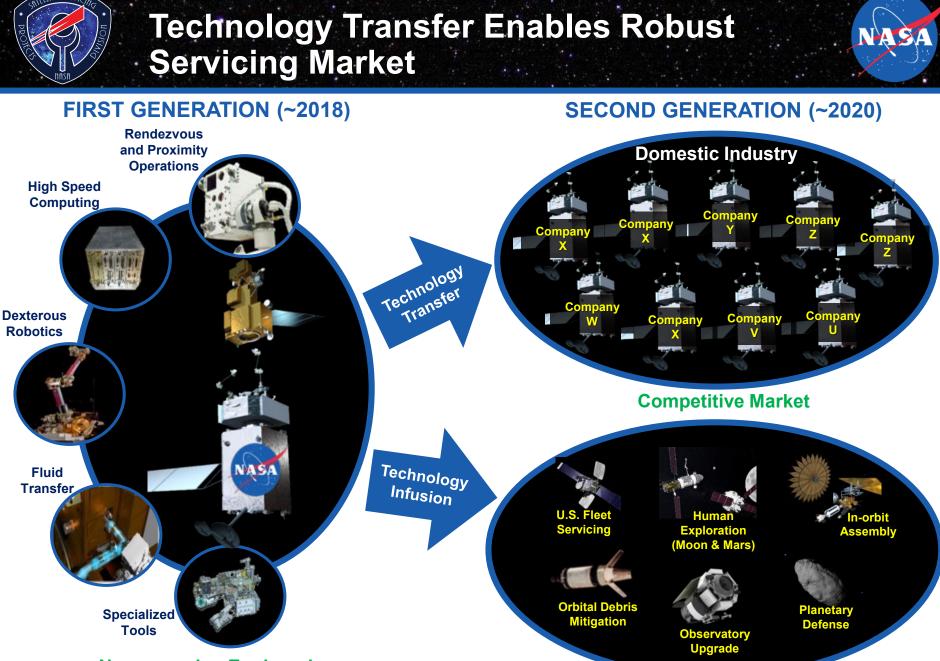

Deputy Director

Satellite Servicing Projects Division

NASA's Goddard Space Flight Center



NASA's Rich Heritage of In-Orbit Satellite Servicing



Future Objectives

NAS

Non-recurring Engineering Standards Development

Application of Developed Technology

4

Satellite Servicing Technology Portfolio

relative navigation system Sensor suite (visible, infrared, lidar)

Algorithms (range, bearing, pose) Rendezvous & proximity operations

servicing avionics & software

SpaceCube processor Video Distribution & Storage Unit

tool drive system & tools

NASA Servicing Arm – 7 DoF Robot Electronics Unit Robot Flight Software

robot system

Advanced Tool Drive System Sophisticated servicing tools (gripper, blanket cutter, wire cutter, cap removal, & nozzle tool) and adapters

fluid transfer system

Propellant Transfer Assembly Zero-g fluid flow meter Hose management system Cryogen and xenon transfer systems

cooperative servicing aids

Rendezvous decals Cooperative Servicing Valve

SATELLITE SERVICE

Desired Applications

Inspection

- Space Situational Awareness
- Proximate / exquisite

Relocation

- Debris removal
- Derelict satellite
- Functional satellite
 - Orbit insertion / correction
 - Station keeping
 - Decommissioning
- Mega constellation maintenance

Refueling

- Rapid Reconstitution of Capability
- Chemical (Hypergolic), EP (Xenon), Cryo, Pressurant
- ECLSS commodity

Kepair

- Simple nudge/poke/pull/snip
- External
- Internal

Replacement

- S/C component
- Instrument / payload

Augmentation

Leave behind package

Assembly

- Persistent platform
 - \circ Remote Sensing
 - Robotic facility
- Outpost / Gateway
 - Construction
 - o Maintenance
- Observatory / Telescope
- Solar Power Facility

Manufacturing

- Structural members / struts / truss
- Robotic tools
- Simple components
- Thin film deposition
- Contamination removal

ᄎ Mining

- Sample collection / manipulation
- Prospecting
- ISRU infrastructure

- Lunar
- Mars
- Comet
- Asteroid

NASA Activities



Technology

Robotic Refueling Mission 3

Restore-L

In-Space Manufacturing and Assembly Tipping Point

Science

Large Telescope Assembly (iSAT, FASST)

