National Aeronautics and Space Administration

Space Technology Mission Directorate Briefing

NAC T&I Committee

Presented by: Dr. James Reuther Deputy Associate Administrator, Space Technology Mission Directorate

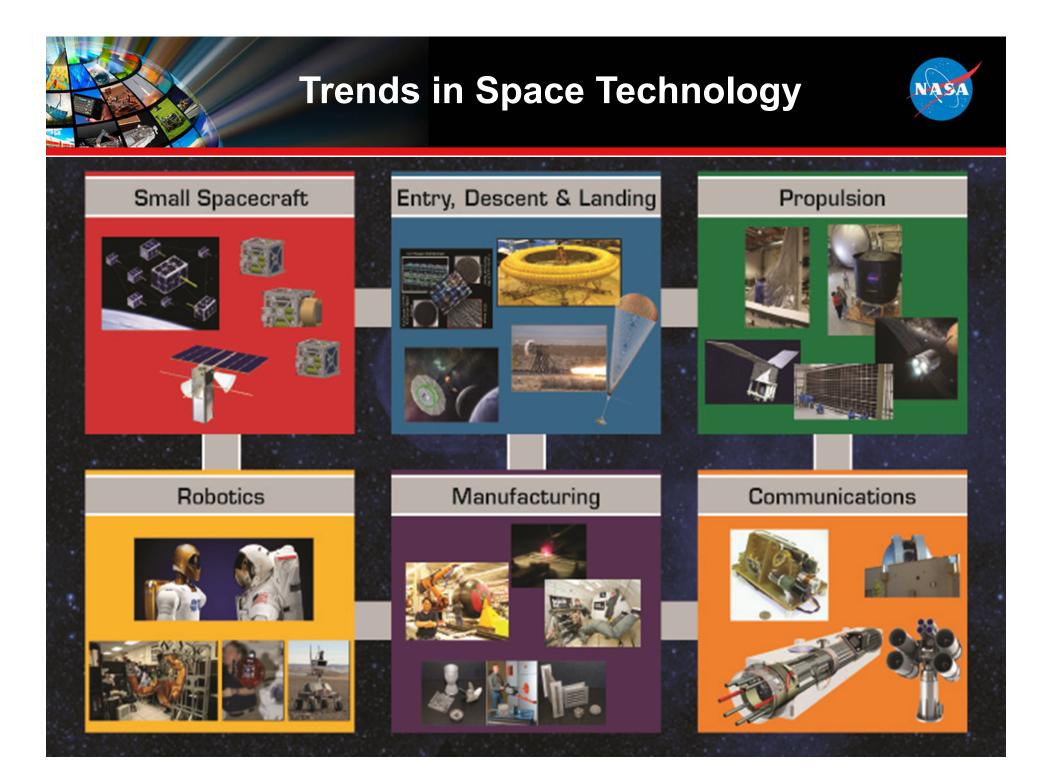
July 30, 2013

Why Invest in Space Technology?

- Enables a **new class of NASA missions** beyond low Earth Orbit.
- **Delivers innovative solutions** that dramatically improve technological capabilities for NASA and the Nation.
- Develops technologies and capabilities that make NASA's missions more affordable and more reliable.
- Invests in the economy by creating markets and spurring innovation for traditional and emerging aerospace business.
- Engages the brightest minds from academia in solving NASA's tough technological challenges.

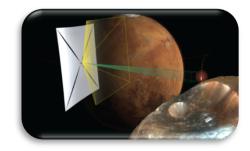
Value to NASA Value to the Nation

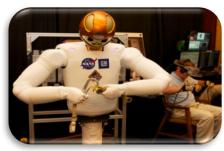
Addresses National Needs


A generation of studies and reports (40+ since 1980) document the need for regular investment in new, transformative space technologies.

