

David W. Miller NASA Chief Technologist

(o (o

NAC TI&E Meeting, July 28-29, 2014

TECHNOLOGY DRIVES EXPLORATION

#321TechOff

- Strategic Technology Investment Plan Development Process
- ISS Utilization for Technology
- Agency Investment for Low TRL Research
- Science, Engineering & Technology Committee
- Achieving a Balanced Portfolio

NASA

- Need a program for fundamental knowledge discovery
- New capability includes both products and processes
- Potential processes:
 - Design and test under uncertainty
 - Integrated, multi-physics modeling
 - Solving the inverse problem
 - Model-based systems engineering
 - Massively computer-aided design environment

Perhaps AFOSR can be a model

- \$350M/yr, 70% extramural, 30% intramural, all competed, MURIs, formal portfolio renewal process, Centers of Excellence
- How should NASA basic research position itself relative to AF, Navy, Army, DARPA, etc?

AFOSR Basic Research Program

- Attributes: breadth of disciplines, not application specific
- Do we mimic, fill in gaps, be more applied, co-fund?

Dynamical Sys & Control	Quantum & Non-equil Proc	Info, Decision, & Complex Net	Complex Mats & Devices	Energy, Power, & Propulsion
Flow interact & ctrl	Atomic & mole phys	Systems & software	Organic mats chem	Space pwr & prop
Multi-scale struc mech & prognosis	Ultrashort pulse laser matter interac	Science of info, comp & fusion	Aero materials for extreme environ	Circadian & homeo- static reg of perf.
Optimization & discrete math	Lasers & optical physics	Sensing, surveil, & navigation	Mech of multi-func mat & μsystems	Molecular dynamics & theoretical chem
Computational mathematics	Remote sensing & imaging physics	Info operations & security	Natural materials & systems	Human perf & biosystems
Dynamics & control	Biophysics	Complex networks	GHz-THz electronics	Aerothermodynam
Turbulence & transition	Plasma & electro- energetic physics	Dynamic data driven app systems	Photonics & optoelectronics	Dynamic materials & interactions
Test & evaluation	Space sciences	Robust decision making	Quantum electronic solids	Energy conv & combustion sci
	High energy lasers	Trust & influence	Low-density mats	
	Electromagnetics			

Foundational Engineering Science (FES)

- Innovation includes not only products but also processes, such as design
- Many of NASA's missions are custom designs which incur substantial labor cost and time
 - How can new process tools help?
- Design is analogous to a control system
 - Actuators, sensors, commands, update rate, model uncertainty, etc.

Fundamental Engineering Science

- Innovation includes not only products but also processes, such as design
- Many of NASA's missions are custom designs which incur substantial labor cost and time
 - How can new process tools help?
- Design is analogous to a control system
 - Actuators, sensors, commands, update rate, model uncertainty, etc.
- Facilitate the design process through tool development

Current Practice

- Separate CAD and analysis tools used for each discipline
- Interactions assessed, trades developed between domain experts

Proposed Process

- Couple CAD and analysis tools for disciplines that exhibit potential coupling (e.g., temporal, spatial), considering hybrid scales
 - Ensuring comparable accuracy over comparable parametric ranges
 - Validate coupling behaviors
- Evaluate performance and conduct trades using appropriate metrics and optimization tools

- Identifies potential detrimental couplings earlier in design process
- Permits solutions that leverage favorable couplings
- Allows broad and rapid trade-space exploration

NASA

Current Practice

- Design parameters are inputs, performance metrics are outputs
- Designs are optimized based upon experience at sub-system level
- Designs are analyzed using high fidelity simulations

Proposed Process

- Performance metrics are inputs, design parameters are outputs
- Use high fidelity, integrated models that capture system behavior
- Embed these models (or surrogates) in an optimization problem
 - E.g., reduced order models, describing functions

- High fidelity, integrated models used directly in the design process
- Can contour the iso-performance design space

NASA

Current Practice

- Requirements, designs, analyses, data captured in documents
 - Not amenable to data extraction, independent analysis & assessment
- They are not "living" documents that can easily adapt over a project or be leveraged by follow-on projects

Proposed Process

- Formalized application of modeling to support system development (e.g., requirements, data analysis, V&V) throughout the lifecycle
- Capture these products in interactive modeling framework
 - Discoverable design revision history, lessons learned, trade-able requirements, extractable raw data with available analysis code

- "What-ifs" posed by stakeholders could be answered in real time
- Design decisions could be revisited, raw data re-analyzed
- Enhance productivity & quality, reduce risk, improve communications, more indepth independent assessment

