

Presentation to the NAC Technology and Innovation Committee November 18, 2011

> Susan M. Motil Project Manager, CPST NASA Glenn Research Center

Presentation Outline

- CPST Project Technology Infusion and Mission Justification
- Technology Maturation
- Project Overview
- Conclusion

CPST Project Customer Infusion

- Human Exploration and Operations Mission Directorate (HEOMD) is a primary customer requiring cryogenic propellant storage and transfer technology to perform future missions.
- The initial HEOMD infusion customer is the Cryogenic Propulsion Stage (CPS)
 - CPST technologies are needed for the development of a CPS; CPS is part of the HAT architecture and is required to perform all beyond LEO exploration missions
 - CPST technologies are under examination for SLS and commercial upper stages
 - CPST technlogies also support architectures using depots in conjunction with SLS.

Cryo-Propulsion Stage – Block 1

Design Constraints/Paramet	<u>ers</u>	Category	Mass, kg
Propellants	O2/H2	Structure	3,600
		Protection	-
Stage Diameter	7.5 m	Propulsion	2,550
Stage Length	13 m	Control	-
		Power	170
# Engines / Type	2 / RL10 Derived	Avionics	420
Engine Thrust (100%)	30,000 lbf	ECLSS/Thermal	760
Engine Isp (100%)	465 sec	Other	-
RCS Propellant	NTO/MMH	Growth (30%)	2,250
# RCS Thruster / Type	16 / Press-fed	Dry Mass	9,750
RCS Thruster Isp	300 sec	Non-Cargo	-
		Cargo	-
Passive Thermal Control of Pi	ropellants	Inert Mass	9,750
0.7% per day H2 Boiloff (0.4 d	Non-Propellant	160	
0.25% per day O2 Boiloff (0.4	days)	Propellant	70,500
		Total Wet Mass	80,410

Description

The Block 1 Cryo Propulsion Stage (CPS-B1) is delivered to a -47 x 130 nmi insertion orbit by the launch vehicle, where the CPS is then responsible for raising and circularizing itself and any payload to an orbit of 220 nmi. The non-reusable CPS-B1 utilizes passive thermal control techniques to limit cryogenic propellant boiloff during its operation. The CPS-B1 includes avionics, propulsion, and attitude control for automated rendezvous and docking.

NOTE: The propellant inventory is based on the GEO mission inventory.

Cryo-Propulsion Stage – Block 2

ıre	
	3,700
tion	380
sion	2,710
I	-
	1,110
cs	590
Thermal	5,780
	-
h (30%)	4,280
ass	18,550
argo	-
	-
lass	9,750
ropellant	170
lant	52,540
Vet Mass	71,260
	ropellant lant Wet Mass

Description

The Block 2 Cryo Propulsion Stage (CPS-B2) builds upon the Block 1 CPS but includes a long duration cryogenic fluid management system that reduced propellant boiloff to 0.5%/month liquid hydrogen loss (by mass), and 0%/month liquid oxygen loss. The CPS-B2 also includes a long duration power system as well as avionics, propulsion, and attitude control for automated rendezvous and docking.

NOTE: The propellant inventory is mission specific, determined by mission duration, number of engine burns, and other mission parameters. The propellant tanks are sized by the Block 1 GEO mission, therefore the tanks are off-loaded for Block 2 NEO mission by 30.8%.