Who: The NASA Workforce Academia Industry & Small Businesses Other Government Agencies The Broader Aerospace Enterprise

Challenges for Deep Space Exploration




Guiding Principles of the Space Technology Programs

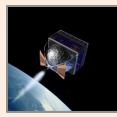
Space Technology Programs

- Adheres to a Stakeholder Based Investment Strategy: NASA Strategic Plan, NASA Space Technology Roadmaps / NRC Report and Strategic Space Technology Investment Plan
- Invests in a Comprehensive Portfolio: Covers low to high TRL, student fellowships, grants, prize competitions, prototype developments, and technology demonstrations
- Advances Transformative and Crosscutting Technologies: Enabling or broadly applicable technologies with direct infusion into future missions
- Selects Using Merit Based Competition: Research, innovation and technology maturation open to academia, industry, NASA centers and other government agencies
- **Executes with Structured Projects:** Clear start and end dates, defined budgets and schedules, established milestones, and project authority and accountability.
- Infuses Rapidly or Fails Fast: Rapid cadence of technology maturation and infusion, informed risk tolerance to infuse as quickly as possible
- **Positions NASA at the cutting edge of technology:** Results in new inventions, enables new capabilities and creates a pipeline of innovators for National needs

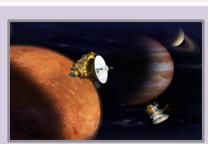
Space Technology Portfolio

ransformative & Crosscutting Technology Breakthroughs

Pioneering Concepts/ Developing nnovatior


Creating Markets & • Growing Innovation Economy

Game Changing Development (ETD/CSTD)


Technology Demonstration Missions (ETD/CSTD)

Small Spacecraft Technologies (CSTD)

Space Technology Research Grant (CSTD)

NASA Innovative Advanced Concepts (NIAC) (CSTD)

Center Innovation Fund (CSTD)

Centennial Challenges (CSTD)

Small Business Innovation Research & Small Business Technology Transfer (SBIR/STTR)

Flight Opportunities Program (CSTD)

FY2014 Big Nine

Human

Missions

Science

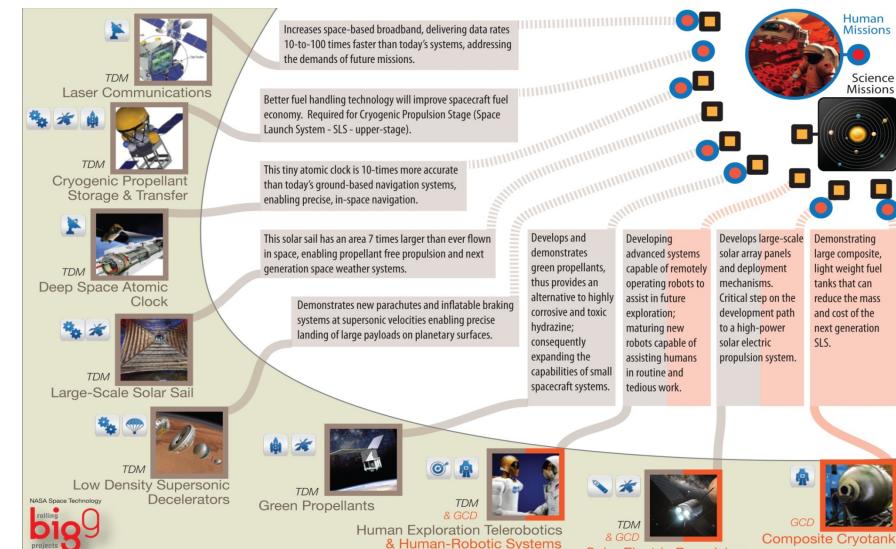
Missions

Demonstrating

large composite,

light weight fuel

reduce the mass


next generation

SLS.

