

In Situ Resource Utilization (ISRU) - Surface Excavation & Construction - NAC TI&E, January 21, 2021

Gerald Sanders | ISRU System Capability Lead | NASA Space Technology Mission Directorate

In Situ Resource Utilization – Surface Excavation and Construction Driving Outcomes

LEAD	THRUSTS OUTCOMES
Ensuring American global leadership in Space Technology	 Enable Human Earth-to-Mars Round Trip mission durations less than 750 days. Enable rapid, low cost delivery of robotic payloads to Moon, Mars and beyond. Enable reusable, safe launch and in-space propulsion systems that reduce launch and operational costs/complexity and leverage potential destination based ISRU for propellants.
 Lunar Exploration building to Mars and new discoveries at 	 Enable Lunar and Mars Global Access with "20t payloads to support human missions. Land Payloads within 50 meters accuracy while also avoiding local landing hazards.
extreme locations • Robust national space technology engine to meet national needs	 Conduct Human/Robotic Lunar Surface Missions in excess of 28 days without resupply. Conduct Human Mars Missions in excess of 800 days including transit without resupply. Conduct Human Mars Missions in excess of 800 days including transit without resupply. Provide greater than 75% of propellant and water/air consumables from local resources for Lunar and Mars missions. Enable Surface habitats that utilize local construction resources. Enable Intelligent robotic systems augmenting operations during crewed and un-crewed mission segments.
 U.S. economic growth for space industry Expanded commercial enterprise in space 	 Enable new discoveries at the Moon, Mars and other extreme locations. Enable new architectures that are more rapid, affordable, or capable than previously achievable. Enable new approaches for in-space servicing, assembly and manufacturing. Enable next generation space data processing with higher performance computing, communications and navigation in harsh deep space environments.

In Situ Resource Utilization (ISRU)

- Resource Mapping/Estimation: Enable global and detailed local and subsurface mapping of lunar resources and terrain, especially for water in permanently shadowed craters, for science, future exploration, and commercial use
- Oxygen Extraction: Enable extraction and production of oxygen from lunar regolith to provide 10's of metric tons per year, for up to 5 years with little human involvement and maintenance, for reusable surface and ascent/descent transportation.
- Water Mining: Enable cis-lunar commercial markets through extraction of water resources to provide 100's of metric tons of propellant per year for reusable landers and cis-lunar transportation systems

Advanced Materials, Structures and Manufacturing (AMSM)

 Lunar Surface Construction for building of roads, launch/landing pads, dust free zones, foundations, blast protection, radiation shielding, shade structures, unpressurized shelters, and even pressurized habitats.

Space Resources

• 'Resources'

- Traditional: Water, atmospheric gases, volatiles, solar wind volatiles, oxygen & metals, etc.
- Non-traditional: Trash and wastes from crew, spent landers and residuals, etc.

Energy

- Thermal Energy Storage Using Modified Regolith
- Permanent/Near-Permanent Sunlight (Stable thermal and power generation)
- Permanent/Near-Permanent Darkness (Thermal heat sink)
- Large Thermal Gradients

Environment

- Vacuum
- Micro/Reduced Gravity

Location

- Stable Locations/'Real Estate': Earth viewing, sun viewing, space viewing, staging locations
- Isolation from Earth: Electromagnetic noise, hazardous activities, extraterrestrial sample curation & analysis, storage of vital information, etc.

Lunar Resources

Polar Water/Volatiles

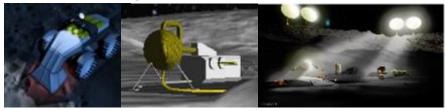
- Form, concentration, and distribution of Water in shadowed regions/craters is not known
 - LCROSS estimates 5.5 wt%
 - Other volatiles (H₂, CO, CO₂, CH₄, NH₃)
- Provides 100% of chemical propellant mass
- Polar water is "Game Changing" and enables long-term sustainability

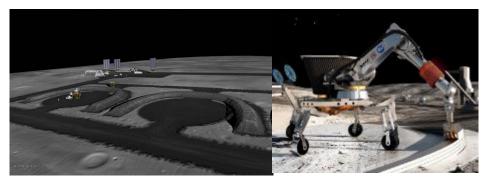
Lunar Regolith

- >40% Oxygen by mass
 - Silicate minerals make up over 90% of the Moon
- Regolith
 - Mare: Basalt (plagioclase, pyroxene, olivine)
 - Highland/Polar: >75% anorthite, iron poor
 - Other constituents: KREEP, Pyroclastic Glass, Solar Wind Volatiles (H, C, N, He)
- Provides >75% of chemical propellant mass

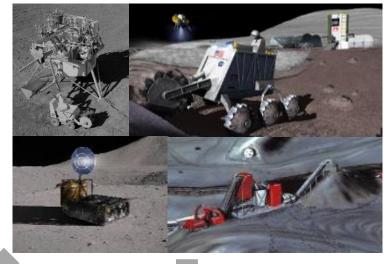
Lunar In Situ Resource Utilization 'Prospect to Product'

Resource Assessment – Looking for Water/Minerals




Global Assessment

Local Assessment


Mining Polar Water & Volatiles

Landing Pads, Berms, Roads, Shielding and Structure Construction

Excavation & Regolith Processing for O₂ & Metal Production

Consumable Users

Habitats & Life Support

Landers & Hoppers

Implementing ISRU Requires Multiple Disciplines and Technical Areas to Work Together

Lunar ISRU Strategy: Leader/Follower

SpaceTech has a <u>leader/follower</u> path defined for lunar ISRU which relies on lunar demonstrations on CLPS missions

- <u>Ice mining</u> (Leader) Potential to provide LO₂/LH₂ propulsion, crew consumables, and water for radiation protection
- <u>O₂ Extraction</u> (Follower) Provide oxidizer and crew consumables

Precursors and demonstrations

- Leader: Volatile prospecting with PRIME-1 & VIPER (2022)
- Follower: O₂ from Regolith highfidelity ground demo in TVC with flight demo in mid 2020s

Knowledge gained from precursors and demonstrations will inform the decision for Pilot and Full-scale Plants

