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The contingency was declared at 2:15:19.160 a.m. PST. No collateral damage or injury 
was reported as a result of this mishap. No physical launch vehicle or spacecraft debris 
was available for examination. The cost of the mission was approximately $388 million.  
 
A NASA-led Taurus XL T9 Mission Glory Mishap Investigation Board (MIB) was formed 
by Mr. William Gerstenmaier, Associate Administrator for NASA's Space Operations 
Mission Directorate, March 8, 2011. The MIB was chaired by Mr. Bradley Flick, Director 
for Research and Engineering at NASA's Dryden Flight Research Center. 
 
The Taurus XL Mission T9 MIB was commissioned to: 

 Obtain and analyze whatever evidence, facts, and opinions it considers relevant. 
 Conduct tests and any other activity it deems appropriate. 
 Interview witnesses and receive statements from witnesses.  
 Impound property, equipment, and records as considered necessary.  
 Determine the proximate cause(s), root cause(s), and contributing factors related 

to the mishap. 
 Develop recommendations to prevent similar mishaps. 
 Provide a final written report. 

 
No physical evidence from the T9 mishap was available for examination. The T9 MIB 
tested hardware, performed engineering simulations, analyzed simulation data, and 
reviewed telemetry data (including telemetry obtained after the T8 mishap). The MIB 
also obtained technical knowledge on the Taurus XL launch vehicle using information 
and evidence gathered from interviews, technical interchange meetings, and document 
and data reviews with the NASA Launch Services Program; NASA's Glory Project; 
Orbital’s Dulles, Virginia, and Chandler, Arizona Divisions; and Ensign-Bickford 
Aerospace and Defense Company, the manufacturer of the fairing frangible joint 
assembly.  It was from these sources that the T9 MIB then developed the fault, event, 
and causal factor trees. 
 
Using this data, the MIB was able to analyze and determine that the proximate cause of 
the mishap was the failure of the payload fairing system to separate. Detailed analysis 
determined one of the side rails of the payload fairing system failed to fully fracture near 
the fairing’s nose cap. However, no root cause for the fairing’s failure to separate was 
able to be determined. The board also analyzed telemetry comparing the T8 telemetry 
data with T9 telemetry data and concluded that the post-fairing separation failure 
configurations of both vehicles were similar. 
 
NASA has completed the Agency’s assessment of the Glory T9 MIB report. NASA is not 
making the report public because it contains information the company considers to be 
proprietary and information restricted by International Traffic in Arms Regulations.  
Instead, NASA is providing this overview of the mishap and the investigating board's 
findings and recommendations regarding the Glory mishap.  
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The 63-inch payload fairing system was used on both Orbiting Carbon Observatory 
(OCO) and Glory missions. The Glory Taurus XL T9 mission was the first Taurus launch 
following the failed OCO Taurus XL T8 launch. Like the Glory T9 mission, the OCO T8 
mission failed to deliver its payload to orbit because of the failure of the payload fairing 
to separate. The OCO T8 mishap investigation could not identify a root cause but did 
identify four potential intermediate causes:  
 

1.  Failure of the base ring frangible joint to completely fracture. 
 
2.  Failure of the electrical subsystem preventing ordnance from firing. 
 
3.  Failure of the fairing’s hot gas generator pneumatic system to 
pressurize resulting in a failure to push the fairing halves and/or side rails 
apart.  
 
4.  Snagging of the flexible confined detonating cord (FCDC) on one of the 
payload fairing side rail’s nut plate. 

 
A Taurus XL Return-To-Flight activity took corrective actions against these potential 
causes for the T9 Taurus XL flight, including replacement of the hot gas generator 
pneumatic system with a cold gas system (with added pressure sensor telemetry to 
verify thruster activation), and installation of room temperature vulcanizing silicone to 
eliminate the potential for FCDC snagging.  
 
During a normal flight separation, a pneumatic system would pressurize the fairing 
deployment thrusters. The fairing’s frangible joints (both side rails and the base ring) 
would be broken using MDF, and the thrusters then would push the fairing halves 
outward on external hinges and separate the fairing halves from the stage. Sensors 
mounted in the fairing would provide telemetry on temperature, pressure, and acoustic 
environments. The fairing base ring has separation break wires on each half and is 
monitored in telemetry. 
 
 
MISHAP CAUSES AND RECOMMENDATIONS 
 
Using information and evidence gathered from interviews, technical interchange 
meetings, documents, data reviews, and testing, the T9 MIB developed a timeline of 
events, performed a detailed Fault Tree Analysis, and a Root Cause Analysis.  From 
these analyses, the T9 MIB identified the proximate cause and possible intermediate 
causes for the failure.  As a matter of explanation, a proximate cause, also known as 
the direct cause, is the event or condition that directly resulted in the occurrence of an 
undesired outcome.  In this case, the proximate cause was that the fairing did not 
separate from the launch vehicle.  An intermediate cause is an event or condition that 
created the proximate cause and that if eliminated or modified would have prevented 
the proximate cause from occurring.  
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Proximate Cause: Fairing separation failed 
 
Flight telemetry data strongly suggested that the payload fairing did not separate as 
planned. The T9 MIB hesitated to declare this as the sole and obvious proximate cause 
and, instead, elected to conduct a comprehensive investigation of potential causes. 
Comparison of modeled structural behavior based on analysis and ground test to flight 
data provided through telemetry showed the only reasonable scenario was that the 
fairing system failed to separate. The detailed analysis pointed to a failure to fracture 
near the forward end of one of the fairing side rails, which prevented full separation. The 
extra pressure sensor added to the installation of the cold gas pressurization system, in 
place of the hot gas generator system as part of the response to the T8 MIB report, 
provided valuable data to the T9 MIB. This sensor data verified the cold gas 
pressurization system performance was satisfactory and that the T9 payload fairing’s 
base ring indeed had separated. As a result, the T9 MIB could eliminate the cold gas 
pressurization system and the base ring as a cause and focus on the scenario in which 
the forward end of the payload fairing side rail failed to fracture. 
 
