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JAXA's IV&V Activity and Value Concept 

Tsutomu Matsumoto, Japan Aerospace Exploration Agency (JAXA) 
Umeda Hiroki, JAXA 

 

ABSTRACT 

JAXA has applied IV&V activities to software development of satellites and space crafts for 
more than ten years since the International Space Station Program. JAXA's IV&V activities 
have achieved results by detecting critical problems in software. The IV&V activities are 
becoming established for all types of spacecraft in JAXA. 

As stakeholders understand IV&V more, they need the IV&V with higher quality and 
explanations of verification to relieve them. Moreover, not only detecting problems as usual but 
also providing a new IV&V value to contribute to development is expected. This presentation 
shows an idea and examples of new IV&V activities. 
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IV&V Lessons Learned From On-Orbit Anomaly Research 

Joseph D. Painter, NASA IV&V / TMC 
Stephen M. Pukansky, NASA IV&V 

Stephen Husty, NASA IV&V 
Koorosh Mirfakhraie, NASA IV&V / TMC 

 

ABSTRACT 

In this presentation, a number of software-related anomalies experienced in the course of 
some of the NASA missions will be discussed. These anomalies encompass various 
components of flight software, such as Command and Data Handling. A description for each 
anomaly will be provided, along with the factors leading to the anomaly and the impact of the 
anomaly on the mission. The focus will be on the role that software has played in the anomaly, 
either as a culprit or in its inability to prevent or contain the anomaly. 

Based on the information learned about the role of software in these anomalies, lessons are 
drawn to be applied to the future IV&V analysis of space mission software. The resulting 
improvements in performing IV&V during the development of software should help with 
identifying issues, whose satisfactory resolution may avert similar anomalies in the future, or 
will otherwise increase the quality of software and reduce the number of faults introduced 
during its development. 
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Orion Crew Exploration Vehicle Model-Based 
Design Implementation – An IV&V Perspective 

Joel Henry, NASA Johnson Space Center 
David Frazier, NASA IV&V / TASC 
Steve Driskell, NASA IV&V / TASC 
Leonard Frost, NASA IV&V / SAIC 

 

ABSTRACT 

The Orion Crew Exploration Vehicle (CEV) Guidance, Navigation and Control (GN&C) design 
and analysis team is developing onboard GN&C flight software (FSW) algorithms using the 
MATLAB®/Simulink® tool suite to embrace a Model-Based Development approach to FSW 
development. Various aspects of this modern approach are described – including software 
architecture, design approach and modeling standards using MATLAB®/Simulink® for the 
GN&C executive and its algorithmic Computer Software Unit (CSU) components. The 
developer methods employed for unit-level and closed-loop testing simulation, test 
environments and the test and verification of the auto-generated code products are also 
presented. Modeling benefits, process challenges and lessons learned to date are 
summarized.1,2 The NASA’s IV&V Program analysis team is developing activities to assess the 
GN&C auto-generated code that will fly on the first CEV operational test flight, OFT1. This 
team discusses the approaches used to provide software implementation and design for the 
model-based auto-generated FSW products. With NASA agreement, the development does 
not produce standard artifacts typically used in software IV&V. This presentation identifies 
approaches to analysis based on what is available from the tools which contain this 
information. One of the CSUs under analysis will be reviewed. Process challenges and lessons 
learned to date will be provided, along with a scope discussion for FSW assessment vs. other 
software build products (which are out of scope for IV&V). 

 
References 
[1] 978-1-4244-3888-4/10/$25.00 ©2010 IEEE 
[2] IEEEAC paper#1491, Version 3, Updated 2010:01:07 
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NASA IV&V for the New York City E911 Program 

Shirley Savarino, NASA IV&V / TASC 
Mike Facemire, NASA IV&V 

Hendrik Strydom, New York City 
 

ABSTRACT 

New York City’s Emergency Communications Transformation Program (ECTP) is a multi-year 
initiative to enhance call taking and dispatch operations for NYPD, FDNY and FDNY EMS. 
Under the program, each agency will benefit from upgraded computer dispatch systems, 
improved integration and data sharing between agencies, new 911 telephony networks and 
software, and other significant improvements. In August 2013, NASA’s Independent 
Verification and Validation Program entered into an agreement with the City of New York to 
perform IV&V on the upgrade of the City’s E911 call system. NASA's Independent Verification 
and Validation Program in West Virginia usually tests systems for the space program, like 
telescopes orbiting in space and rovers crawling over the surface of Mars. The City hired 
NASA to evaluate the $2 billion upgrade to provide an “additional set of eyes” to evaluate this 
complex system of systems that converges user needs and technology upgrades in the new 
call center which will be operational in 2015. Existing processes used for performing IV&V of 
complex space and manned missions were adapted for use on the ECTP activity.  

This paper discusses the startup of the IV&V activity, application and adaptation of NASA IV&V 
processes to a new customer and domain. We address challenges faced by the City and the 
NASA IV&V team in starting up the activity in terms of staffing, schedules and technical. 
Successes and lessons learned for other such activities are presented. 

  

http://www.nydailynews.com/topics/West+Virginia
http://www.nydailynews.com/topics/Mars+%28Planet%29
http://www.nydailynews.com/topics/NASA
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IV&V of ECTP Radio System 

Pradip Maitra, NASA IV&V / TASC 
 

ABSTRACT 

This presentation describes the IV&V effort on a portion of the Emergency Communication 
Transformation Program (ECTP) for the City of New York. The ECTP program is aimed at 
enhancing the 911 emergency dispatch systems. A 911 call originates from primarily three 
emergencies: situations requiring police intervention, situations requiring a medical emergency 
management team or a situation requiring fire trucks to combat a fire emergency. The part 
under focus in this presentation is the radio system used by NYPD (New York Police 
Department). 