Pilot Plant

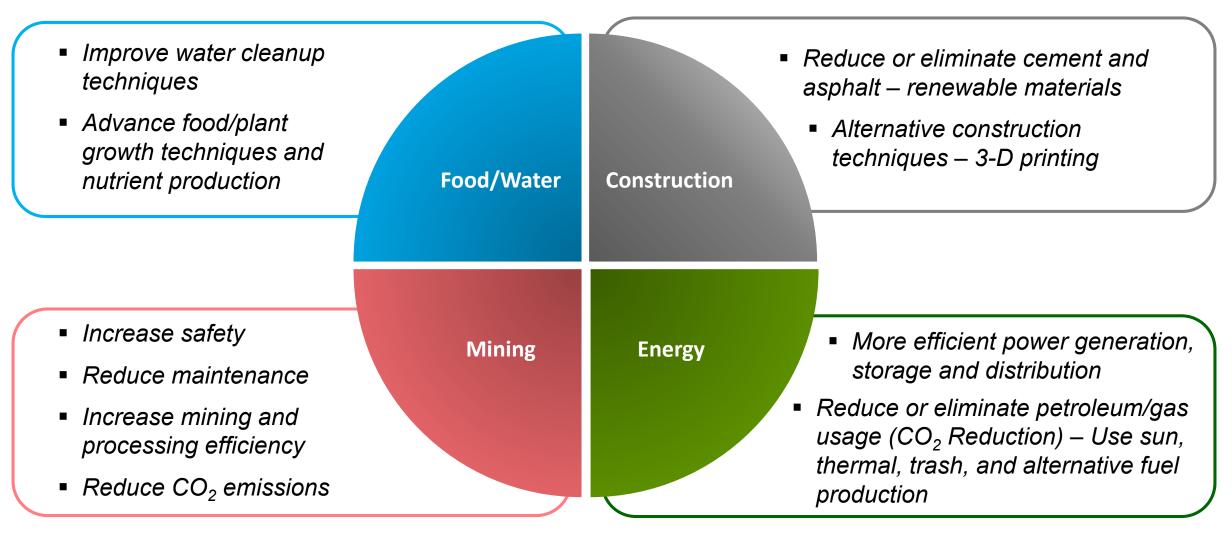
- Relevant scale plant (100's of kg/yr)
- Demonstrates core capabilities and subsystems
- Products available for SMD, HEOMD, or commercial partners
- Can be scaled up to Full scale mission production rates

Why Use Space Resources?

• Using Space Resources can reduce mission and architecture mass and costs

- Launch mass savings (gear ratio)
- Reduce launch numbers
- Reduce costs (less launchers/reuse assets)
- Supports terrestrial industry/Enables space commercialization

• Using Space Resources can increase safety for crew and mission success


- Ensure and enhance crew safety (repair, consumables, shielding)
- Provide critical solutions for mission assurance
- Minimizes impact of shortfalls in other system performance (launchers, landers/ascent, life support)
- Enhance crew psychological health

• Using Space Resources can enhance or enable new mission capabilities

- Mission life extensions and enhancements
- Increased surface mobility and access
- Increased science

Learning to use Space Resources can help us on Earth

Space Resource Utilization Is Synergistic with Terrestrial Needs

Promote Reduce, Reuse, Recycle, Repair, Reclamationfor benefit of Earth, and living in Space.

Early ISRU Development & Implementation Plan

"I think more work is needed in this step."

Strategy For ISRU Insertion into Human Exploration Maximize Ground Development – Use Flight for Critical Information and Eliminate Risk

Know Customer Needs and Gaps

- Work with Artemis elements and Moon/Mars Surface Architecture
- Work with Industry/Academia: Lunar Surface Innovation Consortium

Perform Ground Develop of Hardware and Systems until Flight

- Develop and advance ISRU technologies to enable acquisition of resources and processing into mission consumables
- Develop lunar ISRU components and subsystems with a Mars-forward application
- > Engage industry and Academia to lay the foundation for long-term lunar economic development

• Utilize CLPS Precursor Missions

- Understand lunar polar resources for technology development, site selection, mission planning
- Obtain critical data (ex. regolith properties, validate feasibility of ISRU process)
- Demonstrate proof-of-concept and reduce risk
- Demonstrate critical ISRU hardware and validate Pilot/Full scale designs
- Perform End-to-End ISRU Production Pilot Mission at sufficient scale to eliminate risk of Full scale system
 - Utilize product from Pilot mission in subsequent human lander mission (ex. oxygen for EVA or extended stay)
- Design and Fly 'Full' Scale ISRU Production Capability around redundant modules with margin for reusable lander and/or hopper

> ISRU must first be demonstrated on the Moon before it can be mission-critical

 STMD is breaking the 'Chicken & Egg' cycle of past ISRU development priority and architecture insertion issues by developing and flying ISRU demonstrations and capabilities to the Pilot Plant phase.

ISRU - Surface Excavation and Construction Influence, Needs, and Products with Other Mission Elements

To obtain full benefits of ISRU, the architecture and mission elements ('Customers') need to be designed from the start to be able to utilize ISRU

Mission Elements	ISRU-Construction Influence	ISRU-Construction Needs	ISRU-Construction Products
Descent/Ascent	- Propellant options	- Vehicles designed to use ISRU	$- O_2, H_2, CH_4, other$
Vehicles	- Descent/ascent vehicle size &	produced propellants	hydrocarbons
	available payload capability	- Propellant specifications	- Landing pads, berms, protection,
	- Lander/ascent vehicle Delta-V/	- Propellant quantities per mission	depots, and servicing
	Rendeqvous Orbit	or year	
	- Lander/engine configuration		
	- Lander servicing design and capability		
	- Reusability/Surface Hopping		
In-Space/Transit	- Propellant options	- Vehicles designed to use ISRU	$- O_2, H_2, CH_4, other$
Vehicles	- Delta-V/Rendezvous Orbit	produced propellants	hydrocarbons
	- Low-thrust/orbital drag makeup	- Propellant specifications	- Waste Gases from Trash
		- Propellant quantities per mission or year	- Ar
Power Systems	- Total power generation requirement	- Significant amounts of electrical	- Fuel cell reactants: O ₂ , H ₂ , CH ₄
	- Power generation technology selections	and thermal power	- Thermal storage with in situ
	- Power thermal and electrical storage	- Power in Permanently Shadowed	materials
	options with local resources	Regions (PSRs)	
	- Potential for common technologies		
Habitats -	- Degree of air/water loop closure and	- Alternative uses for waste gases	- O_2 , water, (N_2 on Mars)
Life Support	Earth-delivered logistics	and trash	- Regolith/construciton for shielding
Systems	- Potential for common technologies	- Consumable specifications	- Plastics for manufacturing & shielding
	- Radiation shielding capabilities	- Consumable quantities per year	- Metals for manufacturing
	- Construction for hardware protection	- Radiation allowance/specifications	
	- Construction for expanded crew usage;	- Habitable volumen specifications/needs	
	food, science, living, etc.		