Intermediate Causes 
 
The T9 MIB examined all potential intermediate causes closely and concluded that the 
most likely intermediate causes were the two items listed below from the Event and 
Causal Factors Tree that were categorized as “possible:”  
   

 Side rail charge holder slumped or compressed 
Design analysis and ground testing of frangible joint components during the 
course of the investigation led the T9 MIB to conclude that the rubber charge 
holder, an internal component of the frangible joint, could have slumped due to 
the effects of launch acceleration and random vibration, resulting in incomplete 
fracture of the fairing side rails.  
  

 Side rail system failed to operate correctly outside its evaluated 
environments 
The second possible intermediate cause was an expansion of the first. Because 
the charge holder slumping scenario was identified early in the investigation 
process, considerable focus was placed on that component. It became clear to 
the T9 MIB that the lack of testing and analysis throughout the life cycle of the 
frangible joint applied not only to the charge holder, but to the other components 
comprising the frangible joint system. Consequently, while the first possible 
intermediate cause considers the charge holder alone, the second possible 
intermediate cause considers the rest of the joint system and the interaction 
between system components. There may be additional undiscovered failure 
modes due to untested environments within the joint system.  Analysis and 
testing must be applied to the frangible joint system and not solely to the charge 
holder.  
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Root Cause Analysis 
 
While the T9 MIB was able to identify the proximate cause and two possible 
intermediate causes for the T9 mishap, they were unable to identify the root cause for 
this failure.  As a matter of explanation, an intermediate cause is between the proximate 
cause and the root cause in the causal chain. The root cause is the factor or set of 
factors that contributes to, or creates the proximate cause. Typically multiple root 
causes contribute to an undesired outcome. 
 
The T9 MIB was unable to determine a root cause for the mishap mainly due to limited 
flight telemetry and the inability to recover the payload fairing hardware for analysis that 
would have enabled the determination of a definitive intermediate cause or causes. 
While the T9 MIB was unable to identify a root cause, they made several technical 
observations and findings which are summarized below: 
 

 The T9 MIB determined that side rail charge holder slumping (compression) 
could possibly occur because of the following: 

 
1. The Side Rail assembly’s susceptibility to (and the effects of) charge 
holder slump was not previously identified. 
   
2. The temporal distribution of acceleration, vibration, shock environments 
had changed over time. 
 
3. Orbital’s fairing joint buildup process variability could affect charge 
holder slumping susceptibility.  
 

 In addition, the T9 MIB noted a large percentage of potential causes rated as 
“possible, but highly unlikely” involved frangible joint components and also 
observed that Orbital's manufacturing processes were not as tightly controlled as 
those applied by NASA in other pyrotechnic hardware designs. The possibility 
exists that manufacturing process controls could allow variation in material 
properties and hardware dimensions that may impact system performance. 
 

 The T9 MIB did not find evidence that a detailed failure analysis of the frangible 
joint design used on the Taurus was performed at any point in its life cycle.  
Details of the design had evolved since the genesis of the base ring application 
for the Pegasus launch vehicle, and the effects of those evolutionary design 
changes, including the potential for charge holder slump, were not discovered. 

 
 The T9 MIB also discovered that the qualification activity for the frangible joint 

system was generally performed at the subscale level, using industry practices 
for the qualification of pyrotechnic devices. The effects of all flight environments, 
either individual or combined, were not always considered.  As with the system 
design, the flight environments also have evolved over time, and the effects of 
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these changes on system performance margins should be understood. 
As a result of the analyses performed, the T9 MIB made the following technical 
recommendations: 

 
1.  Orbital should establish frangible joint system manufacturing process 
controls sufficient to assure that variability in materials properties and 
hardware component dimensions, within both maximum and minimum 
tolerances, will not invalidate design performance requirements. 
 
2.  An extensive failure analysis (for example, detailed fault tree or failure 
mode analysis) of the Taurus frangible joint design should be performed. 
 
3.  Design and implement a qualification and test activity for the Taurus 
frangible joint system based on the results of an extensive failure analysis 
(for example, detailed fault tree or failure mode analysis) and with 
consideration for the environments in which the joint is operated. 

“The MIB believes that if this recommendation were implemented, it 
could address all the possible frangible failure scenarios identified 
in the investigation.”  

 
During the course of the mishap investigation, additional observations and 
recommendations related to Agency policy, special assessment procedures, and 
improved communications were noted by the T9 MIB.  Although these items were not 
deemed causal to the launch failure by the T9 MIB, the MIB determined that they could 
be beneficial for future programs. 