Astrophysics Decadal Studies

Planetary/NEO/Lunar

0 3

Human Exploration

ISS - Raven

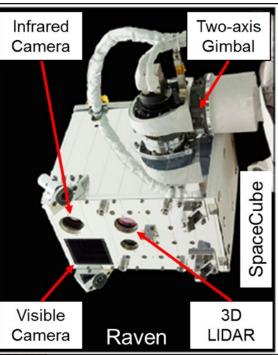
Lunar Gateway

Reusable Lunar Lander

ISS - Robotic External Leak Locator / Robotic Stowage

Power Propulsion Element

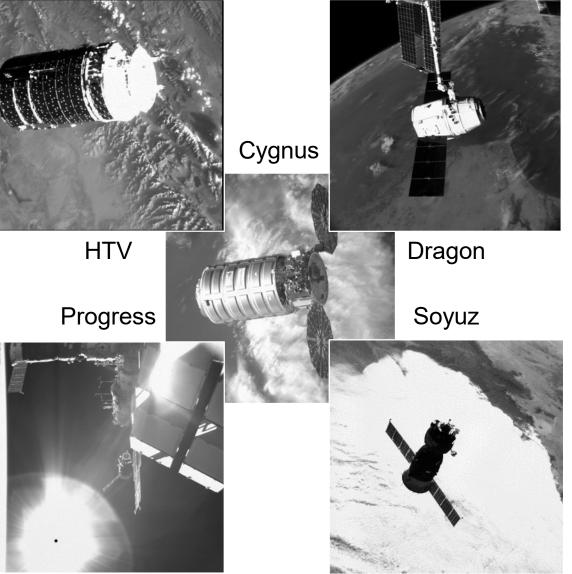
Journey to Mars


Raven is an on-orbit testbed designed to mature relative navigation sensors & algorithm technologies

 Raven tracks incoming visiting vehicles to the International Space Station (ISS)

Raven

 Launched on a Space-X Dragon (CRS-10) in February, 2017

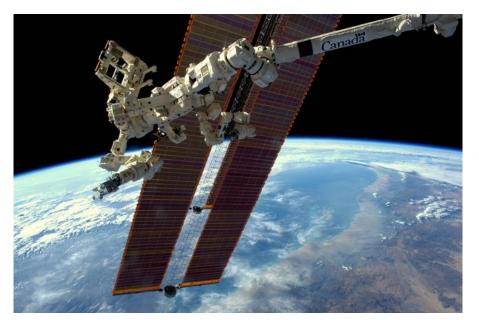


Raven On-Orbit Operations To

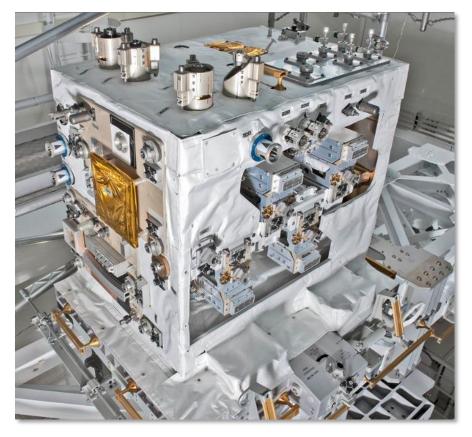
• SpaceX Dragon (CRS-10) (depart): 3/19/17

Date

- Orbital/ATK Cygnus (OA-7): 4/22/17
- SpaceX Dragon (CRS-11): 6/5/17
- Russian Progress (MS-06): 6/16/17
- Russian Soyuz (MS-05): 7/28/17
- SpaceX Dragon (CRS-12): 8/16/17
- Orbital/ATK Cygnus (OA-8): 11/14/17
- SpaceX Dragon (CRS-13): 12/16/17
- Russian Soyuz (MS-07): 12/19/17
- Russian Soyuz (MS-08): 03/23/18
- SpaceX Dragon (CRS-14): 04/04/18
- Orbital/ATK Cygnus (OA-9): 05/24/2018
- Russian Soyuz (MS-09): 06/08/2018
- SpaceX Dragon (CRS-15): 07/02/2018
- Russian Progress (MS-06): 07/10/2018
- JAXA H-II Transfer Vehicle (HTV7): 09/27/18
- NG Cygnus (NG-10): 11/19/2018


Robotic External Leak Locator

RELL helps the Space Station locate and precisely characterize leaks, eliminating the need for risky spacewalks to identify the source. RELL can also be used in other contexts in-orbit to identify leaks.