ISRU Incremental Growth Phases of Evolution and Use

Demonstrate, Build Confidence, Increase Production and Usage

	10 to 30 mT Range for <u>Initial</u> Full Scale Production									
	Demo Scale	Pilot Plant	Crewed Ascent Vehicle ¹	Full Descent Stage ¹	Lockhee	d Martin ⁶	Dynetics ⁶ Single Stage/	Single Stage	Human Mars	Commercial Cis-Lunar
			3 Stage Arc	h to NRHO	2 Stage	Single Stage	Drop Tanks	to NRHO ²	Transportation ³	Transportation ⁴
Timeframe	days to months	6 mo - 1 year	1 mission/yr	1 mission/yr	per mission	per mission	per mission	1 mission/yr	per year	per year
Demo/System Mass⁵	10's kg to low 100's kg	1 mt O ₂ Pilot 1.3 – 2.5 mt Ice Mining	1400 to 2200 kg	2400 to 3700 kg				Not Defined	Not Defined	29,000 to 41,000 kg
Amount O ₂	10's kg	1000 kg	4,000 to 6,000 kg	8,000 to 10,000 kg	10,000 kg	33,000 kg	32,000 kg	30,000 to 50,000 kg	185,000 to 267,000 kg	400,000 to 2,175,000 kg
Amount H ₂	10's gms to kilograms	125 kg		1,400 to 1,900 kg	2,000 kg	7,000 kg	Methane Fuel	5,500 to 9,100 kg	23,000 to 33,000 kg	50,000 to 275,000 kg
Power for O ₂ in NPS	100's W	~3 KW	20 to 32 KW	40 to 55 KW				N/A	N/A	N/A
Power for H ₂ O in PSR	100's W	~2 KW		~25 KW				14 to 23 KW		150 to 800 KW
Power for H_2O to O_2/H_2 in NPS		~4 KW		~48 KWe				55 to 100 KWe		370 to 2,000 KWe

NPS = Near Permanent Sunlight

¹Estimates from rocket equation and mission assumptions

PSR = Permanently Shadowed Region

⁶Information obtained from presentation at LSIC Supply & Demand Workshop. Presentations/videos posted at the LSIC website <u>http://lsic.jhuapl.edu/Events/103.php</u>

Table uses best available studies and commercial considerations to guide development requirements/FOMs

Table provides rough guide to developers and other surface elements/Strategic Technology Plans for interfacing with ISRU

LSII | ISRU Industry Propellant Supply and Demand Workshop

A dozen industry talks with discussions during a half day virtual workshop in September, 2020. Over 200 attendees from over 100 institutions (recording at http://lsic.jhuapl.edu/Events/103.php?id=103)

Where is the water? Low TRLs

Water

LOX

Strong demand projected for in-situ derived propellant.

- Industry based on actual plans and hardware
- 10s to 100s of metric tons of propellants a year, near term (within a decade)
- 80% of the demand is LOX
 - NASA and DOD can serve as anchor customers to ensure initial viability for this new marketplace

Two potential supply options

- Water (O_2 and H_2) from ice. (technology TBD)
- O₂ directly from regolith. (two possible technologies)

Supply challenges

- Low TRL of extraction equipment for ice and O2R.
- Insufficient knowledge of water as a reserve.

What are the Challenges? - ISRU Development & Implementation

Space Resource Challenges

- R1 What resources exist at the site of exploration that can be used?
- **R2** What are the uncertainties associated with these resources? Form, amount, distribution, contaminants, terrain
- **R3 How to address planetary protection requirements?** Forward contamination/sterilization, operating in a special region, creating a special region

ISRU Operation Challenges

- **O1** How to operate in extreme environments? Temperature, pressure/vacuum, dust, radiation, grounding
- **O2** How to operate in low gravity or micro-gravity environments? Drill/excavation force vs mass, soil/liquid motion, thermal convection/radiation
- O3 How to achieve long duration, autonomous operation and failure recovery?

No crew, non-continuous monitoring, time delay

O4 How to survive and operate after long duration dormancy or repeated start/stop cycles with lunar sun/shadow cycles? 'Stall' water, lubricants, thermal cycles

ISRU Technical Challenges

- T1 Is it technically and economically feasible to collect, extract, and process the resource? Energy, Life, Performance
- T2 How to achieve high reliability and minimal maintenance requirements?

Thermal cycles, mechanisms/pumps, sensors/ calibration, wear

ISRU Integration Challenges

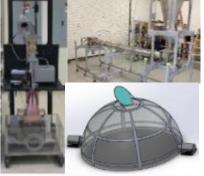
- I1 How are other systems designed to incorporate ISRU products?
- I2 How to optimize at the architectural level rather than the system level?
- I3 How to manage the physical interfaces and interactions between ISRU and other systems?

