

EXPLORESPACE TECHNOLOGY DRIVES EXPLORATION

Trudy Kortes Program Director, Technology Demonstrations Space Technology Mission Directorate

Technology Demonstrations Overview

Objectives

- Maintain a portfolio of projects that support STMD's Strategic Investment Plan developed from the Agency's future mission needs
- Partner with organizations that provide cost sharing and technology transition or infusion opportunities
- Conduct cross cutting system-level demonstrations that reduce risk and/or achieve flight readiness of new technologies and capabilities for exploration missions, science missions, OGA's and industry use
- Enable transition and/or infusion of technologies or capabilities into NASA missions and the Nation's space enterprise

Goal -- Bridge the gap between development and mission infusion by maturing cross-cutting system-level technologies through demonstration in relevant operational environments. (TRL 5-7)

In late 2010, TDM was initiated as part of the NASA portfolio of technology programs. As a Level 2 Program hosted at Marshall Space Flight Center within the Science and Technology Office.

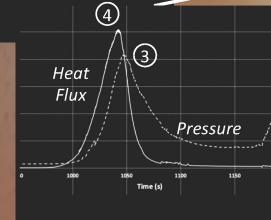
TDM, an uncoupled program, is the largest program in NASA's Space Technology Mission Directorate, representing 43% of STMD's overall budget in FY21, of which 62% is congressionally directed. **Spaceflight-based** to mature new technologies that have been successfully demonstrated to a highfidelity prototype that is then tested in a space environment

Ground-based to mature new technologies to the point of a high-fidelity prototype that may subsequently be integrated into a demonstrational or operational flight mission

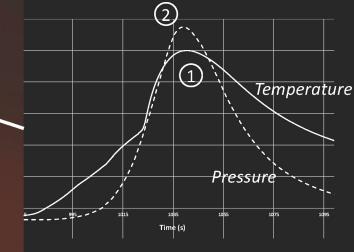
TDM's budget has grown from \$64.6M (FY11) to **\$459.2M** (FY21). In January 2012, TDM was approved to enter implementation and has since managed **36** projects. In FY 21, a total of **19** technology demonstration projects were managed for STMD.

Space Technology & Mars 2020 Mission

MEDLI2 (Mars Entry, Descent and Landing Instrumentation 2)


TRN (Terrain Relative Navigation)

MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment)



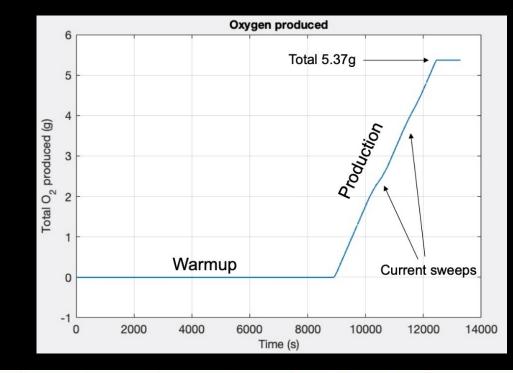
MEDLI2

Mars Entry, Descent and Landing Instrumentation 2 11 temperature measurements &7 surface pressure measurements on the Heatshield (HS)

7 temperature, 3 heat flux, & 1 surface pressure measurements on the Backshell (BS)

TRN

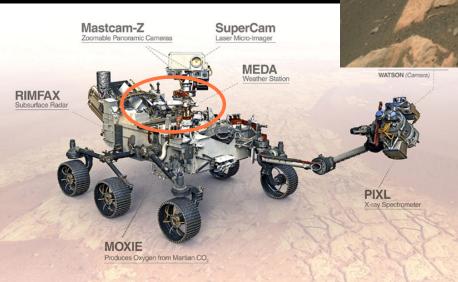
Terrain Relative Navigation


Take descent photos
 Compare to orbital map
 Divert if necessary

mars.nasa.gov

MOXIE

Mars Oxygen In-Situ Resource Utilization Experiment



OC #	FM-OC9	FM-OC10	FM-OC11	FM-OC12	FM-OC13	FM-OC14
Comment	1st oxygen!	1st microphone	1st daytime run	1st Temperature sweep (to determine series resistance)	1st flow sweep (to determine oxygen purity)	Generic nighttime run (intermediate density)
Sol	60	81	100	155	177	241
Total O2 (g)	5.4	7.0	7.0	9.0	8.2	6.9
Peak rate (g/hr)	6.0	8.0	8.0	6.0	6.9	7.6
Duration (min)	59	74	71	96	82	74
Time of day	Night	Night	Day	Night	Night	Night
Microphone	No	Yes	Yes	Yes	Yes	Yes
Predecessors	Aliveness test (Sol 4) RCT check (sol 13) Full health check (sol 14) Compressor sweep (sol 55)		Daytime compressor sweep w/ microphone (sol 96)	None	None	None