CPST Project Summary Schedule Customer Infusion

	FY 11		FY 11				FY 12			FY 13			FY 14			FY 15			FY 16				FY 17				
Name		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 Q	2 Q3	C	Q4 Q1	Q2	Q3 (24	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Project Milestones				V 0	ст в	udge	t Rev	iew	(7/2	5/2011)																	
				∇	CFM	l Tecl	nnolo	gy N	latu	ration P	an Re	vie	ew (9/1/	/201:	L)												
						7	7мс	R/A	SM (4	4/2/201	2)																
								7	7 SRI	R/SDR/A	TP (9/	/28	8/2012)														
										7	PDR	(5/	/15/201	3)													
												7	CDR (11/8,	(2013)												
															S/	R (9/18	/201	15)	7							
																	FF	RR (2	2/19/	2016) 🗸	·					
																	Laur	nch ((3/14	/201	6)	7					
																	Den	no C	omp	lete (9/1	4/20	16) 🔽	7			
																	Post	Mis	sion	Revie	ew (1	12/14	4/201	16) 🔽	7		
																								4	7		
Technology Maturation																							Re	eady fo		;	
LOx ZBO Test																							(1	Infus L2/14/			
Technology Maturation						_	_	_																			
Payload GTA Pathfinder																											
Payload Development & Test																											
Payload/Spacecraft Integration																											
Launch Site Processing																											
Spacecraft Procurement																											
Launch Vehicle Procurement						C																1					

Snapshot Date: 11/8/2011

Present Challenges for In-Space Cryogenic Systems

- We have no demonstrated capability to store cryogenic propellants in space for more than a few hours
 - SOA is Centaur's 9 hours with boil-off rates on the order of 30% per day
- We have no demonstrated, flight-proven method to gauge cryogenic propellant quantities accurately in microgravity
 - Need to prove methods for use with both settled and unsettled propellants
- We have no proven way to guarantee we can get gas-free liquid cryogens out of a tank in microgravity
 - Gas-free liquid is required for safe operation of a cryo propulsion system
 - Need robust surface-tension liquid acquisition device (LAD) analogous to those in SOA storable propulsion systems
 - Only known experience in the world is the single flight of the Russian
 Buran single flight (liquid oxygen reaction control system)
- We have no demonstrated ability to move cryogenic liquids from one tank (or vehicle) to another in space

A flight demonstration with cryogenic propellant storage, expulsion, and transfer can remedy these problems (*and other more subtle ones*)!

HAT Requires CPST Technologies

						Desti	nation				
Те	chnology Applicability	<	LEO	Beyond LEC) M	oon	NEA		Mars	>	
fo	r Future Destinations ¹	LEO	Adv. LEO	Cis-Lunar	Lunar Surface Sortie	Lunar Surface GPOD	Min NEA	Full NEA	Mars Orbit	Mars Moons	Mars Surface
Need	LO2/LH2 reduced boiloff flight demo	N/A	N/A	May be required	Required	Required	Required	Required	Required	Required	Required
Technology Ne	LO2/LH2 reduced boiloff & other CPS tech development	N/A	N/A	May be required	Required	Required	Required	Required	Required	Required	Required
Tech	LO2/LH2 Zero boiloff tech development	N/A	N/A	N/A	N/A	May be required	May be required	May be required	Probably Required	Probably Required	Probably Required

¹ Adapted from chart 26 of HEFT Final Briefing dated 1/18/2011, posted at: http://www.nasa.gov/pdf/511089main_HEFT_Final_Brief_508_20110111.pdf

Note

Almost all HAT missions beyond LEO *require* CPST's storage and expulsion technologies.

CPST Offers Cross-Cutting Benefits

Why Is Microgravity Required for CPST?

- Passive and active thermal control performance is unknown due to effects of acceleration level and propellant orientation.
 - Mixing of liquid (and heat transfer) inside the tanks
 - Low-g effects on internal convection and on thermal gradients
 - Analytical models for cryogenic storage tanks must be correlated to low-g data
- Liquid Acquisition Device (LAD) only works when surface tension forces are greater than gravity/acceleration forces.
 - Need long-duration microgravity to demonstrate LAD robustness across range of conditions and operating scenarios.
- Propellant Mass Gauging must be demonstrated in microgravity in an actual tank across a range of propellant orientation scenarios and fill levels.

CFD Model of Ullage Temperature of Saturn IV-B in Microgravity

Fluid interface at 30 micro-g settling thrust in a 36" diameter LH2 tank at 50% fill (CPST POD transfer tank). A level sensor in the center of the tank would incorrectly read around 27% fill.