GCI

and cost of the

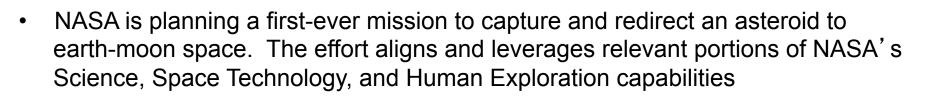
tanks that can

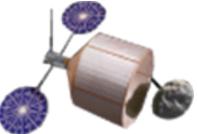
Solar Electric Propulsion

7

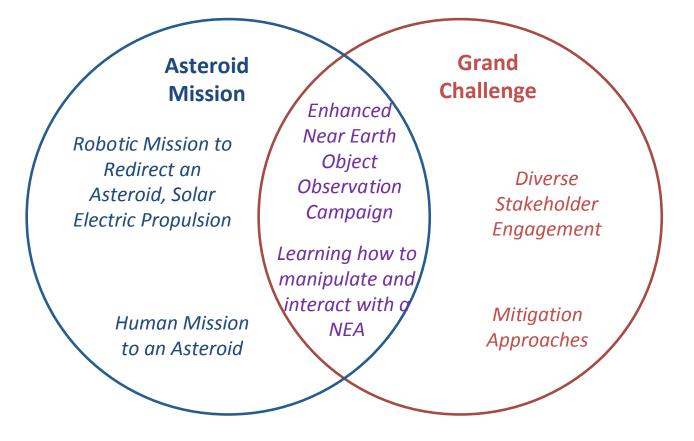
Space Technology Major Events & Milestones

HIAD IRVE 3


Telerobotics

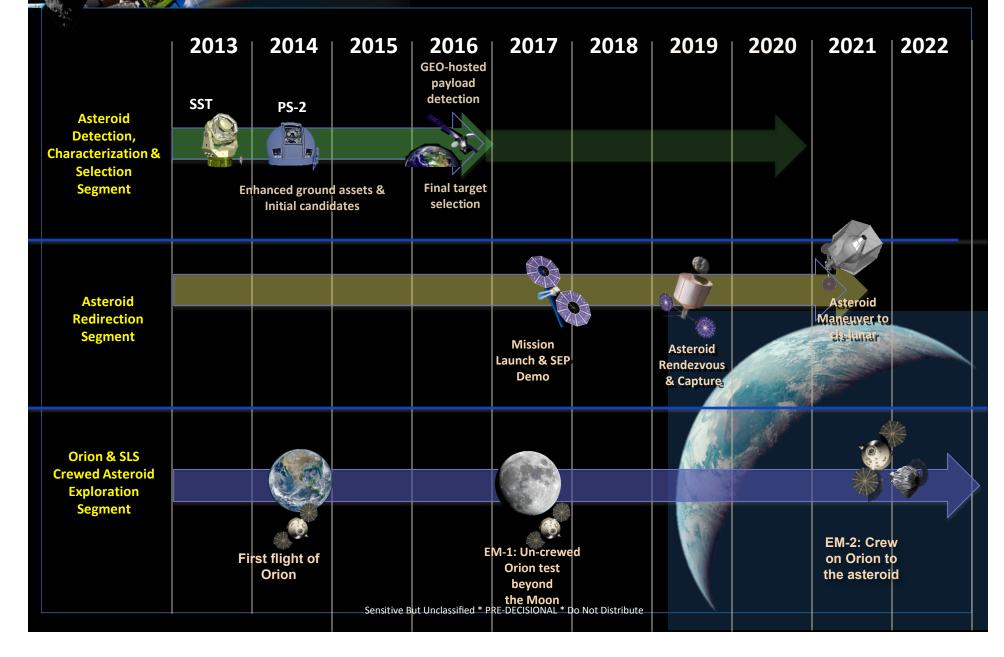

MEDLI

Asteroid Initiative: Asteroid Redirect Mission & Agency Grand Challenge



- NASA will also lead a broad effort to find all asteroid threats to human populations and know what to about them: a "Grand Challenge"
- The overall mission is composed of three independently compelling elements:
 - Detection and characterization of candidate near earth asteroids
 - Robotic rendezvous, capture and redirection of an asteroid to earth-moon space
 - Crewed mission to explore and sample the captured asteroid using the Space Launch System (SLS) and the Orion crew capsule
- Space Technology will focus on high-powered Solar Electric Propulsion (SEP)
 - SEP is the primary propulsion for the robotic asteroid rendezvous and redirection
 - The retrieval mission is not possible without SEP
 - SEP is also enabling for deep space human exploration
 - SEP component technologies serve commercial needs
 - In FY14 STMD will accelerate SEP development