Robotic Refueling Mission: Phase 1 & 2 Overview

RRM launched 2011 and 2013, and tested tools, technologies and techniques to refuel and repair satellites in orbit – especially satellites not designed to be serviced

Tertiary Cap Wire Cutting

Actuation Nut Wire Cutting

Nozzle Tool Connection

Tertiary Cap Removal

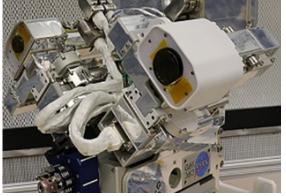
Safety Cap Removal

Nozzle Tool Release from Quick Disconnect



Robotic Refueling Mission 3 (**RRM3**)

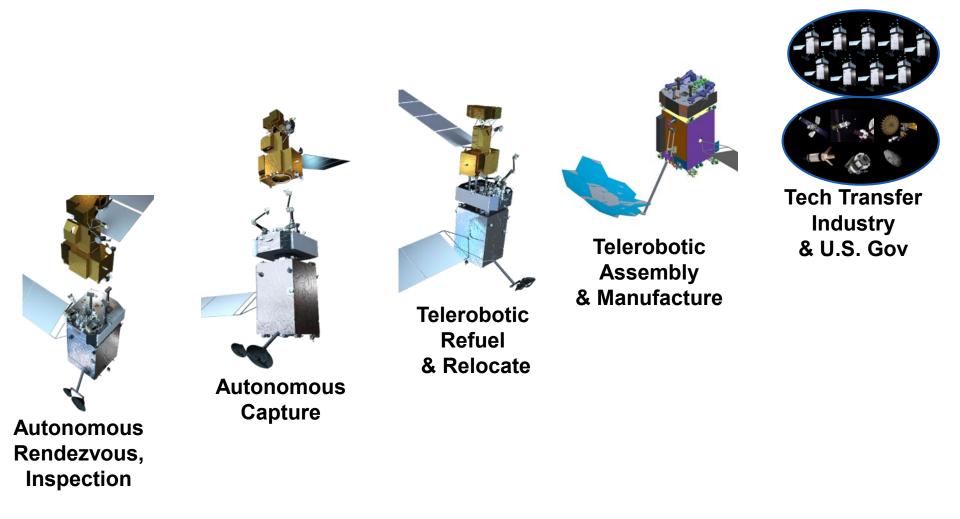
RRM3 objective: mature the tools and techniques for the transfer of cryogenic fluid in orbit. The ability to replenish this critical consumable is important for maintaining spacecraft and for enabling long duration space travel to destinations like the Moon and Mars.


Fluid Transfer Module (FTM)

Visual Inspection Poseable Invertebrate Robot 2 (VIPIR2)

Cryogen Servicing Tool CST)

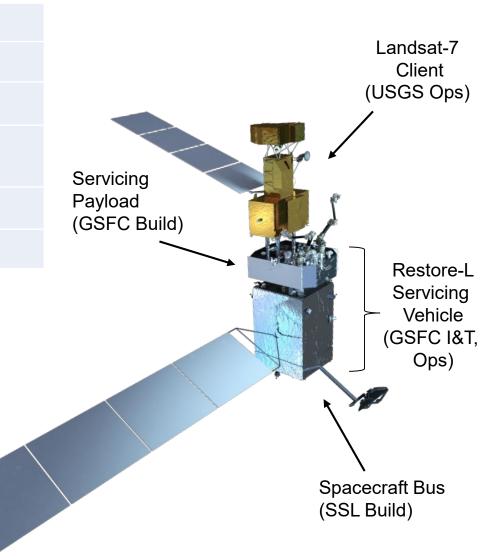
Multi-Function Tool 2 (MFT2)