Mass Gauging Low-g aircraft test

Why Storage Tests in Microgravity are Needed

Acceleration direction and magnitude \rightarrow affects liquid shape and position \rightarrow affects wall wetting and liquid/ullage interface area

- Primary heat source is through tank penetrations
- Wall wetting \rightarrow determines heat into liquid and ullage
- Heat into liquid → affects temperature stratification
- Heat into ullage \rightarrow affects pressure rise rate & stratification
- Liquid/ullage interface shape and area → affects heat and mass transfer across interface → affects pressure rise rate and temperature stratification
- Liquid and Ullage location → affects performance of mixers, such as axial jet or spray bar since ullage may not be "centered" in the tank

acceleration

liquid

Why Liquid Acquisition Devices (LADs) Are Needed

Propellant Tanks

NASA

Why Probe-Type Gauges Aren't Sufficient

Probe-Type Gauges

NASA

Presentation Outline

- CPST Project Technology Infusion and Mission Justification
- Technology Maturation
- Project Overview
- Conclusion

Cryogenic Propellant Storage and Distribution

NASA

Passive Thermal Control: Cryogenic Insulation for Thermal Control

Technology development goal: Demonstrate high performance cryogenic insulation to minimize heat leak through large areas of tanks and lines.

Spray-On Foam Insulation (SOFI)

- Extensive heritage
- Mitigates convection from the atmosphere
- Prevents condensation of air and prevents ice buildup
- Supports launch pad operations and ascent phase of mission
- TRL = 9

Thick Multi-Layer Insulation

- Radiation shields with low thermal conductance seperators between the shields
- Support of blanket for large area tanks, high number of layers, seams, and blanket penetrations are challenges
- Supports in-space phases of the mission
- TRL = 4

Technology development goal: Develop active thermal and pressure control systems to achieve reduced or zero boil-off for a cryogenic propellant

Efficient Low-g Venting

- Thermodynamic Vent System (TVS) ensures that only gas phase is vented in low gravity without using settling thrusters.
- De-stratifies propellant tank contents, with mixer
- TRL = 5

Cut away of pulse tube type cryocooler

Reduced Boil-off Technologies

- Eliminate heat leak into the storage tank, re-condense vapor, or potentially sub-cool propellant
- 90 K cryocoolers to achieve reduced boil off for CPS
 - TRL = 6
 - Current CPS concept does not use 90k cryocoolers
 - If used, 90k cryocoolers (~5% efficiency) removing 20 Watts of heat each sized as:
 - Approximate input power per cooler = ~500 W
 - Approximate mass per cooler = ~500 W
- 20 K cryocoolers to achieve zero boil-off (ZBO) for CPS
 - TRL = 2
 - Current CPS assumption uses seven 20k cryocoolers (~1% efficiency), removing 20 watts of heat each.
 - Approximate CPST input power per cooler = ~2000 W
 - Approximate mass per cooler = ~280 kg

Low-g Cryogenic Liquid Mass Gauging

Technology development goal: Develop propellant quantity (mass) gauges that work in zero-g, and/or under low settling thrust (<0.001g)

RF Mass Gauge

- GRC technology
- tested on low-g aircraft
- tested in LH2, LOX
- zero-g or settled
- TRL = 5

Compression Mass Gauge

- developed by SwRI
- tested in small LN2 tank
- zero-g or settled
- TRL = 4

CryoTracker - Sierra Lobo

- wet/dry level sensors
- requires settled liquid
- TRL = 5

Low-g Cryogenic Propellant Liquid Acquisition

Technology development goal: Develop liquid acquisition system to provide transfer of vapor free liquid cryogenic propellant.