FY14 Asteroid Initiative



Both sets of activities leverage existing NASA work while amplifying participatory engagement to accomplish their individual objectives and synergize for a greater collective purpose.

Alignment Strategy

Space Tech Role in Agency Asteroid Strategy

Early Stage programs will foster innovation regarding:

- Asteroid detection, characterization and mitigation for planetary defense and asteroid retrieval mission target selection
- Asteroid proximity operations and resource utilization techniques

Game Changing will complete high power SEP tech development:

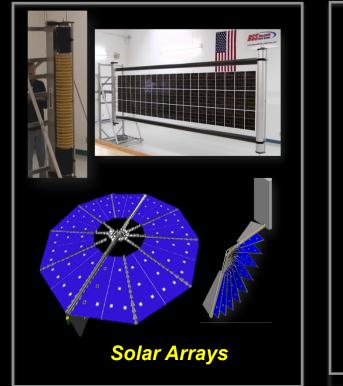
- Advanced solar array systems
- Advanced magnetic shielded Hall thrusters
- Power processing units (PPUs)

Technology Demonstration Missions will develop, test and demonstrate the SEP system as part of the redirect mission:

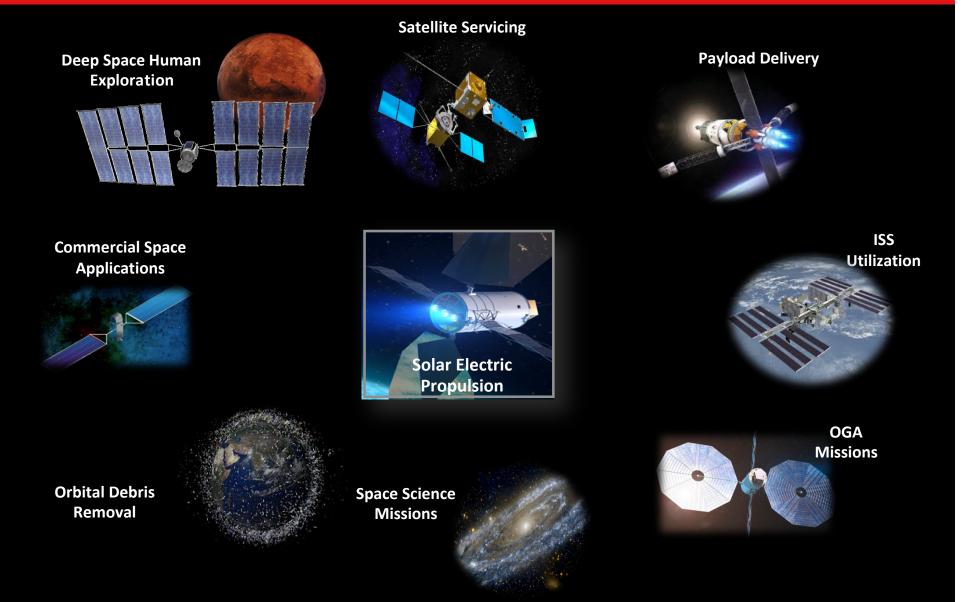
- 30kW 50 kW advanced solar arrays
- EP thrusters & Power Processing
- Xenon propellant tanks

Additional Asteroid Redirect funding in FY2014 will cover:

- Flight hardware solar array procurements
- EP thruster engineering development units
- Design of Xenon propellant tanks