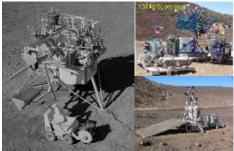
Scale up, Long-duration, & Environmental testing with Realistic simulants Required

What Is Still Needed? ISRU Capability Gaps (1 of 2)

Resource Assessment Capability Gaps

- Surface features and geotechnical data on regolith outside and inside permanently shadowed craters (PSRs)
- Understanding of water and contaminants as a function of depth and areal distribution
- Understanding of subsurface water/volatile release with heating
- Resolution of hydrogen and subsurface ice at <10's m scale (or less) for economic assessment & mine planning (orbital/surface)
- Instrument for polar regolith sample heating and released volatile characterization (minimum loss during transfer/evaluation)
- Long duration operations at <100 K temperatures and lunar vacuum
- Traversibility inside and in/out of PSRs
- Increased autonomy and better communications into PSRs
- Long-duration mobile polar resource assessment operations (nuclear or power beaming)


Mining Polar Water Capability Gaps


- Limited knowledge/understanding of polar water depth, distribution, concentration to at least 1 m below the surface and multiple sq km.
- Limited knowledge/understanding of regolith properties within PSR
- Feasibility and operation of downhole ice/water vaporization and collection in cold-trap under lunar PSR conditions
- Feasibility and operation icy regolith transfer and processing in reactor under lunar PSR conditions
- Other volatile capture and separation; contaminant removal
- Water electrolysis, clean-up, and quality measurement for subsequent electrolysis or drinking (10,000's kg)
- Long-term operation under lunar PSR environmental conditions (100's of days, 10,000's kg of water)
- Electrical power & Thermal energy in PSRs for ice mining/processing (10's of KWs)

Oxygen Extraction Capability Gaps

- Increase scale of regolith processing by 1 to 3 orders to reach minimum of 10 mT O₂/yr (depending on method)
- Increase duration operation under lunar environmental conditions (100's of days, 10,000's kg of O₂)
- Long-life, regolith transfer (100's mT) and low leakage regolith inlet/outlet valves (10,000's cycles)
- Deployable large scale solar collection/thermal energy transfer for regolith melting
- Regenerative oxygen clean-up for direct oxygen production (10,000's kg)
- Water electrolysis, clean-up, and quality measurement for subsequent electrolysis or drinking (10,000's kg)
- Autonomous process monitoring, including measuring mineral properties/oxygen content before and after processing

Surface Excavation and Construction Capability Gaps (2 of 2)

Excavation & Delivery Capability Gap

- Excavation and sample transfer for science and ISRU demonstrations
- Excavation of hard regolith/ice material
- Long-duration operation of mechanisms
- Long-distance (100's km) travel and traversibility over same mining location
- Increased autonomy of operations

Surface Construction Capability Gaps

- Material and construction requirements and standards
- Long-duration operation of mechanisms; scale of construction activities
- Hardware operation and product quality under lunar environmental conditions
- Increased autonomy of operations

Grading & Leveling Blade

Compactor Roller

Paver Deployment

Additive Construction

Molds - Grown

15

ISRU & Surface Construction Technology Development* (1 of 5) Lunar Polar Ice Resource Assessment *Impacts due to FY21 Appropriations in work

Acquire Icy Regolith Samples

- Fundamental Regolith Properties Project Bulk water stability NASA GRC
- Characterization of Lunar Polar Volatiles for Curation and ISRU NASA JSC
- ColdARM JPL
- Trident Auger Honeybee Robotics

Instruments for Physical/Geotechnical Characterization

- Material Characterization while Drilling on Lunar/Martian Surface ESI with CSM
- SPARTA Honeybee Robotics; Cone penetrometer/shear vane (part of ColdArm)
- Microscope/Camera JPL; (part of ColdArm)
- High TRL Rover Lidar NASA GSFC
- Moon-Mars Ice Challenge NASA LaRC

Instruments for Mineral Characterization

- Fundamental Regolith Properties Project Bulk water stability NASA GRC
- LIBS Bigldeas Challenge by Univ. of Penn.
- Recent SMD CLPS Selections

Instruments for Ice/Volatile Characterization

- Polar Resources Ice Mining Experiment-1 NASA KSC & Honeybee Robotics
- Light Water Analysis & Volatile Extraction (Light WAVE) NASA JSC
- Planetary Volatile Extractor (PVEx) Honeybee Robotics

Mobility and Instruments for Resource Assessment

- L-Puffer/CADRE JPL; Mini-rover w/ TBD instruments
- MoonRanger SMD DALI; Mini-rover w/ camera (2022)
- NeuRover SBIR Phase II; Mini-rover w/ neutron spectrometer
- Robotic Technologies Enabling the Exploration of Lunar Pits Phase III Carnegie Mellon
- Mobile Autonomous Prospecting Platform) Lunar Outpost

Selected for CLPS

*Blue Italic = SMD Funded ^HEOMD/STMD/SMD Funded

Mineral MIRVSS – InfraRed Spec ^

 L-CIRIS – Compact InfraRed Imaging System eXTraterrestrial Regolith Analyzer for Lunar Soil – XRD/XRF Ultra-Compact Imaging Spectrometer – shortwave IR BECA – gamma ray spectrometer w/ pulsed neutrons

Volatile Direct Measurement

 ★★★★ MSOLO – mass spectrometer ^
 ★ PITMS – ion trap mass spectrometer CRATER – laser based mass spectrometer

Hydrogen Measurement

★ ★ NSS – Neutron Spectrometer ^
 ★ Neutron Measurements at the Lunar Surface

Imager

Heimdall – digital video recorder/4 cameras ColdARM – microscope/camera

Regolith Acquisition

PlanetVac – pneumatic transfer ^ SAMPLR – arm scoop ColdARM – arm scoop Trident – auger drill

PVEx – Coring drill

**

Extreme Access – MicroRovers/Hoppers

CubeRover (SBIR) MoonRanger (LSITP)

L-PUFFER/CADRE (JPL) NeuRover (SBIR) Big Ideas Challenge (Universities) Small Deployable Hopper (TP) ★ Astrobotics 2021
 ★ Masten 2022
 ★ PRIME-1 2022
 ★ VIPER 2023 16

ISRU & Surface Construction Technology Development* (2 of 5) **Lunar Polar Mining**

*Impacts due to FY21 Appropriations in work

Demonstrate feasibility and operation icy regolith transfer and processing in reactor under lunar PSR conditions

- Fundamental Regolith Properties Project Bulk water stability NASA GRC
- Characterization of Lunar Polar Volatiles for Curation and ISRU NASA JSC
- Material Characterization while Drilling on Lunar/Martian Surface ESI with Colorado School of Mines (CSM)
- Lunar Auger Dryer (LADI) with inlet/outlet NASA JSC
- Regolith Valve project NASA GRC
- Motors for Dusty Environments/Bulk Metallic Glass Gears
- Aqua Factorem-Ice Crystal Sifting UCF NIAC Phase I