RRM3 Status

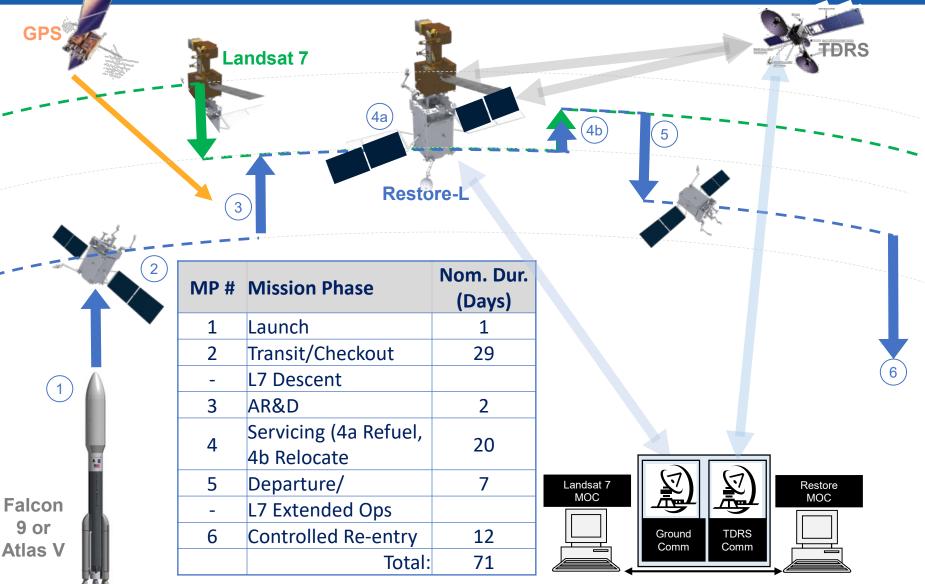
- Launched Dec 5, 2018 and installed on ELC 1
- Nominal operations
 - Cryocooler ops for 4 months zero boil off
 - RF mass gauge (new technology)
 - Pan/Tilt unit nominal operation
 - Motorized zoom lens nominal operation
- Anomaly occurred on April 8, lost ability to power the liquid methane cryocooler
- Temperature of the liquid methane began to rise as expected
- Anomaly team quickly convened and several attempts were made to restore power to cryocooler
- ISS notified the adjacent experiments of the situation
- On April 11 the pressure of the liquid/gaseous methane exceed the safety burst disk pressure and the methane vented to space, as designed. Root cause is under investigation.
- At no point were the ISS crew members at risk
- The tool pedestal with three tools was successfully installed on April 12
 - Cryogen Servicing Tool
 - Visual Invertebrate Poseable Inspection Robot 2 (VIPIR2)
 - Multi-Function Tool 2
- Operations of the three tools are planned for summer 2019
- <u>https://www.nasa.gov/feature/goddard/2019/robotic-refueling-mission-3-update-april-12-2019</u>

Restore-L

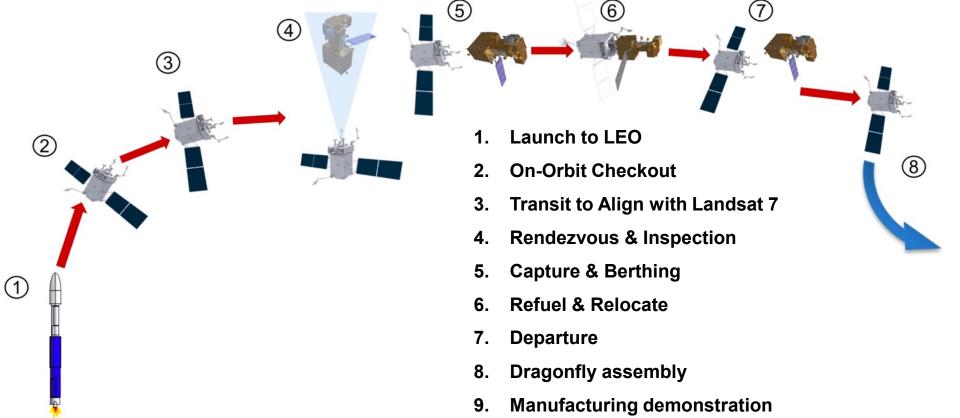
- 1. Demonstrate national satellite servicing capabilities
- 2. Advance essential technologies for NASA and national goals
- 3. Kick-start a new U.S. commercial servicing industry, establishing best practices