MEDA

Mars Environmental Dynamics Analyzer

Latest Weather at Jezero Crater

Perseverance is taking regular weather measurements at Jezero Crater, in the Isidis Planitia region of Mars' northern hemisphere. At this location, it's currently mid summer.

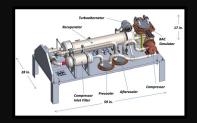
Sol 282 December 4, 2021

High: 10° F | C Low: -116° F | C

	Sol 276	Sol 279	Sol 280	Sol 281	Sol 282	
AN	Nov. 28	Dec.1	Dec. 2	Dec. 3	Dec. 4	The service
EP-	High: -3°F	High: -1°F	High: 8°F	High: 8°F	High: 10°F	B. Ja
· · · ·	Low: -110°F	Low: -112°F	Low: -111°F	Low: -115°F	Low: -116°F	

Cryogenic Fluid Management (CFM) Technologies

Demonstrate Technologies enabling autonomous transfer and storage of cryogenic hydrogen, capable of scaling to tens of metric tons, with negligible losses for long duration in space and on the lunar surface.


Current CFM Technology Development, Enabling Future Mission Planning:

- •Cryogenic thermal coatings
- •Automated Cryo-couplers
- Propellant Densification
- •High Vacuum Multi-Layer Insulation (IFUSI and CELSIUS)
- Unsettled liquid mass gauging
- •Low Leakage Cryogenic Valves
- •High Capacity Cryocooler (20K 20W)
- •High Capacity Cryocooler (90K 150W)
- •Storage of LH₂ Utilizing both 90K & 20K Cryocoolers (2-Stage Cooling)
- •Leveraging Cryo-genic 'Demo's of Opportunity' & Tipping Point Technologies
 - CLPS Intuitive Machines Nova-C Lander (RFMG Flight & Data Buy)
 - Tipping Points (Lockheed, ULA, Eta Space, SpaceX) -- All contracts awarded

Technology Gaps

- LOX/Methane CFM Zero Boil Off and Liquefaction (100's Watts @ 90K)
- Zero-g Long Duration Cryogenic Storage & Transfer (LO₂, LCH₄, LH₂)
- Advanced Cryocoolers
- Cryogenic Fluid Transfer Operations
- Zero-g Cryogenic Fluid Modeling

20W 20K Cryocooler Brassboard

CFM Tipping Point Flight Demonstration 2021 Awarded Public Private Partnerships

Ground testing and 60-day flight demonstration for launch in FY24.

- Long duration storage and LH2 transfer demonstration
- Incorporates 17 critical NASA identified technologies
- · Enables commercial opportunities for "water based space economy"

Project Team:

- Lockheed Martin (Prime)
- Momentus
- KT Engineering
- QualiTech
- YetiSpace
- NASA GRC, MSFC

SPACEX

Demonstration in FY23 of large-scale on-orbit cryogenic fluid transfer (more than 10 metric tons between tanks on a Starship in orbit) and management.

 Provides basis for operational use of in-space refueling technology, a key enabler for reusable, sustainable space transportation and the broader commercialization of space.

Project Team:

- SpaceX (Prime)
- NASA GRC, MSFC

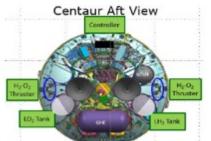
Starship's Cryogenic Propellant Transfer Capabilities will on the second second

ETA SPACE

Develop, launch in FY24 and fly a 9-month technology demonstration payload designed to test over 10 different CFM technologies necessary for creating practical propellent depots.

Project Team:

- Eta Space (Prime)
- Rocket Lab
- Ametek (Sun Power)
- Florida Tech
- Firefly Aerospace
- Altius Space Machines
- Yetispace
- NASA GRC, KSC, MSFC



Flight demonstration in FY25 (TBR) of 3 key Cryogenic Fluid Management technologies: passive thermal control, tank pressure control, and tank to tank propellant transfer.