Demonstrate feasibility and operation of downhole ice/water vaporization and collection in cold-trap in the lunar PSR

- PVEx: Coring drill with cryo capture Honeybee Robotics (SBIRs)
- Thermal Management System for Lunar Ice Miners SBIR Phase I w/ Advanced Cooling Tech tied to PVEx/Honeybee
- LPMO: subsurface heating & volatile removal via microwave/RF/IR energy TransAstra NIAC Phase II
- Thermal Mining: subsurface heating & volatile removal via solar energy CSM NIAC Phase I (Completed)

Water capture, clean-up, quality measurement and electrolysis (10,000's kg/yr)

- Lunar water simulant definition CIF and Simulant Project
- IHOP PEM Water Electrolysis/Clean-up Paragon BAA
- Solid Oxide Electrolysis: 3 contracts with OxEon (SBIR Phase II, BAA, and TP)
- Dirty Water Alkaline Electrolysis Teledyne BAA
- Regenerative Fuel Cell Project GRC
- Lunar Propellant Production Plant (LP3) Skyre TP
- Integrating Thermal Processing of Lunar Ice and Solid Oxide Electrolysis for LH₂/LO₂ Production CSM/OxEon TP
- Advance Alkaline Reversible Cell/Dirty Water pH Matter TP and ACO

ISRU & Surface Construction Technology Development* (3 of 5) **Oxygen Extraction**

*Impacts due to FY21 Appropriations in work

- Increase scale of regolith processing by 1 to 3 orders; Increase duration operations in lunar environmental
 - Carbothermal Reduction reactor, feed/removal system, and reactant control SNC, JSC, GRC with TP & 2 SBIR Phase III
 - Molten Regolith Electrolysis KSC GCD & ECI; 2 SBIR Phase I Lunar Resources
 - Ionic Liquid Reduction and Electrolysis reactors for O₂/metals MSFC CIF/PPBE22 and SBIR Phase I Faraday Technology
 - Plasma Hydrogen Reduction reactor and reactant control KSC CIF and PPBE22
 - CO/H₂ Reduction and Metal formulation SBIR Phase II Sequential with Pioneer Astronautics
 - Carbothermal/Vapor Pyrolysis with Solar Concentrator SBIR Phase I with Outward

Long-life, regolith transfer (100's mT) and low leakage regolith inlet/outlet valves (10,000's cycles)

- Fundamental Regolith Properties project regolith sealing and vibratory regolith transfer NASA GRC
- Regolith Valve NASA GRC
- Dev of Dust-Tolerant Seals & Performance Database NASA

Deployable large scale solar collection/thermal energy transfer for regolith melting

- Multi-dish concentrator w/ fiber optic delivery PSI SBIR Phase II.
- Inflatable solar concentrator and mirror/lens assembly for APIS NIAC Phase II
- Reactant/Product Separation, Regeneration, and Recycling
 - Helium and Hydrogen Mixed Gas Separator SBIR with Skyhaven
 - Methane/Hydrogen Microchannel Separator BAA with Skyhaven

• Autonomous process monitoring, including measuring mineral properties/oxygen content before and after processing

Laser Spectrometers for Impurity Analysis in ISRU Gas Streams - JPL

Water capture, clean-up, quality measurement and electrolysis (10,000's kg/yr)

– See Lunar Polar Ice Mining – Technology Development by Function

ISRU & Surface Construction Technology Development* (4 of 5) Excavation *Impacts due to FY21 Appropriations in work

- Excavation and Sample Transfer for Science and ISRU Demonstrations
 - PlanetVac: pneumatic transfer
 - SAMPLR: Arm/scoop
 - COLDArm: Arm/scoop with instruments
- Excavation of Hard Regolith/Ice material
 - Fundamental Regolith Properties Project regolith/excavation forces
 - Motors for dusty & extremely cold environments; BMG Gears and Motors
 - Lunar Ice Mining Using a Heat-Assisted Cutting Tool SBIR Phase I w/ Sierra Lobo
 - NASA LSII RASSOR Bucket Drum Design GrabCAD Challenge
 - Break the Ice Centennial Challenge (Soon to be released)
- Excavation and Delivery of Regolith: Long-duration operation (100's days) of mechanisms with abrasive regolith and lunar environmental conditions (esp. PSR conditions)
 - Fundamental Regolith Properties Project regolith/excavation forces
 - Motors for dusty & extremely cold environments; BMG Gears and Motors
 - ISRU Pilot Excavator (RASSOR) to flight prototype
 - Build and Excavation Autonomous System with Transportation BEAST

ISRU & Surface Construction Technology Development* (5 of 5) **Surface Construction**

*Impacts due to FY21 Appropriations in work

Surface Construction Materials

- Developing a Material Response Model of Biopolymer Stabilized Regolith to Predict Micrometeoriod Damage of ISRU Habitat Systems – STRG with Stanford Univ.
- Lattice Reinforced Regolith Concrete for Lunar Infrastructure NASA MSFC
- In Situ Lunar Launch and Landing Pad Construction with Regolith and Thermoset Polymers NASA KSC
- Regolith size sorting and mineral beneficiation SBIR Phase II Sequential with Pioneer Astronautics
- Regolith size sorting SBIR Phase I with Grainflow (not selected for Phase II)

Surface Construction Techniques and Applications

- ISM-Moon-to-Mars Planetary Autonomous Construction Technology (MMPACT) NASA MSFC
- In Situ Construction NASA KSC
- Lunar Safe Haven Seedling Study NASA LaRC
- Additive Construction System for Lunar ISRU Applications ACO AI Space Factory & KSC
- Concentrated Solar Regolith Additive Manufacturing STRG with CSM
- Collaborative Manipulation for Space Exploration and Construction STRG with Stanford Univ.
- Scalable Cellular Infrastructure Technology NASA

University & Public Involvement ISRU & Construction Related Challenges

Printed 3D Habitat Challenge

- Design, build habitat elements, and 3D print a subscale habitat
- Phase III completed 2019