Mission Overview

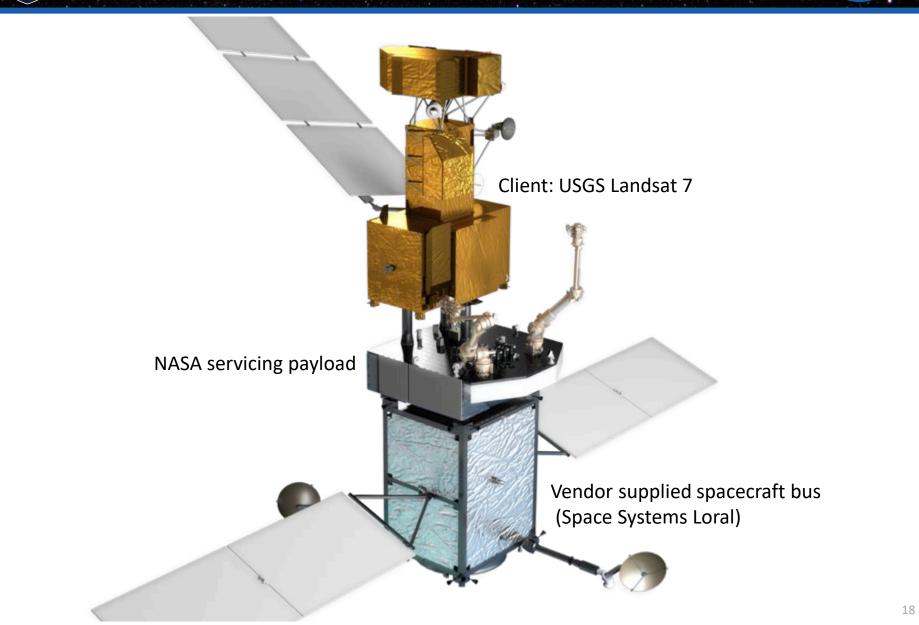

Category/Class	Category 2 / Class C
Mission Life	1 year
Launch	December 2022
Launch Vehicle	Domestic: Atlas V or Falcon-9
Launch Site	VAFB
Client	Landsat-7

Restore-L will demonstrate

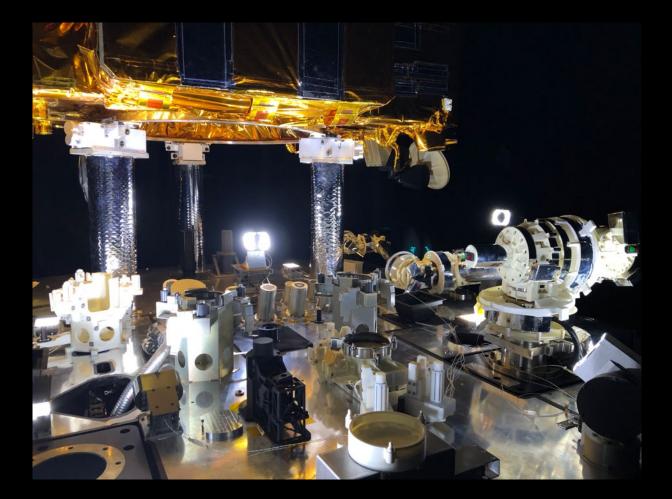

- Autonomous rendezvous and inspection
- Autonomous capture of client satellite
- Tele-operated robotic servicing
- Refueling of client satellite
- Relocation of client satellite
- Release and safe departure from client
- 'Best Practices' for safe servicing operations
- Assembly of an RF reflector