A substantial portion of the communication path between a dispatch center and an officer on 
the street is actually implemented as radio communication. Some of this path is microwave 
and some is in the cell phone frequency range typically using one of two well-known protocols. 
This presentation attempts to show the various aspects of these communication methods and 
how to perform IV&V on these areas. 
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Robustness of PSAP Radio System 

Roman Mezhericher, NASA IV&V / TASC 
 

ABSTRACT 

This presentation was created as Technical Reference material for the FDNY Radio Console 
Project – a part of NYC ECTP2 (Emergency Communication Transformation Project). The 
presentation describes a role of Radio Dispatch in the 911 call handling process. It reveals 
project scope and subsystems involved, reflecting subsystems’ interactions, as well as Radio 
Console integration with neighbor systems and particularly the FDNY Emergency Control 
Station (ECS) project.  

The presentation contains preliminary dependability analysis showing multiple solutions 
applied to the Radio Console project in order to increase system availability and 
maintainability, including hardware redundancy and diverse paths, utilization of advanced 
Cloud and Virtualization technologies, as well as monitoring and control. 

Also, the presentation reflects IV&V analysis of the project and already identified problems – 
finalized in the form of submitted TIMs and Risks. 
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IV&V Coverage of NASA Software Guidelines  

Jacob Cox, NASA IV&V / TASC 
 

ABSTRACT 

This paper will discuss the NASA IV&V Program’s coverage of the NASA Software Guidelines 
from Appendix H of the NASA Software Safety Guidebook (NASA-GB-8719.13). The 
Guidebook has guidelines for generic languages, such as C and C++. These will be discussed 
with respect to how and how well IV&V covers them when analyzing code from projects. Also 
discussed will be the techniques used that are relevant to specific guidelines and suggestions 
for improvement. 
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An Introduction to AMF 

Donald Kranz, NASA IV&V / TASC 
Tom Gullion, NASA IV&V / TASC 
Neal Saito, NASA IV&V / TASC 

Gary Marchiny, NASA IV&V / TASC 
 

ABSTRACT 

The Analysis Management Framework (AMF) provides a framework for organizing and 
communicating IV&V evidence-based assurance data. The AMF leverages existing IV&V tools 
and resources to develop NASA’s IV&V Program concepts and definitions of evidence; create 
methods for refining IV&V assurance data into information and assurance statements; and 
provide a common set of process assets, Catalog of Methods inputs and educational 
materials. 

For those interested in the Analysis Management Framework, this presentation provides an 
overview of the AMF concepts. The AMF is based on a 3-layered architectural approach to the 
IV&V domain space. The 2013 AMF Capability Development Initiative focused on fleshing out 
the documentation for the business and data layers, as well as sample user interfaces in MS 
Office and Eclipse. Since these underpinning concepts of the AMF have only recently been 
pursued and developed, this brief outline should help attendees recognize which of the AMF’s 
various aspects are most relevant to them and where to find information to about utilizing AMF 
on their projects. 
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NASA Operational Simulator (NOS) 

Justin R. Morris, NASA IV&V 
 

ABSTRACT 

The NASA Operational Simulator (NOS) is a generic software-only simulation architecture for 
NASA missions. NOS was developed by the NASA’s Independent Verification & Validation 
(IV&V) Independent Test Capability (ITC) Team to provide a complete software V&V 
environment. NOS is utilized by developers and (independent) testers to verify the functionality 
of a spacecraft’s flight software from a system-wide perspective. Use of NOS on two NASA 
spacecraft is described: the Global Precipitation Measurement spacecraft and the James 
Webb Space Telescope. While NOS has primarily been utilized on NASA missions, its generic 
architecture can be easily applied across domains to support V&V of complex systems.  

NOS is capable of executing the spacecraft’s unmodified flight software executable on readily 
deployed environments such as laptops and thumbdrives. NOS consists of reusable hardware 
models, simulators, and custom-developed middleware that provides simulated MIL-STD-1553 
and SpaceWire busses. A key feature is its dynamic error injection capabilities via intuitive 
GUIs and open APIs. The error injection is critical for performing V&V of the flight software; 
hardware faults can be simulated and off-nominal tests can be executed without additional 
effort. NOS is easily integrated with ground systems and other components to support 
complete mission analysis.  
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MPCV IV&V with a Dynamic Twist 

Ricky Beamer, NASA IV&V / New-Bold Enterprises 
David H. Ho, NASA IV&V / TASC 

 

ABSTRACT 

Traditionally, IV&V analysis work is performed statically with artifacts on requirements, models, 
test cases and procedures, and source codes, etc. With the availability of simulation and test 
tools provided by the Orion Multi-Purpose Crew Vehicle (MPCV) prime contractor, Lockheed 
Martin, and NASA Johnson Space Center, the MPCV IV&V team was able to enhance and 
broaden the traditional analysis by adding a new run time capability. This capability provides 
the MPCV IV&V team the ability to analyze the MPCV Flight Software functionally with in-
house test cases, test procedures, and test scripts. This presentation will provide the details on 
the development of this dynamic capability with two different simulation and test tools, 
SOCRRATES and PLATO. 
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Using Static Code Analysis Tools for Detection of Security Vulnerabilities  