CO₂ Conversion Challenge

- Convert CO₂ into sugars
- Phase I completed
- Phase II launched Sept 2019

Watts on the Moon Challenge

- Solutions for energy distribution, management, and/or storage
- Launched Sept. 2020

Break the Ice Challenge

- Excavate icy regolith in PSR
- Phase I launched Nov. 2020

Lunar PSR Challenge 2020

- completed Jan. 2021
- Exploration of PSR regions
- Technologies to support ISRU in PSRs
- Capabilities to explore & operate in PSRs

Lunar PSR Challenge Results

- 8 university teams; mobility, power beaming, tether, and wireless charging, instrument, and tower
- Winner: MTU superconducting cable deployment

Lunar Dust Challenge 2021 – launched Sept. 2020

- Landing Dust Prevention and Mitigation
- Spacesuit Dust Tolerance and Mitigation
- External Dust Prevention, Tolerance
- and Mitigation
- Cabin Dust Tolerance and Mitigation

Moon Mars Ice Challenge

- Yearly, university, started in 2017 for Mars ice; added Moon in 2019
- Understand subsurface stratigraphy/hardness
- Extract subsurface water
- 10 teams compete in final 2 day event at LaRC

Lunabotics Robotic Mining Competition

- Yearly, university, started in 2007 following Lunar Excavation Centennial challenge
- Design and build robotic machines to excavate simulated lunar soil (in 30 min.)
- Teams compete at KSC

Flight Evolution & Demonstration Strategy ISRU - Surface Excavation and Construction

Reconnaissance, Prospecting, Sampling

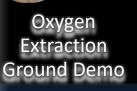
Resource Acquisition & Processing

Pilot Consumable Production

Sub-system Demonstrations: Investigate, sample, and analyze the environment for mining and utilization. Follow The Natural Resources: Demonstrations of systems for extraction and processing of raw materials for future mission consumables production and storage.

Sustainable Exploration: Scalable Pilot - Systems demonstrating production of consumables from in-situ resources in order to better support sustained human presence.

ISRU Pilot Excavator


Lunar Surface Construction Demo 1

Lunar Surface Construction Demo (Landing Pad)

Late 2020's

ISRU Pilot System for Consumable Production

ariv 2020 s

Polar Resources Ice Mining Experiment (PRIME-1)

> Volatiles Investigating Polar Exploration Rover (VIPER) w/rover

Ice-Mining Demo

Leverages VIPER design -Water extraction via heating regolith; analyze water; Measure volatiles & contaminants

Mid-2020's

O2 Extraction Demo

Lunar Auger Dryer

Key Questions to Address to Determine Path

NASA

What do we need to demonstrate to relevant scale ISRU on the Lunar surface?

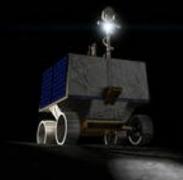
Polar Water Mining Path

- Are there sufficient quantities and concentrations of accessible ice to produce desired amounts of O₂ and H₂?
 - Access PSRs or other locations with potential ice deposits
 - Access sub-surface icy regolith
 - Assess ice concentration at multiple sites to estimate quantity
- Can lunar ice be extracted and converted into O_2 and H_2 ?
 - Excavate icy regolith
 - Extract water from icy regolith
 - Assess purity and contaminates in water
 - Electrolyze water to produce O₂ and H₂

Oxygen from Regolith Path

- Can clean O₂ be produced from regolith found near the lunar poles?
 - Excavate granular material
 - Process regolith/benefaction
 - Extract Oxygen
 - Purify product

Pilot Plant


- Can sufficient quantities propellant be produced stored?
 - Produce propellant at a rate of 100's to 1000's of kg per year
 - Liquefy all products
 - Store products for >1 year
- Can the system survive the environment?
 - Operate without crew intervention for 1-5 years
 - Survive eclipse periods
 - Operate with abrasive regolith
 - Operate in permanently shadowed region temperature environment (40 to 100 K)

PRIME-1 & VIPER First Steps toward surface understanding of Polar Water and Volatiles

Polar Resources Ice Mining Experiment (Prime-1) on CLPS

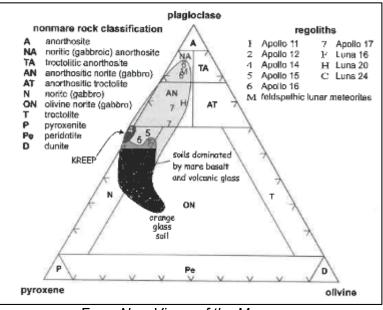
- 2022 Intuitive Machine CLPS mounted payload to detect volatiles at 1-m depths
- Instruments include:
 - Mass Spectrometer Observing Lunar Operations (MSolo)
 - The Regolith and Ice Drill for Exploring New Terrain (TRIDENT)

Volatiles Investigation Polar Exploration Rover (VIPER)

- 2023 Astrobotics CLPS at South Pole
- Measure volatiles at the lunar poles and acquire new key data on lateral and vertical distribution
 - Neutron Spectrometer System (NSS)
 - NIRVSS IR Spec
 - Msolo Mass Spec
 - TRIDENT Drill
- Build lunar resource maps for future exploration sites
 - Long duration operation (months)
 - Traverse 10's km

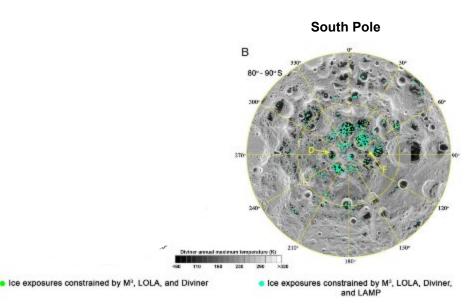
STMD ISRU Development and Implementation Plan Summary

- STMD is reducing the risk of including ISRU into human Lunar and Mars exploration through a series of demonstrations, leading to mission relevant 'pilot scale' demonstration of ISRU and product demonstration*
 - Breaking the Catch-22 of ISRU not being a 'pull' technology and therefore lower priority in development
- An extensive technology evaluation and gap assessment has been performed to achieve the ISRU architecture insertion plan
 - Moon to Mars synergy
 - Support and enable Space Commercialization
- A full range of ISRU technologies across all TRLs are included in STMD Technology Pipeline
- New lunar ISRU technology projects started in FY20 and planned new starts in FY21*:
 - Polar water/volatile resource assessment
 - Polar water extraction and collection
 - Oxygen extraction from regolith
 - Regolith excavation, preparation, and delivery for O_2 and Water extraction
 - Surface Construction
- A strategy for system engineering, modeling/analysis, integration, and ground environmental of end-to-end ISRU capability testing is in work