Liquid Acquisition Devices

- Multiple contoured tubes with fine pore wicking screen windows
- Liquid wets screen and fills tubes
- GRC ground tested screen channels with LN2, LO2, LH2, and LCH4 (bubble point and outflow)
- TRL = 4

Breadboard screen-channel LAD for outflow testing

Vane-Type LAD integration into a tank

Vane Type Devices

- Multiple contoured solid plates
- Liquid transferred along interior corners
- Used on monopropellant systems
- TRL = 5

Total communication propellant management devices (PMDs) have not been used yet in cryogenic propulsion applications.

Presentation Outline

- CPST Project Technology Infusion and Mission Justification
- Technology Maturation
- Project Overview
- Conclusion

Cryogenic Propellant Storage and Transfer (CPST) Overview

Description: Space flight mission to demonstrate a single fluid (LH2), passive/active cryogenic propellant storage, transfer, and gauging systems for infusion into future extended in-space missions.

TRL Advance: 5 to 7

Benefits

Support exploration beyond LEO

- Demo long duration in-space storage of cryogenic propellants.
- Demo in-space transfer of cryogenic propellants.

Cost Guidance: No more than \$300M

Mission Architecture Description:

CFM technologies include

- Passive Cryogenic Propellant Storage
- Active Cryogenic Propellant Storage
- Tank Thermal & Pressure Control
- Liquid Acquisition
- Mass Gauging

Mission Duration - 6 months

Ground Tech Maturation (to TRL 5)

- Structural and thermal performance of passive and active cooling systems
- Thermal performance of composite struts
- LAD out flow and transfer line chill down (LH2)

Flight System Concept Option

Flight System Characteristics							
Demonstrations	Single Fluid (LH2) Passive Storage Active Storage 2 Transfer Cycles						
Launch Vehicle	Medium Class						

NAS

Team:

Project Manager/Lead Center: Susan Motil/GRC Team: MSFC, GSFC, KSC, ARC

Near term Milestones:

- Technology maturation complete thru 2013
- BAA Mission Studies Complete: 01/2012
- CPST Mission Concept Review Complete: 05/2012
- System Requirements: 09/2012

Concept Definition Process

Approach enables infusion of best ideas from Industry and Government

Concept Option: Technology Development

Concept Option: CPST Demonstration Architecture

NASA

Concept Option: 6-Month Mission Profile

Concept Option: Scenario for a CPST Mission Architecture

Presentation Outline

- CPST Project Technology Infusion and Mission Justification
- Technology Development and Selection
- Project Overview
- Conclusion

FY12 CPST Go Forward

- FY12 focus will be on technology maturation to TRL 5
 - LH2 storage tests and analyses to support reduced boil-off capability
 - LH2 liquid acquisition tests and analyses to provide the ability for unsettled acquisition
- Complete BAA mission studies
- Build on Government POD Study results to develop a mission concept
 - Review industry BAA concepts and begin mission concept synthesis
 - Finalize POD based on in-house study and BAA mission studies
 - Define system concept of operations
- Prepare for Mission Concept Review in FY12
 - Includes system requirements and acquisition strategy
 - budget and schedule recommendation based on a system concept

Flight Demonstration Closes CFM Technology Gaps

- Primary motivation for the CPST technology demonstration mission is to enable long duration beyond LEO human exploration missions (Moon, NEA & Mars)
 - A Cryogenic Chemical (LOX/LH2) Propulsion Stage (CPS), capable of storing and transferring cryogenic propellants is considered **required** for all such missions.
- Closing the technology gaps *requires* microgravity environment and opens the trade space for future missions.
 - Required to demonstrate thermal and pressure control performance for long duration storage
 - **Required** to demonstrate LAD performance for vapor-free liquid acquisition and transfer
 - Required to validate microgravity mass gauging systems
- Propulsion applications require a flight demo to address *both* storage & transfer.
 - Must repeatedly get liquid (not pressurant gas) out of the tanks in space
 - Must verify that fluids leaving the tank are gas-free liquids
 - Verify quantities of fluids on orbit, settled or unsettled

A flight demonstration is the only way to close CFM technology gaps and ready the Cryogenic Propulsion System for future in-space applications.