Low-Density Supersonic Decelerators An Update

Dr. Mark Adler Dr. Ian Clark

Mars Entry, Descent, and Landing Technology State of the Art

Square-Cube Law

$$F_{drag} = rac{1}{2}
ho v^2 C_D A$$

 $F = ma$
 $a_{drag} = rac{1}{2}
ho v^2 rac{C_D A}{m}$

 $\begin{aligned} A \sim L^2 \\ m \sim L^3 \\ a_{drag} \sim \frac{A}{m} \sim \frac{1}{L} \end{aligned}$

LDSD: Low-Density Supersonic Decelerator

6m Attached Torus Overview

8m Attached Isotensoid

30.5m Supersonic Parachute

Transonic Dynamics Tunnel, October 27, 2014

Transonic Dynamics Tunnel, October 30, 2014

Rocket Sled PDV2 SSRS, February 18, 2015

Peak Load ~120k lbf

Rocket Sled SDVE2 SIAD-E, April 17, 2015

SFDT2 Balloon Launch, June 8, 2015

SFDT2 High Altitude Supersonic Flight

SFDT2 High Resolution Deployments

SFDT2 Recovery

SFDT2 Damage Progression

LDSD S501-2 2015-06-08 IRIC Time 21:37:33.637860 Time from Drop 153:192 s Mach No. 2.25 Dynamic Pressure 539 Pa Total AoA 3.1 deg SSRS Axial Load 75060 lbf LDSD SPDT-2 2015-06-08 LRtc Time 21:37:33.641563 Time from Drop 153.196 s Mach No. 2.25 Dynamic Pressure 538 Pa Total AoA 3.1 deg SSRS Axial Load 77532 lbf

LDSD SF01-2 2015-06-08 IRIC Time 21137:33.645267 Time from Drop 153.199 s Mach No. 2.24 Dynamic Pressure 537 Pa Total AoA 3.1 deg SSRS Axial Load 79292 lbf

LDSD SEDT-2 2015-06-08 IRIG Time 21:37:33.648971 Time from Drop 153.203 s Mach No. 2.24 Dynamic Pressure 535 Pa Total AoA 3.0 deg SSRS Axial Load 78222 lbf

SFDT-2 Investigation Status

- SFDT-1 yielded best set of data on a supersonic parachute, ever
- SFDT -2 was even better
- Parachute advanced through inflation process much further than in SFDT-1 and ultimately failed at full inflation
 - SFDT-1 remedy was successfully demonstrated
- Three families of hypotheses being actively worked for SFDT-2 parachute
 - Material and fluid inertial forces significantly larger than expected
 - Pressure forces significantly larger than expected and asymmetric
 - Material/Seam and Joint strength not as expected under loading environment
- We are in the midst of a paradigm shift in our understanding of supersonic parachutes

Key LDSD Accomplishments in the Past Year

<u>Technologies</u>

- Successfully conducted 2nd Supersonic Flight Dynamics Test
- Successfully matured two separate supersonic decelerators to TRL-6
 - SIAD-R and ballute both largest ever of their kind and both exceeded performance expectations
- Successfully conducted structural and inflation test of 8m SIAD-E
 - SIAD-E progressing towards TRL-5
- Successfully conducted three separate structural tests of a 30.5 m parachute
 - Each test yielded valuable insight into design and construction details of large parachutes
- Continued to rewrite the textbook on supersonic parachutes
 - Lessons learned have been shared with industry and numerous flight projects utilizing soft good decelerators

Documentation

- Presented over two dozen papers at aerospace technical conferences
 - Including five full sessions at the AIAA Aerodynamic Decelerator Systems Conference
- Completed 400+ page SFDT-1 Post-Test Report
- Completed draft of SIAD-R Technology Archive Report
 - Continuing to progress on other Technology Archive Report