Katerina Goseva-Popstojanova, West Virginia University 
Andrei Perhinschi, West Virginia University  

 

ABSTRACT 

The advances in technology and broadband connectivity, combined with the ever increasing 
number of threats and attacks, require information assurance and cybersecurity to be 
integrated in the traditional verification and validation process. NASA develops, runs and 
maintains many systems for which one or more security attributes (i.e., confidentiality, integrity, 
availability, authentication, authorization, and non-repudiation) are of vital importance. These 
aspects of cybersecurity are especially critical in command and control systems. Therefore, it 
is becoming imperative to extend the current IV&V capabilities to cover information assurance 
and cybersecurity concerns of NASA projects.  

Static analysis of source code provides a scalable method for security code review and helps 
ensure that secure coding policies are being followed. Tools for static analysis have rapidly 
matured in the last decade; they have evolved from simple lexical analysis to using much more 
complex techniques. However, in general, static analysis problems are undecidable (i.e., it is 
impossible to construct an algorithm which always leads to a correct answer). Therefore, static 
analysis tools do not detect all bugs (and thus vulnerabilities) in the code and are prone to 
false positives, i.e., they may report findings which, on closer examination, turn out not to be 
security vulnerabilities. A high number of false positives requires significant manual analysis 
effort and thus wastes valuable resources that may be used better elsewhere. To be of 
practical use, a static code analysis tool should find as many vulnerabilities as possible (ideally 
all) with a minimum amount of false positives (ideally none), can be customized to define 
additional rules to enforce internal coding policies and provides information on vulnerabilities 
and potential remediation. However, the actual efficiency of the static code analysis tools in 
detection of security vulnerabilities is not known.  

The goal of our NASA’s IV&V Program-funded FY13 Capability Development Initiative is to 
examine several static code analysis tools using both quantitative and qualitative criteria. The 
assessment is based on using the Juliet test suites for Java and C/C++, which were created by 
the NSA evaluation effort and have been made publicly available at the National Institute of 
Standards and Technology (NIST) website. In addition, to assess the tools' performance on 
applications with realistic complexity, we built a test suite of representative programs with 
known vulnerabilities. The results and products of this CD initiative will contribute towards 
leveraging NASA’s IV&V Program capabilities and services by using state-of-the practice tools 
that support information assurance of NASA projects that have high security risk. This work is 
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done in collaboration with the Space Network Ground Segment Sustainment (SGSS) IV&V and 
Software Assurance Tools (SWAT) teams.  

  



Proceedings of NASA's 2013 Annual Workshop on Independent Verification and Validation of Software 

13 

Evidence-Based Assurance with the Analyst Workbench 

Zachary Seamon, NASA IV&V / TASC 
Donald Kranz, NASA IV&V / TASC 

 

ABSTRACT 

The Analyst Workbench (AWB) is a NASA’s IV&V Program-developed Eclipse tool that 
interfaces with the Analysis Management Framework (AMF) data structure to provide dynamic 
traceability views between requirements, design documentation, analyst assessments and 
other project data. The AWB provides a powerful visual representation of project data and data 
relationships that other tools lack. This demonstration will provide an overview of the 
capabilities and features of the AWB, showing the tool’s ability to enhance both the quality and 
quantity of work for analysts and managers. Attendees will see a general overview of the tool 
and attain the knowledge necessary to assess if the AWB may be a valuable tool for their 
team’s analysis efforts. The AWB will become a core tool in the analysis and management 
efforts of NASA’s IV&V Program going forward. 

 

IV&V Analysis Management Framework Overview 

The Analysis Management Framework (AMF) is a capabilities and development (CD) Initiative 
to provide a three-layered analysis framework (data, business, and user interface) that applies 
best practices of information system development to organize and communicate data at 
NASA’s IV&V Program. Currently, there are many different user interfaces and data storage 
types being utilized in the program. Whenever a new interface or database is added to a 
project, schemas to interface the new product with existing ones must be constructed. This 
process becomes extensively time consuming and messy, as illustrated in Figure 1. 
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Figure 1: UI to Data relationship without AMF 

The AMF solves this problem with the implementation of a central business layer, which 
provides a common interface between any number of user interfaces (UI) and data. When a 
new UI or data source needs to be integrated, it simply needs to plug into the business layer to 
be integrated with the rest of the project. This concept is illustrated in Figure 2. 

 

Figure 2: UI to Business Layer to Data relationship in AMF 
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In addition to a simplified UI and data management on an individual project, the deployment of 
the AMF program-wide allows for a standardized practice of data management. This reduces 
the amount of time spent within each project dealing with data manipulation, increasing the 
time and effort available for analysis work. 

Analyst Workbench Overview 

The Analyst Workbench (AWB) is a plugin that provides one interface option in the AMF. 
Originally developed for the SMAP team, the AWB provides a dynamic user interface to view 
project artifacts, IV&V assessments, and tracing between them. The tool interfaces with a 
database, via a business layer, to dynamically show the trace relationships between data, as 
well as allow analysts to write and attach assessments to data. Figure 3 shows a screenshot of 
the default AWB interface. 