Backup

Lunar Resources

Lunar Regolith


- >40% Oxygen by mass
 - Silicate minerals make up over 90% of the Moon
- Regolith
 - Mare: Basalt (plagioclase, pyroxene, olivine)
 - Highland/Polar: >75% anorthite, iron poor
- **Pyroclastic Glass**
- KREEP (Potassium, Rare Earth Elements, Phosphorous)
- Solar Wind Implanted Volatiles

From New Views of the Moon

Polar Water/Volatiles

- LCROSS impact estimated 5.5 wt% water along with other volatiles
- Green and blue dots show positive results for surface water ice and temperatures <110 K using orbital data.
- Spectral modeling shows that some ice-bearing pixels may contain ~30 wt % ice (mixed with dry regolith)
- Without direct measurements, form, concentration, and distribution of water is unknown

Li et. al, (2018), Direct evidence of surface exposed water ice in the lunar polar regions

	Concentration (%wt)*
H ₂ O	5.5
со	0.70
H ₂	1.40
H ₂ S	1.74
Ca	0.20
Hg	0.24
NH ₃	0.31
Mg	0.40
SO2	0.64
C ₂ H ₄	0.27
CO ₂	0.32
CH ₃ OH	0.15
CH₄	0.03
ОН	0.00
I2O (adsorb)	0.001-0.002
Na	

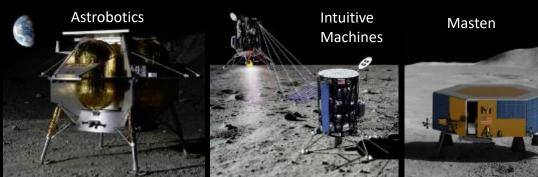
Table courtesy of Tony Colaprete 27

STMD LSII Capability Development

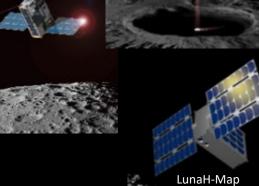
	GCD Activities (Mid TRL)	 Polar Resources Ice Mining Experiment-1 (PRIME-1) – TRL 6+ Light Water Analysis & Volatile Extraction (Light WAVE) – TRL 6 Fundamental Regolith Properties, Handling, and Water Capture – TRL 5-6 Tipping Point (TP)-LSII Lunar Ice Processing [OxEon Energy, LLC] – TRL 5 	 Laser In-Situ Resource Analysis (LIRA) – <i>TRL</i> Carbothermal Reduction Demonstration – ⁻ Resource Recovery with Ionic Liquid for Exp (RRILE) – <i>TRL 4</i> Molten Regolith Electrolysis (MRE) – <i>TRL 6</i> Regolith Valve Development – <i>TRL 6</i> Plasma Reduction for Oxygen from Regolith Adv. Alkaline Reversible Cell/Dirty Water – 7 	 TRL 6 TP-LSII Lunar Propellant Production Plant (LP3) [Skyre, Inc.] – TRL 5 TP-Coupler for Propellant Transfer (CPT) [SpaceX] – TRL 5 Lunar Simulant Development Dirty Lunar Surface Simulation 		
	BAAs (Mid TRL)	 Advanced Alkaline Electolyzer to Support NASA ISRU Applications [Teledyne Energy Systems, Inc.] – TRL 5 ISRU-derived Water Purification and Hydrogen Oxygen Production (IHOP) [Paragon Space Development Corp.] – TRL 5 ISRU-Water Electrolysis Trade Study [Collins Aerospace] Production (IHOP) [Paragon Space Development Corp.] – TRL 5 ISRU-Water Electrolysis Trade Study [Collins Aerospace] Production (Iniversity of Illinois] 				
U	SBIRs (Low to Mid TRL)	 Phase II Sequential – Extraterrestrial Metals Processing [Pioneer Astronautics] – <i>TRL 6</i> Phase III - Carbothermal Reduction Reactor Design [Sierra Nevada Corp.] – <i>TRL 5</i> Phase III – Carbothermal Reactor Risk Reduction Testing and Analytical Model Development [Sierra Nevada Corp./Orbitec] – <i>TRL 3</i> Phase II – Redox Tolerant Cathode for Solid Oxide Electrolysis Stacks [OxEon Energy, LLC] – <i>TRL 5</i> Phase II – Helium and Hydrogen Mixed Gas Separator [Skyhaven Systems, LLC] – <i>TRL 5</i> Phase I – Solar Concentrator System for Lunar ISRU Applications [Physical Sciences, Inc.] – <i>TRL 6</i> Phase I (National Science Foundation) – Molten Regolith Electrolysis [Lunar Resources] – <i>TRL 4</i> 				
	NIACs (Low to Mid TRL)	 Phase III – Robotic Technologies Enabling the Exploration of Lunar Pits [Carnegie Mellon/Astrobotic Technology, Inc.] – TRL 5 Phase I – Lunar Polar Propellant Mining Outpost (LPMO) [TransAstra Corp.] – TRL 3 Phase I – Ultra Low Energy Water Extraction [University of Central Florida] – TRL 3 				
	CIFs (Low TRL)	 Lunar Regolith Hydrogen Reduction using a Hydrogen Plasma – TRL 2-3 Characterization of Lunar Polar Volatiles for Curation and ISRU – TRL 2 				
	ESIs (Low TRL)	• Material Characterization while Drilling on Lunar/Martian Surface [Colorado School of Mines] – TRL 3				
	Challenges (Low TRL)	 Ten universities selected as finalists in the 2020 Revolutionary Aerospace Systems Concepts Academic Challenge (RASC-AL) Moon to Mars Ice & Prospecting Challenge – TRL 2-3 				
	STRG (Low TRL)	 Upcoming ISRU Lunar Surface Technology Research (LuSTR) – TRL 2-3 				