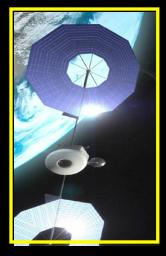
High-Powered Solar Electric Propulsion


Thruster and Power Processing Unit

Propellant Feed System and Storage Tanks

High-powered SEP Enables Multiple Applications

NASA


Advancing Solar Electric Propulsion Technology

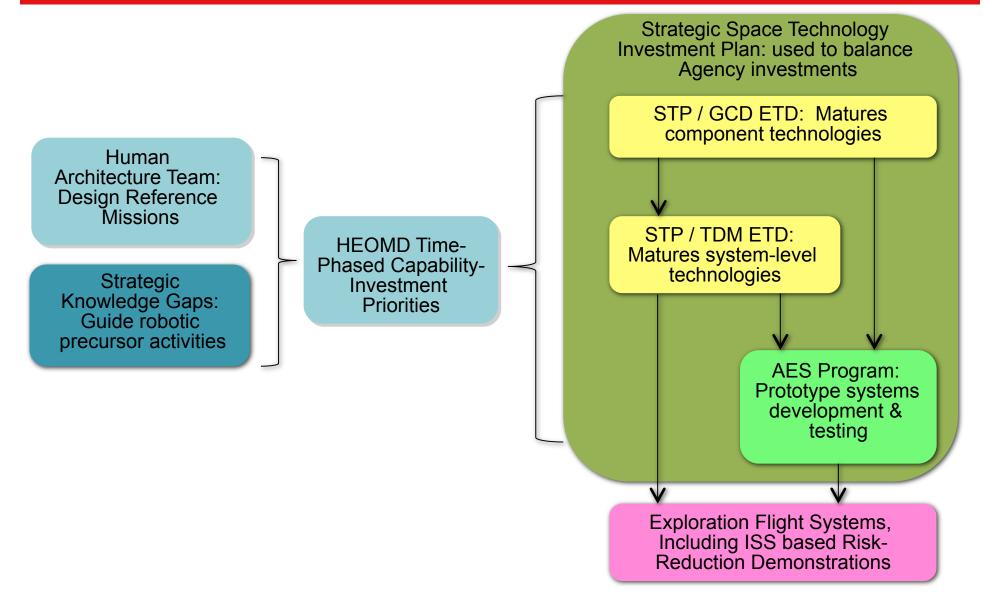
Deep Space 1 1998	Dawn 2007	AEHF Recovery 2010	Asteroid Redirect Mission	Far-term Exploration Missions circa 2030's
Technology Demonstrator	Deep-Space Science Mission	Satellite orbit established with Hall Thrusters	Robotic Mission to Redirect Asteroid to Trans-Lunar Orbit	
2.5 kW power system 2kW EP system	10 kW power system 2.5kW EP system	~16kW-class power ~4.5kW-class EP	50kW-class power system 10 kW-class EP	350kW-class power system 300kW-class EP

HEOMD / STMD Programmatic Synergy

Exploration Technology Development (ETD) work resides in two Space Technology Programs:

- Game Changing Development (GCD)
- Technology Demonstration Missions (TDM)

ETD Focus:


- Cross-cutting, pioneering technology development
- Not systems level development or integration
- TRL 7 or below
- Infusion into HEOMD; SMD, OGAs and the Aerospace Enterprise

AES Program within HEOMD manages system-level integration work and prototype / design development for future exploration architecture elements.

The Human Research Program (HRP) undertakes technology development and basic research in related areas, e.g. radiation mitigation

Guidance for the Combined AES/STMD Portfolio

First Steps Towards Mars

STMD/ETD

Investments

Investments

STMD/ETD

Investments

HEOMD/ESD/AES

HEOMD/ESD/AES +

Mission Sequence	Asteroid Redirect Mission	Long Stay In Deep Space	Humans to Mars Orbit	Humans to Mars Surface
ISRU & Surface Power				Х
Surface Habitat				Х
EDL, Human Lander				Х
Aero-capture			Х	Х
Adv. Upper Stage w Cryo- Prop storage & Transfer			x	X
Deep Space Habitat (DSH)		Х	X	Х
High Reliability ECLSS		X	X	Х
Autonomous Assembly		Х	X	Х
SEP for Cargo / Logistics	Х	Х	Х	Х
Deep Space GNC	X	Х	X	Х
Crew Operations beyond LEO (Orion)	X	X	X	X
Crew Return from Beyond LEO – HS Entry (Orion)	X	X	X	Х
Heavy Lift to Beyond LEO (SLS)	X	Х	X	Х