 

Figure 3: AWB User Interface Example 

Perspectives, Views, and Preferences 

The AWB consists primarily of five sub-windows called views (Analysis Palette, Traceability 
Graph View, Artifact Property View, Assessment Property View, and Search View) that each 
provide a different functionality. Each of these views can be moved, resized, minimized, or 
closed. This allows the user to customize the interface to his or her preference. The collective 
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layout of these views is called a “perspective”. The default perspective is shown above in 
Figure 3.  

Users have the ability to manipulate the views to their liking, and then save the perspective 
with a distinct name. In some cases, a user may have multiple perspectives, each designed for 
a specific task or type of analysis. The user can then switch to whatever perspective best 
supports the task at hand. Users also have the ability to switch between different databases 
(different projects, development versus production, etc.), or toggle historic data. Historic data is 
any artifact that isn’t the most recent version of that artifact. 

Analysis Palette 

The Analysis Palette is perhaps the most used view in the AWB. It allows the user to view the 
data in the database in a hierarchical tree type layout, very similar to a folder structure in 
Windows. The data is split into three sections: Analysis, Artifacts, and Participants.  

The Analysis partition contains data of the type ‘Assessment’, which is anything that was 
produced by IV&V. Assessments could be design assessments written against a Functional 
Design Document (FDD), requirement verification, code implementation analysis, etc. In short, 
Assessments are pieces of evidence created by IV&V. 

The Artifacts partition contains data of the type ‘Artifact’, which is anything produced by the 
project (as in the JPL/Godard/etc. project team), and has not been changed or edited by IV&V. 
Some common examples of Artifacts are FDDs, requirements, code, etc. 

The Participants partition contains a list of participants for the project. This shows who has 
permissions to manipulate the data in this database. Participant’s user ID will also be tied to 
any Assessments they make. 

The Analysis Palette is used for basic navigation for the data in the database. The trees follow 
a parent-child hierarchy, based on the traces stored in the database. Documents are broken 
down into individual parts by section, paragraph, figure, or table. For example, if this paper was 
imported to the database, this paragraph would be an artifact that is a child to the “Analysis 
Palette” section artifact, which would be a child to the “Evidence Based with AWB” artifact.  

There are various options available by right clicking on an artifact in this view: 

• Create assessment – creates an assessment (requirement, design, semantic, or test) 
traced to this artifact. 

• Show traceability of artifact – resets the Traceability Graph View and adds this artifact 
to the view. 

• Add artifact to traceability graph – adds the artifact to the existing Traceability Graph 
View without resetting it. 
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• Add artifact(s) to current assessment – creates a trace between the selected 
artifact(s) and the currently selected assessment. 

• Create artifact trace – creates a trace between two selected artifacts (popup appears 
to choose direction of child/parent relationship) 

• Compare selected elements – compare the text between two artifacts with a popup 
side-by-side window. 

• View selected element(s) – creates a popup window for selected artifact(s) displaying 
all of the artifact(s) information. 

• Search artifacts – brings up a popup window to keyword-search artifacts. 
• Admin – provides options to delete, edit, and refresh artifacts. 
• Add to Favorites – add the artifact to the “Favorites” section for quick access. 
• Remove from Favorites – remove the artifact from the Favorites section. 

Traceability Graph View 

The Traceability Graph View is a powerful visual tool inside the AWB. Right clicking on an 
artifact or assessment in the Analysis Palette or Search View gives the user options to show or 
add the selected artifact or assessment to the Traceability Graph. A visual element 
representing the data is then placed on the graph. Artifacts appear blue, assessments are 
green, and the currently selected element is yellow. Users can add further visual distinction by 
creating custom color schemes for specific elements. By right clicking on an element, the user 
can add child artifacts, parent artifacts, or assessments to the graph. These options will add 
additional elements to the graph that are traced to the selected element and fit in the selected 
category. Traces are shown with an arrow from the parent to the child. See Figure 4 for an 
example. 
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Figure 4: Traceability Graph View Example 

After a few link expansions, a dynamic tree begins to form, displaying the relationships 
between linked data. This functionality provides a unique visual interpretation of data that can 
enhance analysis by showing relationships, holes, etc. in a way that may not otherwise be 
possible. The user can quickly see the breakdown of high level requirements, trace a lower 
level requirement back to its source, see where issues are linked to specific lines of code, see 
linked analysis work on an FDD, or trace additional evidence to claims. 

When right clicking on an element, the user may choose from the following options: 

• Add child artifacts – add traced children to the graph 
• Add parent artifacts – add traced parents to the graph 
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• Add assessments – add traced assessments to the graph 
• Refresh the graph – reset the graph to its origin, with only the selected item remaining 
• Remove node from graph – remove the selected element and any related traces from 

the graph 
• Create trace – create a trace between two elements on the graph 
• Layout – select from a list of automatic layouts to rearrange the graph 
• Save view – save a view for later viewing by user or other participants 
• Restore view – restore a previously saved view 
• Manage views – delete previously saved views 
• Save as image – export the graph as an image file 

Artifact Property View 

The Artifact Property View displays the detailed information of any artifact selected in the 
Analysis Palette, Traceability Graph View, or Search View. The view shows all of the attributes 
stored in the database for the selected artifact. The top half shows the “description” in a large 
text field. This is actual artifact itself (requirement text, paragraph in an FDD, piece of code, 
etc.). Below that, all of the other attributes are listed: 

• Artifact Type – The type of artifact (top level, folder, document, section, requirement 
etc.) 