 Benefits include 20% increase in Vulcan Centaur launch performance, extending Centaur mission duration from hours to months and enhanced confidence in cryogenic lunar lander benefiting USG missions, including HLS and commercial payloads.

Project Team:

- ULA (Prime)
- Innovative Engineering Solutions
- Space Micro Inc.
- YetiSpace
- Dynetics
- NASA GRC, KSC, MSFC

Lockheed Martin

Cryogenic Demonstration Mission (CDM)

Project Team: KT Engineering **Project Overview:** Lockheed Martin (Prime) QualiTech Ground testing and flight demonstration of cryogenic LH2 Momentus • Yetispace transfer and long duration storage in space. CDM incorporates NASA GRC, MSFC 17 critical technologies identified by NASA into a single system LOCKHEED MARTIN that demonstrates the transfer, storage, and pressure control of LH2 through ground testing and flight demonstration. Mission Overview/ Milestones: Critical CFM technologies to be assessed include: 400 to 600 km orbit, 28.5 degree to Sun Sync inclination Valves, Actuators and Components Tube-on-Shield Broad Area Cooling CDM hosted on a Momentus satellite bus Helium Pressurization of an Unsettled (BAC) 60-day technology demonstration, 85-day total mission Vapor Cooling Tank Main Propellent System Line Chilldown Pump Based Mixing Liquid Acquisition Devices (LAD) Thermodynamic Vent System (TVS) Automated Cryo-Couplers High Capacity/High Efficiency Propellent Tank Chilldown Cryocoolers 90K **Transfer Operations** Propellent Densification Flowmeters Unsettled Liquid Mass Low Conductivity Structures Gauging · High Vacuum Multilayer Insulation (MLI)

Project Timeline:

SpaceX

On-Orbit Large-Scale Cryogenic Propellant Management and Transfer Demonstration

Project Overview:

Demonstration of large-scale on-orbit cryogenic fluid transfer (more than 10 metric tons between tanks on a Starship in orbit) and management to provide a basis for operational use of in-space refueling technology, a key enabler for reusable, sustainable space transportation and the broader commercialization of space.

CFM demonstration will include:

- Tank pressure control and propellant management
- Transfer line chill-down and flow-control
- Receiving tank chill-down and high fill level capability
- Demonstration of propellant storage and boil-off characterization
- Instrumentation and onboard video to characterize performance and monitor propellant fill levels and provide opportunities to improve propellant mass gauging capabilities


Project Team:

 SpaceX (Prime) NASA GRC, MSFC

Mission Overview:

- Demonstration conducted as part of a Starship flight
- Orbit insertion, header tank venting
- Coast phase (propellant settling, heating, boil-off rate and propellant stratification data collection)
- Active settling maneuver
- · Autogenous pressurization and propellant transfer

Starship's Cryogenic Propellant Transfer Capabilities will enable ambitious missions beyond LEO

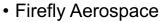
Project Timeline:

	Tod	ay								
FY 2021	FY 20	022		FY 2023		FY 2024			FY 2025	
Q3	Q1		Q3	Q1	Q3	Q1	Q3		Q1	Q3
Jun		Jan		Aug	Mar	Oct	N	vlay	Dec	
TDR 10/21		1/22 Test CDR	Grour	nd TRR 11/22 FRR 1/23	Post-Flight Data Revie	ew				
				Flight Demo 1/23	Final Report 4/23					

Eta Space LOXSAT 1

Project Overview:

Develop, launch and fly a 9-month technology demonstration payload designed to test over 10 different CFM technologies necessary for creating practical propellent depots.

