

Dual-Mode Propulsion System Enabling CubeSat Exploration of the Solar System

NASA Innovative Advanced Concepts

2014 NIAC Symposium Stanford University February 4 – 6, 2014

Nathan Jerred, Troy Howe & Steven Howe Center for Space Nuclear Research Adarsh Rajguru University of Southern California

Inspiration

- Limited budgets make large missions more difficult to fund
 - achieve more science-per-dollar
- Develop technologies enabling reliable, compact exploration platforms
 - long-lived and long-ranged mobile platform
 - off-the-shelf propulsion system
 - propulsion system for micro-satellite payloads
- Target small launch vehicles
 - less than 1,000 kg to LEO
- Enable affordable deep space exploration

1U CubeSat frame

GOAL

- deliver 6U CubeSat payload to Enceladus orbit (~15 kg)
- develop an appropriately sized propulsion system concept
- develop the mission architecture

²³⁸ PuO₂ Pellet

- Radioisotope Decay
 - proposed radioisotope: ²³⁸PuO₂
 - heritage use within NASA
 - high specific energy: 1.6 x 10⁶ MJ/kg (thermal)
 - Chemical propellants: 10 MJ/kg (thermal)
 - RTG: 9.6x10⁴ MJ/kg (6%) vs Li-ion: 0.72 MJ/kg (electric)
 - poor specific power: 0.392 W/g [²³⁸PuO₂]

Fuel Containment

- fuel encapsulated in a tungsten-based matrix
 - provides high strength & toughness
- can provide great energy density

DOE

Tungsten-based CERMET

O'Brien et al.

- Radioisotope-Based Core
 - decay energy accumulated within central core, i.e, thermal capacitor
 - direct propellant heating for propulsion
 - radioisotope thermal rocket (RTR)
 - thermal energy converted to electrical energy
 - electric propulsion
 - power generation
 - accumulated energy is depleted through each impulse

artistic rendering of the concept in Earth orbit

Concept energy storage

- Thermal Capacitor Qualifications
 - high thermal storage, high thermal conductivity, high melting temperature
 - sensible heat \rightarrow based on a material's heat capacity
 - latent heat \rightarrow based on energy needed to change a material's phase

- Direct Propellant Heating
 - provides thermal-based propulsion
 - heated propellant expelled through nozzle creating thrust
- Energy Conversion
 - closed loop Brayton cycle
 - 10's of kW per pulse
 - multiple pulses per day

dual Brayton engines

thermal propulsion flow schematic

electrical conversion flow schematic

Previous work performed on a Martian exploration probe

- Thermal interactions within the core
 - details core sizing such as isotope loading, capacitor size, insulation, etc.
- Thermal hydraulics between the core and flowing gas
 - details performance of propellant yielding chamber pressure & temperature aiding in nozzle development
 - details performance of working fluid for energy conversion to help determine power generation and efficiencies

Mission Design instrumentation & communication

Instrument	Mass (g)	Volume (cm ³)	Power (W)
Thermal Imaging Radiometer	1,000's	1,000's	10's
Infrared Spectrometer	100's	100's	-
High Resolution Camera (MAC)	100's	100's	1's
Mass Spectrometer	100's	10's	1's

daho National Laboratory

ltem	Symbol	Units	Value
Frequency	f	GHz	27.50
Transmission Power	Pt	Watts	25000
Transmission Antenna Dia.	Dt	m	1.5
Trans. Antenna Gain (net)	Gt	dBi	50.16
Prop. Path Length	S	km	1.27(10) ⁹
Space Loss	Ls	dB	-303.30
System Noise Temp.	Ts	Κ	84.10
Data Rate	R	Mbps	1
SNR	Eb/No	-	5.94

communication system

⁶U payload frame

Payload Power

A compact Radioisotope Thermo-Photovoltaic (RTPV) power source ~being studied at the CSNR

estimated RPS for 5 We – 400g, "D cell" size

- instrumentation
- provides high temperature strength
- Emitter material or coating can be integrated with the CERMET fuel
 - increase conversion efficiency

Trajectory

- Thermal Propulsion Mode
 - provides high thrust & moderate lsp
 - impulse function allows for phasing ____ maneuvers (perigee pumping) to achieve Earth escape
- **Electric Propulsion Mode**
 - provides high lsp for interplanetary travel
 - allows for shorter transit times
 - four 2.2 kW Hall Effect thrusters