Mission Phases and Architecture

Restore-L Mission Overview

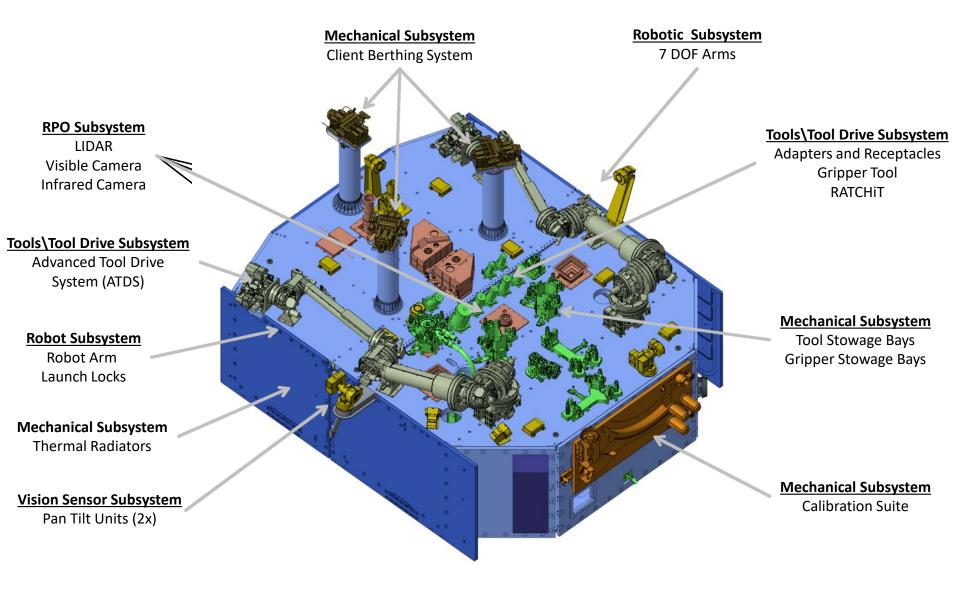

14. Disposal

10. Available for Extended Mission payloads


Mated Operations: Refueling & Relocation

NAS

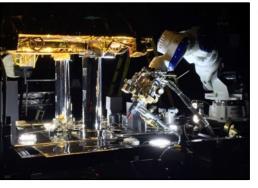
Restore-L Mated Configuration



"The information contained on this page is subject to the constraints listed on the cover."

NASA

Payload Overview



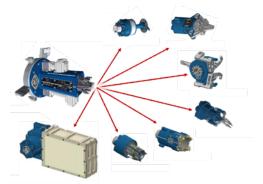
Restore L Subsystems

Vision

- ATDS cameras
- Floodlights
- Fixed Situational Awareness cameras
- Long Range Inspection Camera
- PTU Situational Awareness cameras

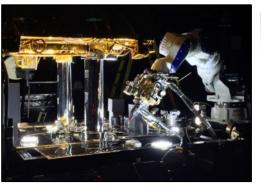
Robot

- 7 degree of freedom, dexterous robotic arm with force torque sensor
- Robot Electronics Unit (REU) and Advanced Tool Drive System
- Robot Software



Tools / Advanced Tool Drive System

- Gripper, Refueing and RaChit tools
- Blanket manipulation, wire cutting cap removal and thermal closeout adapters
- Advanced Tool Drive System



Restore L Subsystems

Avionics

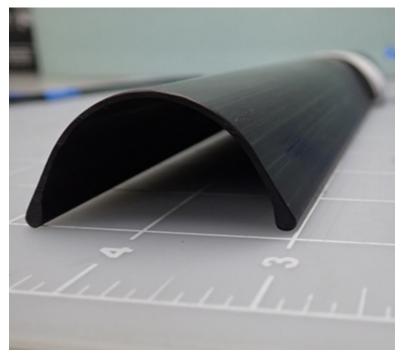
- ATDS cameras
- Floodlights
- Fixed Situational Awareness cameras
- Long Range Inspection Camera
- PTU Situational Awareness cameras

Mechanical

- 7 degree of freedom, dexterous robotic arm with force torque sensor
- Robot Electronics Unit (REU) and Advanced Tool Drive System
- Robot Software

Propellant Transfer System

- Cooperative Servicing Valve
- Guidance and navigation aides
- Cooperative thermal protection systems


Potential for Dragonfly on Restore-L

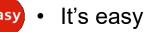
- Restore Project is presently establishing a cost and schedule baseline for accommodating Dragonfly – 30 day study concluded good compatibility with Restore-L mission
- Dragonfly is an on-orbit assembly demonstration
- STMD Tipping Point award to SSL for assembly of large RF reflector
- The intended application of assembly capability is for communications, primarily in GEO
- Includes dedicated robotic arm for assembly

Potential for MakerSat on Restore-L

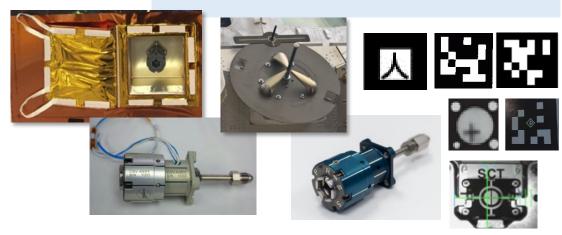
- Restore Project is presently establishing a cost and schedule baseline for accommodating MakerSat – 30 day study concluded good compatibility with Restore-L mission
- MakerSat is an on-orbit manufacturing demonstration complementary with in space assembly
- MakerSat will manufacture and characterize a meters-long Carbon-Fiber/PEEK beam
- Validates pultrusion process for forming longerons and cross-members in Trusselator
- CF/PEEK feedstock tuned to produce desired CTE behavior
- Simple interface to Host S/C:
 - One power line, one data line, separable mechanical interface
 - Deploys a harness/optical fiber along beam

STITUTE SERVICES

Cooperative Servicing Aids


Cooperative servicing aids are elements to new architectures, programs and projects which can help make satellites more easily serviceable.