• Artifact Number – ID number for artifact (from project, often a document or 
requirement ID) 

• Artifact Name – Name of the artifact 
• Artifact Description – actual text of the artifact 
• Artifact State – state of artifact in the project (initial release, Rev A, etc.) 
• Artifact Version State – state of the artifact in the database (New, Modified, Deleted, 

Unchanged) 
• Artifact Created – date that the artifact was created 
• Artifact created by first – participant that created the original artifact 
• Artifact created by last – participant that created the current version of the artifact 
• Artifact created by id – ID of artifact creator 
• Artifact created by active – state of the participant, true for active, false for inactive 
• Artifact ID – unique number for artifact in database 
• Artifact historic – true if this is not the newest version of this artifact 

Assessment Property View 

Similar to the Artifact Property View, this view displays detailed information about a selected 
Assessment. There are four subsections of this view: 
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• Assessment – basic information, includes: Name, Validation State, Assessment State, 
Created By, Created Date, Modified By, and Modified Date. 

• Assessment Attributes – additional information specific to the assessment type 
• Description – formal text field, this is where the formal evidence, claim, or analysis 

should be recorded 
• Notes – additional information, questions, concerns, etc. related to the assessment can 

be recorded here. 

Search View 

The search view provides an alternative to the Analysis Palette for finding data. The user can 
choose several filters and then search the database based on those filters. The user first 
selects if they are searching for an Artifact or Assessment. Next, the user can select from a list 
of attributes to search on (artifactName, description, number, state, versionState). Search text 
is entered into the text field to the right of that selection. At this point, the user can either 
initiate the search or apply a second set of search criteria, with an additional attribute and 
search item. After the search, the results can be selected to view them in the Artifact Property 
or Assessment property views. The user can also right click to add the item to the Traceability 
Graph or view in a popup window. See Figure 5 for an example. 

 

Figure 5: Search View Example 

Evidence-Based Assurance 
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Evidence-based assurance (EBA) is a key goal of NASA’s IV&V program, and therefore should 
be a key consideration during both planning and execution of IV&V projects. EBA provides a 
simple structured way to formulate assurance cases to support the project goals. 

Figure 6 shows a visual explanation of EBA and how it fits into the AMF with other IV&V data. 

 

Figure 6: EBA Graphical Explanation 

The AWB provides a well-defined, visual, and dynamic solution for NASA’s IV&V program and 
its EBA effort. In AWB, it is easy for an analyst or manager to attach evidence to artifacts and 
assessments and build an assurance claim.  

A claim is represented by an assessment in the AWB. The user makes an initial claim by 
creating an assessment in the proper folder under the Analysis Palette’s Analysis subsection. 
Claim details are then filled out by using the drop down options and text fields in the 
Assessment Property View. Additional assessments can be made to record arguments for the 
claim, and then traced as children to the top level claim. Next, evidence is traced to the claim’s 
arguments. Evidence may be in the form of other assessments, or project artifacts. A 
completed claim can be followed down the tree by its traces. The AWB displays the claim in 
either a hierarchical folder structure in the Analysis Palette, or as a graph in the Traceability 
Graph View.  
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Following the claim from the top down in a traditional sense is easy in either of the above 
mentioned views. The Traceability Graph, in particular, is a powerful visual tool for building and 
understanding the claim. It is also dynamically created as more evidence is added, as opposed 
to a traditional Assurance Claim diagram that must be created and maintained separately from 
analysis work. The IV&V project can use the AWB to dynamically build, track, and present 
evidence throughout the life of the mission automatically. 

In addition to following a claim from the top down, the AWB adds the benefit of being able to 
trace from the bottom up. For example, consider an analyst that is looking at an artifact in the 
Traceability graph. The analyst can simply “add assessments” to see any linked assessments 
for the artifact. Perhaps there was previous requirement analysis performed on this 
requirement, or a trace to an implementation assessment on a related code block. If an 
argument is linked, the analyst can immediately expand traces on it and see a top level claim 
that was linked. This dynamic discovery of relationships between sets of data is one of the 
most powerful advantages of AWB as an analysis and evidence tool.  

Conclusion 

In conclusion, the AWB is a flexible plugin for the Java Eclipse environment that provides a 
unique way for users to view, trace, and create data. The AWB’s robust tracing and graphing 
capabilities make it the ideal tool to seamlessly integrate Evidence-Based Assurance into 
NASA’s IV&V program in a dynamic, useful, and easy to implement fashion. The AWB’s 
advantage over other methods is its ability to create Assurance Cases and record evidence 
dynamically throughout the life of the project, without requiring extensive additional effort from 
analysts to create separate diagrams or documents to organize and illustrate their evidence. 
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Supporting Project Management with AMF 

Jeremy Fienhold, NASA IV&V / Mountain State Information Systems 
Donald Kranz, NASA IV&V / TASC 

 

ABSTRACT 

From a project management view, the Analysis Management Framework (AMF) provides an 
architecture that facilitates full traceability from a technical reference to project artifacts through 
to the evidence-based assurance claims made by the IV&V team. The AMF provides the ability 
to bring in multiple project artifacts, for viewing and tracing to, in order for an analyst to have 
the ability to perform easy viewing and searching of all those artifacts. 