Earth – Jupiter – Saturn

- Earth Departure: Jan-18-2018
- Saturn Arrival: July-11-2023
- Total Duration: 5.48 years
- Injection ΔV (Earth_{escaped}): 6.42 km/s
- Jupiter Gravity Assist: 0.12 km/s
- Post Injection ΔV (Saturn_{capture}): 0.54 km/s
- Total ΔV required by propulsion system = 6.96 km/s

possible trajectory to Saturn

graphic of Earth-based phasing maneuvers

Performance

PRELIMINARY RESULTS

based on Earth escape

Operation

time_{blowdown}: 360 s time_{heatup}: 0.2 day time_{escape}: 80 days ΔV_{escape} : 3.8 km/s temp: 1700 K

<u>Core</u>

30 cm length 20 cm diameter 2 mm dia. flow channels 18.1 kg Silicon 7.16 kg 238 PuO₂ 89.8 kW_t core power 27 kW_e electric power **31.1 kg TOTAL**

Performance

propellant: Hydrogen Isp : 694 s blowdowns: 400 $\Delta V_{per burn}$: 0.0095 km/s thrust_{per burn}: 26.39 N prop. mass_{per burn}: 1.39 kg **prop. mass: ~558 kg TOTAL**

artistic rendering of proposed concept

Future Work

Phase I

- Further Optimization
 - concept design
 - mission design
- Simulations
 - thermal hydraulics
 - trajectory optimization
- Technology Comparison
 - chemical propulsion
- Mission Comparison
 - Enceladus Orbiter via Decadal Survey, etc.

Phase II

- Detailed Concept Optimization
- Technology Demonstration
 - energy storage within thermal capacitor
 - energy conversion with closed-loop Brayton
 - thrust demonstration with propellant & nozzle

available experimentation hardware

Summary

- A reliable interplanetary propulsion system based on radioisotopic energy is possible
 - provides versatility to use available power for propulsion or electrical power production
- Extends the realm of CubeSat-based exploration and experimentation
- Enables a broader range of researchers and research institutions

artistic rendering of concept in Enceladus orbit

The development of a low mass, low cost propulsion system is achievable
smaller launch vehicles → *cheaper launch costs*

Enables 'Public Access' To Outer Planet Exploration!!

Acknowledgments

- Funding Provided By
 - NIAC Phase I Award \rightarrow Fiscal Year 2014
- Co-Investigators
 - Troy Howe & Adarsh Rajguru
 - Steven Howe \rightarrow Advisor

NIAC Group \rightarrow Thank you for program support

artistic rendering of proposed concept

THANK YOU!!

Questions??

References

CENTER FOR

NUCLEAR

Research

SPACE

O'Brien R. C., Ambrosi R. M., Bannister, N. P., et al., Spark Plasma Sintering of simulated radioisotope materials within tungsten cermets, Journal of Nuclear Materials, 2009, 393(1), 108-113.

O'Brien R. C., Ambrosi R. M., Bannister, N. P., et al., Safe radioisotope thermoelectric generators and heat sources for space applications, Journal of Nuclear Materials, 2008, 377(3), 506-521.

Mattarolo, G., "Development and Modeling of a Thermophotovoltaic System," Thesis, Electrical Engineering and Computer Science Dept., University of Kassel, Kassel, Germany (2007).

Carl M. Stoots. "Emissivity Tuned Emitter For RTPV Power Sources." *Nuclear and Emerging Technologies For Space, The Woodlands, TX*,03/21/2012,03/23/2012. (2012).

Larson W. J., Wertz J.R., Space Mission Analysis and Design, 3rd Edition, Microcosm Press, 2005.

Curtis H. D., Orbital Mechanics for Engineering Students, Elsevier Aerospace Engineering Series, 2005, pg 268-273.

Gaskell, D. R. Intro. to the Thermodynamics of Materials, 4th Ed. (2003) 587.

Kelley, K. K. "The Specific Heats at Low Temperatures Of Crystalline Boric Oxide, Boron Carbide And Silicon Carbide". *Journal of the American Chemical Society*. 63 (1941) 1137-9.

Kantor, K., P. B. Krasovitskaya, R. M. Kisil, O. M. Fiz. "Determining The Enthalpy And Specific Heat Of Beryllium In The Range 600-2200" *Phys. Metals and Metallog.* 10 (6) (1960) 42-4. Mcl-905/1, Ad-261792.