Exploration Technology Development

Infusion	SLS/	SEV	EVA	DSH	Mission	Robotic	In-Space	Asteroid
ETD: GCD	MPCV				Operations	Precursors	Propulsion	
Electric Propulsion Thrusters						·		
Solar Array Systems (SAS) – – – – – – – – – – –								
Advanced In-Space Power – – – – – – – – – –		0						
Human-Robotic Systems (HRS) – – – – – – –			@					
Autonomous Systems (AS) – – – – – – – – – –								
Next-Generation Life Support (NGLS)								
In-Situ Resource Utilization (ISRU)								
Composite Cryogenic Propellant Tank (CCPT) – – -							🔘	
Advanced Radiation Protection (ARP)								
Woven TPS (W-TPS)	0							
Composite Cabin – – – – – – – – – – – – – – – – – – –								
EVA Glove								
ETD: TDM								
Cryogenic Propellant Storage and Transfer (CPST)								
Solar Electric Propulsion (SEP) – – – – – – –								0

Surface Power

Human Ops Support and Robotics

Mars Resource Utilization and Ascent from Surface

NASA

Space Radiation

Entry, Descent, and Landing (EDL)

Communications and Navigation

Transit (Cargo and Humans)

NASA

TECHNOLOGY SOLUTIONS

 Surface Power Fission/solar power Fuel cells/batteries 	 Life Support Next-Gen highly reliable and closed-loop life support. Advanced EVA suits 	 Human Ops Support and Robotics Telerobotics Robotics—task removal from astronauts Autonomous systems 	 Mars Resource Utilization and Ascent from Surface Utilization of in-situ resources Generation of human consumables Creation of propellant
 Space Radiation Radiation protection Radiation modeling, characterization, and measurement 	 Entry, Descent, and Landing ECL Systems for Human Class Missions Hypersonic entry systems Supersonic descent systems 	 Communications and Navigation Optical communication Advanced guidance systems 	 Transit (Cargo and Humans) Solar electric propulsion Lightweight structures and materials Cryogenic propellant storage and transfer

STMD INVESTMENTS

Surface Power

- Advanced batteries
- Regenerative fuel cells
- **Fission nuclear systems**
- Solar arrays

Life Support

- **CO**₂ to O_2 recovery
- Water processing
- Air regulators

Space Radiation

- Advanced radiation protection
- Radiation modeling and forecasting
- Dosimeters

Entry, Descent, and Landing

- Hypersonic Inflatable Aerodynamic Decelerator/High-Energy Atmospheric Reentry Test
- Adaptive Deployable Entry Systems Project
- Low-Density Supersonic Decelerator
- MSL Entry, Descent, and Landing Instrument
- Heat Shield for Extreme Entry Environment Technology
- Supersonic Retro Propulsion
- Hypersonic Entry, Descent, and Landing

STMD INVESTMENTS

Transit (Cargo and Humans)

- Composite Cryotank
- Cryogenic Propellant Storage and Transfer
- Lightweight Materials and Structures
- Solar Electric Propulsion

Mars Resource Utilization and Ascent from Surface

- O₂ from Mars atmosphere
- RESOLVE instruments
- Propellant production

Communications and Navigation

- Deep Space Atomic Clock
- Laser Communication Relay Demonstration
- Deep Space Optical Communications

Human Ops Support and Robotics

- Automated system ops
- Robotic, human safe, maintenance and ops
- Avionics/multicore processor