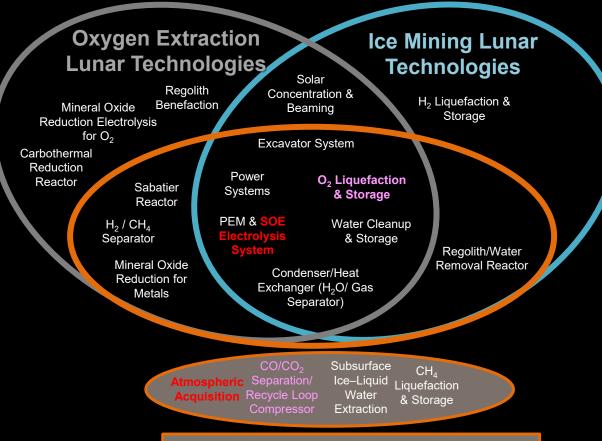
ISRU

STMD LSII Capability Development (cont.)



Excavation and Construction	GCD Activities (Mid TRL)	 Build and Excavation Autonomous System with Transportation (BEAST) – TRL 6 ISRU Pilot Excavator – TRL 6 	 ISM-Moon-to-Mars Planetary Autonomous Construction Technology (MMPACT) – TRL 6 (Microwave Manufacturing) 	 In-Situ Construction – TRL 6 Lunar Safe Haven Seedling Study Additive Construction System for Lunar ISRU Application – TRL 6 			
	CIFs (Low to Mid TRL)	 Scalable Cellular Infrastructure Technology (SCI-Tech) – TRL 5 Lattice Reinforced Regolith Concrete for Lunar Infrastructure – TRL 2 In-Situ Lunar Launch and Landing Pad Construction with Regolith and Thermoset Polymers – TRL 2-3 					
	STRG (Low TRL)	 Developing a Material Response Model of Biopolymer-Stabilized Regolith to Predict Micrometeoroid Damage of ISRU Habitat Systems [Stanford University] – <i>TRL 3</i> Concentrated Solar Regolith Additive Manufacturing [Colorado School of Mines] – <i>TRL 3</i> Collaborative Manipulation for Space Exploration and Construction [Stanford University] – <i>TRL 3</i> 					
	Crowd-Sourcing Challenge (Low TRL)	• NASA LSII Regolith Advanced Surface Systems Operations Robot (RASSOR) Bucket Drum Design GrabCAD Challenge – TRL 2-3					
	Centennial Challenge <i>(Low TRL)</i>	• Upcoming Surface Excavation Challenge – TRL 2-3					
	Yet2 Market/ Technology Search	Lunar Surface Manufacturing					


Lunar Science & Resource Assessment


Lunar

Flashlight

Moon-to-Mars Mars Surface Tech Development – Live

With proper attention to production rates, modularization, and interfaces, similar subsystem modules and excavators can be utilized on both Moon and Mars missions.

- The LSII portfolio includes ice-mining and oxygen extraction technologies and demonstrations for key lunar surface technologies that are also Mars-forward:
 - Sabatier/CO₂ conversion to Methane
 - PEM Water Electrolysis and Solid Oxide Water Electrolysis
 - Water cleanup/contaminant removal
 - Soil/regolith excavation, preparation, and delivery
- Current LSII Mars-Unique Surface Component and Subsystem Technologies Under Development:
 - Atmospheric Acquisition and CO/CO₂ Separation/Recycle Loop Compressor technologies
 - Subsurface Ice-Liquid Water Extraction technologies
 - CH₄ Liquefaction & Storage technologies
 - Large-scale dust mitigation technologies

Mars-unique Technologies Note: System-level demonstrations not included in this budget request)

Major Takeaways

- There is a real, and near term (less than a decade) potential for a commercial market for liquid oxygen (LOX) and water sourced from the Moon. Commercial demand ranges from tens to hundreds of metric tonnes a year
 - Dynetics/Blue Origin ~30 tonnes per year. SpaceX, 100s of tonnes per year
 - LOx will be >~75% of the demand my mass and can be obtained from dry regolith
- Demand for metals, and silicon will quickly follow.
- NASA and DOD can and may need to serve as anchor customers to ensure initial viability for this new marketplace
- In order to most rapidly achieve the projected need in propellent production, significant and rapid technology development and demonstration is required
- Major outstanding questions are not over quantities or types of products, but issues such as timelines, purity requirements, delivery locations, etc.

Recommendations

- NASA Being an anchor customer through competitive contracts to purchase the resource at quantity
- NASA can support maturation of technology by flying a demonstration unit, a pilot plant, and potentially a full production plant.
- NASA can supporting O₂ from regolith extraction technologies without reservations
- Continuing development of water harvesting technologies, and surveying to characterize the form and distribution of the water deposits
- Communicate with the community through LSIC to coordinate standards definition.

What are the Barriers to Commercial ISRU? **Today:** There is Neither a Production Capability or Market

Barriers

Resource Uncertainty

- **Resource Exploration**
- **Reserve Estimation**

Mining Technology Readiness

- **Demonstrated Scale**
- **Demonstrated Operations**

Customers


- Known users/market
- Market growth potential

Sustainable Operations

- **Reliable/Cheap Transportation**
- Logistics and Maintenance
- Infrastructure

Regulatory

- **Product/Property Rights**
- Standards

- Increase global resolution of resource information
- Campaign of resource exploration missions (Gov. & Industry)
- Agreement/standards for reserve estimation (ex JORC/NI43-101)
- Government/industry partnerships & space mining institute
- Spin-in/Spin-off Technologies into Terrestrial Applications
 - Incentives for insertion; greener/safer innovations
- Demonstrate technologies, production rate, and product quality
- Terrestrial market use of technology/capability
- Demonstrate product usage
- Develop space transportation & infrastructure growth around ISRU
- Gov. as anchor tenant once demand has been established
- Enable bootstrapping through stepwise incentives
- Utilize additive manufacturing for high wear parts
- Governments help establish initial transportation, power, communication, and surface infrastructure
- Establish common interfacing standards
- Establish international agreements (Artemis Accords)
- Establish stable legal and regulatory framework
- Establish tax incentives/flow-through shares
- Enable ownership enforcement