Currently, projects use AMF to trace Functional Design Documents (FDDs), IBM® Rational® 
DOORS® requirements, proprietary database command dictionary entries and even the code 
base, all of which are then version controlled for change impact analysis. An analyst can write 
a requirement, design, implementation and/or test assessment against any one of them. 
Having all of these artifacts available with the trace view provides the project “big picture” view, 
which allows the analyst to quickly view the relationships between the artifacts. 
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James Webb Space Telescope (JWST) Integrated  
Science Instrument Module (ISIM) Independent Testing 

Chris Lescinsky, NASA IV&V / TASC 
Rick Hess, NASA IV&V / TASC 

 

ABSTRACT 

The JWST IV&V Team is developing an independent test campaign for the ISIM Flight 
Software (FSW) utilizing the Independent Test Capabilities (ITC) Team’s JWST IV&V 
Simulation and Test (JIST) environment. Goals for this independent test campaign are: 
validation of the ISIM FSW robustness and elasticity; assurance that the ISIM can accomplish 
the intended mission, identification of areas in the ISIM FSW which could potentially contain 
unidentified errors, validation of Technical Issue Memorandums (TIMs) and evidence 
supporting the impact of existing errors specified by TIMs. Accomplishment of these goals will 
be via test cases identified using performance based requirements, mission operational 
scenarios (nominal and off-nominal) and TIMs, respectively, in addition to being supplemented 
by ISIM FSW source code metrics. Test scripts will be developed from the test cases and 
executed in the JIST environment. Test execution results in the form of data logs, recorded 
telemetry, break points, memory examination, and other available means may be analyzed to 
provide the desired evidence and assurance specified by the test campaign goals. 
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Space Launch System (SLS) Independent Verification and Validation (IV&V) 
Analysis Processes within Enterprise Architecture (EA) 

Mark Lee, NASA IV&V / TASC 
Guy Kubic, NASA IV&V / TASC 

 

ABSTRACT 

Both the SLS project and NASA’s IV&V Program are utilizing Enterprise Architect (EA), a 
model-driven toolset to provide a model development platform to model the details of the SLS 
avionics Flight Software (FSW) components, developed for the SLS program. The SLS 
program is under way with requirements and design of the avionics software (SW) 
components. 

Prior to each avionics FSW release, interim (partial) builds (sprints) are ongoing to develop a 
certain level of avionics FSW functionality (i.e., a partial list of requirements implemented), 
which are available by drop for analyst review. The first formal FSW release is scheduled for 
late November 2013. 

The goal of the is paper is to present the “process-based” development of the EA model-driven 
toolset NASA’s IV&V Program utilizes on these interim (near monthly) drops to: 1) understand 
what has been periodically developed; 2) identify drop functionality, testing and issues; 3) 
decide what needs to be analyzed based on maturity; and 4) develop the EA toolset for the 
analysis in anticipation of the formal FSW releases. 

The NASA IV&V Program’s development of the EA toolset is necessary to maintain evidence-
based assurance of the IV&V FSW analysis paradigm on the interim drops. Ultimately, IV&V 
results of the EA process-based analysis will become a “results-based” analysis of the formal 
FSW releases. 
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Mining Technical Issue Memorandums for  
Knowledge: Challenges and Possibilities 

William Stanton, NASA IV&V 
 

ABSTRACT 

NASA’s IV&V Program has close to 20 years of experience analyzing mission and safety 
critical software systems. During this time NASA’s IV&V Program has accumulated a 
significant amount of defects in all phases of the software development lifecycle (requirements, 
design, code, and test). NASA’s IV&V Program documents each defect in a Technical Issue 
Memorandum (TIM), which is subsequently submitted to the development project for 
disposition. TIMs are archived in repositories by IV&V Projects. NASA’s IV&V Program uses 
metadata about TIMs to build metrics that help ensure it is providing a valuable service, such 
as: 

• How early IV&V gets involved during development 
• Phase containment of issues found by IV&V 
• Ratio of issues accepted by the development project 
• Most frequent types of issues discovered by IV&V 

Given that NASA’s IV&V Program has several years of experience analyzing software 
developed for similar purposes there is an opportunity for: 

• Discovering useful latent information from the repositories of TIMs at NASA’s IV&V 
Program 

• Making useful predictions based on what can be learned from the repositories of TIMs 
at NASA’s IV&V Program 

However, given the vast amount of records, manual analysis assisted by a simple keyword 
search capability will not yield useful results in a timely fashion. Current capabilities in 
automated text mining offer a promising solution to this problem. This paper will address the 
possibilities and potential value from: 

• Automatically collating a user-specified set of TIMs 
• Building predictors that automatically learn from the textual data in a user-specified set 

of TIMs 
• Applying predictors on a user-specified set of TIMs 

Along with the potential benefit of using text mining to attain useful latent information from 
repositories of software defects, there are also challenges and risks with pursuing a solution 
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for organizations like NASA’s IV&V Program that provide software assurance as a service that 
also will be discussed in this paper. 
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Finite States: Base Elements in a Computing Orchestra,  
Reducing Software Complexity and Improving  
Software Accuracy, Validation and Verification 

Ronald Finkbine, Ph.D., Indiana University Southeast 
 

ABSTRACT 

A computer program is generally written in one language and is designed to map a set of 
inputs to a set of outputs. Data passes through the program in a variety of forms: global 
variables used by multiple methods, parameters passed to methods, values returned from non-
void methods and data either inserted or retrieved from an external database. This variety of 
data forms and flows give the developing software developer plenty of options in moving data 
around, it does not affect the ability of the computer to understand the software, but does make 
life much more difficult for a software maintenance programmer to understand and modify 
existing programs.  