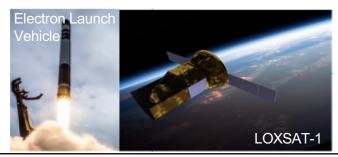

CFM Technologies Include:

LOXSAT 1 will test a suite of CFM technologies previously developed and ground tested. CFM technologies include:

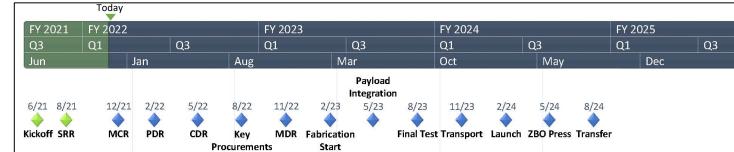
- Active and passive thermal control
- Cryogenic chill down and transfer
- Pressure control
- · Ground densification
- Fluid surface visualization tools
- Autogenous vs. helium pressurization
- Liquid acquisition devices (LAD)
- Zero boil off (ZBO) with pump mixing
- High capacity 90K cryocoolers
- · Ground to flight insulation
- Low conductivity supports
- Zero-g chill down and transfer
- Cryogenic quick disconnects
- Ground densification for thermal energy storage

Project Team:

- Eta Space (Prime)
- Rocket Lab
- Ametek (Sun Power)
- Florida Tech



- Altius Space Machines
- Yetispace
- NASA GRC, KSC, MSFC



Mission Overview:

- 500 km Sun synchronous orbit
- LOXSAT 1 hosted on a dedicated Photon satellite bus
- Minimum 9 month mission

Project Timeline:

United Launch Alliance (ULA)

Cryogenic (H_2/O_2) Smart Propulsion Flight Demonstration

technologies including and tank to tank prop Benefits include 20% extending Centaur mi enhanced confidence	of 3 key Cryogenic Fluid Management g passive thermal control, tank pressure control, ellant transfer. increase in Vulcan Centaur launch performance, ssion duration from hours to months and in Dynetics cryogenic lunar lander benefiting US LS and commercial payloads.	 Project Team: ULA (Prime) Innovative Engineering Solutions Space Micro Inc. Mission Overview: Demonstration occurs after primary spacecraft is separated; demonstration hardware integrated with Centaur V Demonstration is a multi-month on-orbit duration 				
 Tank Pressure Cont pressure control der Tank-to-Tank Transf 	<u>e demonstrated include:</u> rol (Short duration precision autogenous tank monstration) fer (Tank-to-Tank LO2 and LH2 transfer) ontrol (Low LO2 and LH2 boiloff over an extended	Centaur Aft View Controller Hy Or Throater LO ₂ Tonk (1) Tonk (1) Tonk				
Project Timeline:	Today FY 2021 FY 2022 FY 2023 Q3 Q1 Q3 Q1 Q3 Jun Jan Aug Mar Program Status Review 1 Program Status Review 2 CDR 10/21 4/22 10/22 1/23 4/23 6/23	FY 2024 FY 2025 Q1 Q3 Q1 Q3 Oct May Dec 12/23 Program Status 3/25 Final Scientific and Technical Report				

٠

Review 3

Do No Harm Program Status

Analysis Review

۲

Program Status

Review 4

Design Certification Review and Centaur

Flight Demo Module Integration Review

Review 5 🔷

8/24

Do no Harm

Review 11/24

 \diamond

PDR

8/22

SRR/CDR

2/22

 \diamond

Project

Kickoff

Post-Flight Quick-Look

Summary Presentation

Delivery

6/25

5/25

- Execute Tipping Points to Fly CFM Technologies
 - A significant number of technology advancements will be achieved through Tipping Point flights
 - Key technology gaps needed for Mars Mission will remain
 - High capacity cryo-coolers, 2-stage cooling, unsettled cryo-transfer, etc.
- Prove out utilization of 90K & 20K Cryo-Cooler (2-Stage Cooling) to Store LH₂
 - Analytically Shown to Save Mass & Power for Mars Missions
 - Once Proof-of-Concept Is Complete in FY22, Transition Technology Effort into Delivering Flight-Rated High-Capacity Cryo-Coolers
- Continue Ground Development of Ancillary CFM technologies
 - Cryo-Coupler, Valves, Low Conductivity Structures, Solar White
 - Support Landers, Modeling and Other/Seedlings
- Continue Leveraging 'Demos of Opportunity' to Understand Fluid Behavior and Technology Advancement
 - Pressure control methods & Mass Gauging
 - Liquid Acquisition and Cryo Fluid behavior in low-g/micro-g
 - Detailed data for storage, line and tank chill-down model anchoring

• Fly CFM DEMO mission in late 2020's with some version of high-capacity active cooling

• Would occur after Tipping Point flights, but before Mars flight in 2030's

Technology Drives Exploration