Why You Should Make Your Satellite Serviceable


- G
- It enhances resilience
- It allows for continued innovation and improvements (e.g. Hubble)

Products that make it possible

- Photos
- Decals
- Robotic Interfaces (valves, fixtures, connectors)
- ORUs designed for replacement
- Sub-assemblies and components built for in-space assembly

- It's cost-effective
- The technology is ready
- Your competition won't wait

Serviceability Is a Spectrum

	Remote	Capture &	Refuel &	Replace	Replace	Repair &
High	Survey &	Relocate	Replenish	(Bus Module)	(Instrument	Augment
	Rendezvous	Docking features		, ,	`Module)	, i i
	RF Crosslink	Berthing features	Redesigned Fluid System	Servicing Power Mode	High Pin Count/ Data Rate Blind Mate connectors	EVA Aids
ļ	Onboard Navigation	Appendages accommodate	Cooperative Fluid	Coolant Interface	Coolant Interface	EVR Aids
Level of Effort	Laser Reflectors	servicing loads	Port	Heat Exchange Interface	Heat exchange Interface	Grapple Fixtures
Level	Rendezvous ACS Mode (Inertial hold)	Berthing Fiducials	Extra Pressurant	Electrical Blind Mate Connector	Mechanical Latch	
	(Inertial hold)	Grapple Features	Fill Drain Valve	Mechanical Latch	Precision Alignment Guide	Electrical Expansion Ports
	IR Fiducials	Grapple Fiducials	Assy Thermal Design	Alignment Guide	, i i i i i i i i i i i i i i i i i i i	(Test ports and spare services
	Visual Fiducials	Capture ACS Mode (Free Drift)	Debet Eriendhu	Grasp Feature and Fiducial	Grasp Feature and Fiducial	routed here)
	Reflective Tape	Marman Ring	Robot-Friendly FDV Closeout	Captive Fasteners Design to	Captive Fasteners Design to	Mechanical Fittings
Low	Documentation, Photos, CAD	Documentation, Photos, CAD	Documentation, Photos, CAD	accommodate Ground Accessibility	accommodate Ground Accessibility	

NAS

SSPD Mission Technologies Applicable to **In-Space Assembly**

Mechanical, Electrical, Blind Mate, Robotic

Tools, Robotic Operations, Refueling

Rendezvous Proximity Operations

(RPO)

Cryogenic Transfer (life support), Xenon Transfer (SEP), Cooperative Service Valve

RPO, Avionics, Robot System, Tool Drive System & Tools, Fluid Transfer System, Cooperative Servicing Aids

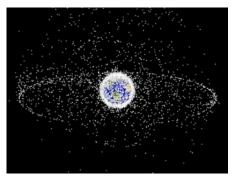
Establishing Standards – Paving the Way to the Future

- By executing the first-of-its-kind satellite servicing mission thoughtfully and responsibly, NASA aims to establish standards and a global precedent for future servicing activities in space.
- NASA provides subject matter expertise to Consortium for Execution of Rendezvous and Servicing Operations (CONFERS) which brings together government and industry to research and develop consensus-derived technical and operations standards for servicing and rendezvous and proximity operations.
- These standards would provide the foundation for a new commercial repertoire of robust space-based capabilities and a future in-space economy.

Tech Transfer

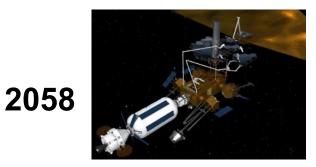
- NASA
- Industry Day-NASA transfers commercial rights via nonexclusive licenses to domestic entities
 - Three Industry Days: 4/2017, Jan 2018, Dec 2018)
 - Next Industry Day on 9/18/19
 - ~40 companies attended past Industry Day
 - 42 formal requests for information for SSPD tech
- Technology catalog with over 200 items
- Licenses
 - Altius
 - Weintraus
 - SSL (pending)
- Space Act Agreement
 NGIS

Enabling a New Era



NĄ

Active Satellites: < 140


Active Satellites:~1,400

Active Satellites: ~14,000 ?

2018

https://sspd.gsfc.nasa.gov/

@NASA.Satellite.Servicing

@NASA_SatServ