Current Practice

- Disciplinary design teams working separately and exchanging results infrequently by "throwing their results over the transom"
- Early arrival at point design that requires subsequent "band aids"
- Integrated multi-disciplinary conceptual design (e.g., Team-X)

Proposed Process

- Turn the preliminary design process (and beyond?) into a real-time conversation between domain experts
 - Assume computation power is infinite and cost is insignificant
- Exploit MBSE, Integrated multi-physics and multi-scale models, Inverse solution and iso-performance techniques
- Complement DARPA Adaptive Vehicle Make (AVM) program

- Could dramatically reduce time and cost of custom design
- Carry multiple, substantially different designs to mitigate risk

NASA

Current Practice

- Models, H/W & S/W developed, UFs are levied, and subjected to often worst case, conservative environments
- Models tuned, workmanship assessed, requirements validated

Proposed Process

- Models inform test design which improves model predictive accuracy
- For example,
 - Models, uncertainties, performance metrics developed and likelihood of meeting requirements assessed
 - Sensitivities of metrics from model & uncertainty parameters inform both model-based redesign and test campaign designs, respectively
 - Tests designed to reduce parametric and identify non-parametric uncertainties
- Algorithms w/limited application, tool development-validation needed

- Test campaigns more efficient, uncertainty quantified, data archived
- Reduced conservatism leads to more capability or lower cost

- Each plays a vital yet distinct role
 - Technology develops the new engineering tools,
 - That enable the engineers to build more capable missions,
 - That answer the increasingly challenging and fundamental questions of science

All three dialogues are essential

- Science and Engineering to best satisfy mission requirements
- Engineering and Technology to improve driving SWaP, cost and risk elements
- Technology and Science to identify game changers

These three dialogues are essential in advancing exploration, as well as technical know-how and engineering capability

Science

Dialogue between Science, Engineering & Technology

These three very different dialogues must exist to ensure that we can build the missions of today and realize the vision of tomorrow

Dialogue between Science & Engineering

Ensures science requirements are met by mission engineering

- Requirements Validation
- Needed capability identification
- In absence of dialogue between Engineering & Technology
 - More science without new engineering capability
 - E.g., same model of rover exploring different sites

While scientifically useful, cannot drive towards answering more challenging and fundamental science questions

Requirements dialogue

- There exist many ways to satisfy a requirement
- Formalize iso-performance analyses that identify most cost-effective lower level requirements

Performance-to-Plan dialogue

- Assess the degree to which RED & YELLOW identified in Implementation Phase were detectable during Formulation Phase
- Review the process used for P-to-P assessment during Formulation Phaseß

Three lower level requirements allocations that satisfy same higher level spectral resolution requirement

Enhances more Science but doesn't enable game-changing breakthroughs

- Ensures development of new technology to address those engineering elements that limit scientific productivity
 - Technical Capability Assessment

Common drivers dialogue

- Identify elements that most challenge project engineering
 - E.g., batteries, reaction wheels, and communications
- Identify technical solutions and level of improvement needed

Proj #1	Proj #2	Proj #3	Proj #4
batteries	RW	CCD	batteries
RW	thermal	mirrors	EDL
comm	batteries	RW	comm
prop	relays	batteries	comp

TRL dialogue

- Assess TRL and mission criticality of proposed technology
- Identify ways to mature needed technology with lower cost & risk

Rank-ordered list of design drivers for each project revealing cross-cutting issues warranting technological improvement

Dialogue between Technology & Science

- Without all three dialogues, • capability advancement is impeded leading to
 - More of the same
 - Incremental improvement
 - Valley of Death

All three dialogues must exist led by experts in the disciplinary areas involved

Capabilities dialogue

 Identify landscape of potential technical solutions to needed capabilities for far term missions

Technology Rol dialogue

- Assess potential value within a mission
- Determine whether other missions would also benefit

Dialogue between Science, Engineering & Technology

All three dialogues must exist led by experts in the disciplinary areas involved. The goal is to facilitate these dialogues.

Facilitating these Dialogues over Three Month Cycle

Achieving a Balanced Portfolio

- Engineering and technology are insufficient to support
 - Capabilities do not improve
 - Costs overrun
 - Schedules stretch
 - Missions are cancelled

- Science has insufficient need and technology does not innovate
 - Facilities and expertise are unused
 - Maintenance and labor costs dominate
 - Morale drops

Science has insufficient need and engineering customer disappears

٠

- Developed without a goal
- Limited opportunity to mature
- Becomes a sandbox

Finding the proper balance is essential

Thank You!

6.6

TECHNOLOGY DRIVES EXPLORATION

#321TechOff