Reducing the size and complexity of software components also leads to areas of code where 
errors cannot be inserted due to the simplicity of the component. This highly improves software 
quality and can lead to great savings in software testing and verification. If the software 
developer concentrates more on the data forms and flows, he/she keeps the correct output of 
every component very prominent and ready for verification and component testing purposes. 

Finite State Machines (FSM) are simple, restricted input computational models that are 
valuable for their limited computational properties. And FSMs are an easy method to model, 
code and implement. The difficulty is in combining FSMs into some form of framework, 
organizing a number of them into an orchestra to accomplish a major program. FSMs have 
been found to be useful as a basis of functional testing and used in test case selection and 
adequacy analysis.2 

This research project concentrates on programming at a system-wide level, allowing the 
programmer to organize programs by using smaller, more shallow computational units that 
communicate by putting data into data-paths and separating the responsibilities of larger 
programs into smaller programs that can be more easily understood by programmers, more 
easily separated from deep data within a program and thus more amenable to analysis, 
verification and testing. In addition, these smaller software components are potentially more 
able to be proved correct by formal software methods. This abstract covers the basic 
introduction and introduces some positive results that have been generated. 
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Figure 1 lists the types of FSMs that have been identified and developed in this research. 

 
An FSM is a 4-tuple which contains a start state, a set of acceptance states, a set of transitions 
that connect states and an input alphabet. A visual sample of an FSM is displayed in Figure 2. 
Each state is a circle and the start symbol is the arrow on the left that signifies the A state is 
the start state. The acceptance states are all double circles. The transitions are labeled with 
the input character that is accepted (or action that occurs) when the transition is fired. Any 
character transition that is not expressly defined on the diagram leads to an ERROR state 
which is not recoverable (exit-able). When an FSM (like Figure 2) has the error states fully 
accounted for (from every other state) then the diagram is a Deterministic Finite Automata 
(DFA). 

 
The pseudo-code equivalent to Figure 2 is demonstrated in Figure 3. 

 

 

• byChar 
• byString 
• byFunction 
• byLine 
• byRecord 

 
Figure 1: FSM Types 

 

Figure 2: Sample FSM 
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Software development is very complex and the development and usage of techniques and 
tools to reduce this complexity is essential. In third generation programming languages there 
are three paths for data to flow, one is in local parameters, two is global parameters and three 
is the formal parameters and return values of a method invocation (function call). And it can be 
worse if it is a recursive function.  

 

 

Figure 4: Chomsky Hierarchy 

 
By linking FSMs within a framework the intent is to ensure that all data remains shallow within 
a program, not buried under the control of an if statement within a loop within a recursive 
function. 

Figure 4 shows the Chomsky Hierarchy, a classification of languages and grammars. Any 
language within any of these levels can be produced and/or accepted by another program in 
the same level. 

Regular languages in computational notation are notated as a*b*, meaning any number 
(including zero) of a’s followed by any number of b’s. This also shows the alphabet as being of 

Context Sensitive 

 

 

 

Context Free 

 
Regular 

state = A 
while ((read ch) == a) 

ok; 
wnd while 
If ch == b then 

state = B 
endif 
if state == B then print ok; 
else print error; 
 

Figure 3: Equivalent Code 
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two letters, a and b. A program to read and accept strings in this language would need no 
extensive data structure, no arrays or stacks or database to answer the question, “Does this 
particular input string belong to this language?” The important characteristic of these 
languages is that this type of program is so simple that nothing within the program can go 
wrong (ignoring problems within the operating system or the hardware below, both big 
assumptions). When something does go wrong, it is obvious and easily detectable. The ease 
of detection makes these languages and software components designed upon them excellent 
candidates for verification and validation efforts that too often come late in the software 
development process, instead of early where they would be more efficient. The main crux is 
with regular languages, no data structure is needed to compute acceptance/rejection, and 
therefore there are fewer security risks in using this type of program. 

aNbN – context free languages, one stack allowed, this can read the input stream and stack it 
up, state b can process each item in the stack 

aNbNcN – context sensitive languages, two stacks allowed, therefore a symbol table in the 
nomenclature of compilers. 

Other is Turing enumerable, any string of characters a computer program can produce, 
another program can accept. 

Summary 

Developing software using the FSM concept as a simple, restricted input computational model 
using an interactive framework for development will lead to software programs that are able to 
be coordinated into larger programs that will be higher in reliability, safety, security and lend 
themselves to software provability analysis. This leads to better software at a reduced cost. 
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Semantic Knowledge Representation 

Jim Trawick, NASA IV&V / TASC 
 

ABSTRACT 

The task of Knowledge Representation and Retrieval for Independent Verification and 
Validation is similar in many ways to its task in natural-language processing (needing to 
correlate seemingly disparate but actually interdependent entities) and semantic networks, 
such as the long-anticipated Semantic Web (context is everything, and anything in a particular 
context is related). In IV&V and other technical activities, this is complicated by the difficulties 
inherent in communication (e.g., terms may be new and not yet agreed upon, the same 
acronym has multiple meanings, the information may not be in human-readable form, relevant 
information may be buried several layers deeper than you are looking, etc.). This requires 
some considerations for ontology, but ontology alone will imply relationships which do not 
exist. 

Semantics is the study of representational meaning – usually in language – but it can be more 
abstract representations, as well. And ultimately, what IV&V is after is findings – but findings of 
significance. 