Booker, J. Paine, R. M. Stonehouse, A. J. Wright. "Investigation Of Intermetallic Compounds For Very High Temperature Applications". Air Development Division (1961) 1-133. Wadd Tr 60-889, Ad 265625.

Pankratz, L. B. K. K. Kelley. Thermodynamic Data for Magnesium Oxide U S Bur Mines. Report. 1-5 (1963); Bm-Ri-6295.

Kandyba, K., V. V. Kantor, P. B. Krasovitskaya, R. M. Fomichev, E. N. Dokl "Determination Of Enthalpy And Thermal Capacity Of Beryllium Oxide In The Temperature Range From 1200 – 2820" *Aec-Tr-4310*. (1960) 1-4.

Hedge, J. C., J. W. Kopec, C. Kostenko, J. I. Lang. *Thermal Properties Of Refractory Alloys*. Aeronautical Systems Division. (1963) 1-128; (Asd-Tdr-63-597, Ad 424375)

X-123CdTe (X-Ray & Gamma-Ray Detector System) - http://www.amptek.com/x123cdte.html

 $\label{eq:argus} Argus \ Infrared \ Spectrometer - \underline{http://www.thoth.ca/spectrometers.htm}$

NanoCam C1U (High Resolution Camera) - http://gomspace.com/index.php?p=products-c1u

Low Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) - http://www.techbriefs.com/component/content/article/16137

http://www.upiversetoday.com/106288/indias-mars-orbiter-mission-mom-requires-extra-thruster-firing-after-premature-engine-shfta

Appendix

Center for Space

> NUCLEAR Research

Concept core material

Thermal Capacitor Qualifications

 high thermal storage, high thermal conductivity, high density, high melting temperature
Specific Heat verse temperature of possible core materials

Silicon identified as a suitable material

Energy Storage Potential: $\Delta H_{fusion} = 1.8 MJ/kg (1700 K)$

Allows for an operational temperature of 1700 K

Potential Thermal Capacitor Materials 3500 3000 Specific Heat Capacity, J/kg*K 12000 12000 1200 Beryllium: Be Boron: B Boron Carbide: B4C Magnesia: MgO - Beryllium Oxide: BeO 1000 500 1000 0 500 1500 2000 2500 3000 Temperature, K

Mission Design communication

link budget between spacecraft and DSN

Item	Symbol	Units	Value
Frequency	f	GHz	27.5
Transmitter Power	Pt	Watts	2500
Transmitter Line Loss	Lt	dB	-1.10
Transmit Antenna Diameter	Dt	m	1.5
Transmit Antenna Gain (net)	Gt	dBi	50.16
Propagation Path Length	S	km	1.27(10) ⁹
Space Loss	Ls	dB	-303.30
Propagation & Polarization Loss	La	dB	-0.06
Receive Antenna Diameter	Dr	m	34.00
Receive Antenna Pointing Loss	Lpr	dB	-6.87
Receive Antenna Gain	Gr	dBi	77.22
System Noise Temperature	Ts	K	84.10
Data Rate	R	Mbps	1
SNR	Eb/No	-	5.94

table describing communication budget

*designed for 9.47 AU distance

Communication link budget design

Mission Design instrument package

proposed instrument package for Enceladus

Instrument	TRL	Mass (kg)	Volume (cm ³)	Peak Loading Power (W)
X-123CdTe (X-Ray & Gamma-Ray Detector System)	7	0.18	175	2.5
Argus Infrared Spectrometer	9	0.23	180	-
NanoCam C1U (High Resolution Camera)	8	0.166	501	0.66
Low Voltage Gated Electrostatic Mass Spectrometer (LVGEMS)	7	0.25	32	0.5

table describing possible instrument package

*designed for about a 6U CubeSat payload

Trajectory

Electric Propulsion

- 4 ion thrusters \rightarrow redundancy
 - Xenon propellant
- allows for shorter transit times

Earth – Jupiter - Saturn

- Earth Departure: Jan-18-2018
- Saturn Arrival: July-11-2023
- Total Duration: 5.48 years
- Launch Vehicle Injection C3 required: 80.7 km^2/s^2
- Declination of the launching asymptote: 4 degrees.
- Injection delta V(Earth escape delta V requirement):6.42 km/s
- Jupiter Flyby: Jan-08-2020
- Gravity Assist: 123 m/s (0.12 km/s)
- Post injection delta V (Saturn capture): 0.54 km/s
- Total delta V required by propulsion system = 6.96 km/s

possible heliocentric trajectory to Saturn