Semantic relationships define a context. To be useful across multiple domains, a context 
definition must be both specific enough to eliminate inapplicable content, and generic enough 
not to eliminate applicable content from a different domain.  

The Semantic Web has been touted for more than a decade, and has yet to be realized. The 
difficulty realizing the dream is similar to the difficulty in establishing useful arguments to verify 
and/or validate a technical endeavor – so much data, and so little time. Fortunately, the 
domain of Software IV&V is much smaller (software requirements, design, implementation and 
testing), and the context types are limited to that domain. This allows the ideas espoused by 
the Semantic Web to be applied to engines useful to the IV&V task. 

Certain knowledge-based systems employing these ideas can significantly reduce the effort in 
capturing and retrieving applicable operators, relationships and potential consequences, as 
well as providing metrics to evaluate effectiveness and suggest reprioritization of resources. 
Such a system is particularly useful in compiling and retrieving historical data applicable to a 
current task, as the user can adjust the context to retrieve only those items in which the 
semantic context is similar, and the probability of applicability is therefore higher. And because 
IV&V organizations find similar technologies in different projects, a semantic approach can 
facilitate cross-pollination, at least better than the usual “lessons re-learned.”  
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Multimedia Steganalysis as Part of Mission Critical Software Independent 
Verification & Validation (IV&V) 

Qingzhong Liu, Sam Houston State University 

Noble N. Nkwocha, NASA IV&V 

Andrew H. Sung, New Mexico Institute of Mining and Technology 

 

ABSTRACT 

To this date, much effort has been invested in developing sound models and rigorous IV&V 
methodologies to support increased software quality assurance. For mission-critical software, 
security in addition to reliability and safety is ever more increasingly important today than, 
perhaps, a few years ago. A German security researcher, for instance, is said to have recently 
developed and demonstrated an app that can hijack an aircraft remotely using an Android 
phone. With a flight simulator, the app was shown to have the ability to change the speed, 
altitude and direction of a virtual aircraft by sending radio signals to its Flight Management 
System. We propose in this paper that analyzing all multimedia associated with the software 
development process to ensure that they do not contain hidden and or malicious contents 
should be part of the IV&V focus; and that the analysis should encompass the multimedia 
included or used in software engineering tools, the multimedia material that the software 
development personnel regularly consume or are exposed to during their work and the 
multimedia material created or generated in the development process as part of the software 
product. 

A focus of multimedia analysis for hidden/malicious contents is steganalysis, where advanced 
machine learning and pattern recognition techniques are applied in scanning multimedia 
material for the specific purpose of detecting hidden material, which may implement or carry 
covert channels and/or malware. This is because steganography, the ancient art of hiding 
secrets in a media, has found renewed interest and modern reinvention in the Internet age by 
exploiting the easy manipulability of digital material (images, audios, videos, animations, files, 
executables, network packets, etc.). For adversaries, saboteurs, criminals, and hackers who 
share interests in penetrating secure systems, common and ubiquitous multimedia presents 
the greatest opportunity for embedding secret contents; and when combined with techniques 
of encryption, malware injection and social engineering (such as spear phishing), 
steganography has created a tremendous threat to information security that, in fact, includes 
software security which has been mostly overlooked.  

Even in tightly controlled software development environments for secure or classified systems, 
the engineering team encounters multimedia in various ways: in the tools used (e.g., software 
engineering toolboxes), in their daily routine activities (e.g., email, phones, entertainment) or 
multimedia generated as part of the software product (e.g., documents). To ensure a proper 
cleanroom environment for software engineering, we propose that multimedia steganalysis 
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should be part of the software IV&V focus. This ensures a higher level of security, at least for 
the mission-critical components of the system. 

In this paper, we will focus on recent technical advancements in multimedia steganalysis 
accomplished using machine learning, feature mining, and pattern recognition techniques. 
Results of large sets of experiments on image, audio and video steganalysis demonstrate that 
the techniques are highly effective in detecting secret contents and are applicable to real-life 
applications that mandate high levels of security assurance – such as Mission Critical 
Software. 
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Static Analysis Tool Comparison with Respect to C++ 

Jacob Cox, NASA IV&V / TASC 
 

ABSTRACT 

A current trend in IV&V has been the inclusion of software beyond flight software, where 
languages and styles include more than C and the procedure style. Additionally, there are 
cases where flight software is also including more than procedural programming in C. C++ and 
Java are object-oriented languages that are becoming more common in NASA’s IV&V 
Program analysis. The object-oriented design of these languages introduces additional 
challenges for the IV&V analyst particularly with the use of inheritance and polymorphism. The 
suite of static analysis tools used in IV&V can help in finding latent defects in source code 
written in C++ and this paper will discuss a comparison of the abilities, strengths and 
weaknesses of these tools. The tools addressed are Klocwork and Flexelint. 
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Performance Measurement at  
NASA Independent Verification and Validation 

Arthur Rabeau, NASA IV&V / TASC 
 

ABSTRACT 

Performance Measurement is a process that provides quantitative data of program 
effectiveness and efficiency in order to support informed program decisions. This presentation 
describes the processes, procedures and methodology that the NASA IV&V Services Contract 
(ISC) uses to perform Performance Measurement. These Performance Measurement activities 
include planning and executing the measurements and analyses that will be used to evaluate 
performance and its impact on several factors, including quality, cost and progress. In addition, 
Performance Measurement defines not only the makeup and formulation of the measures; it 
defines the analysis and reporting process to interpret and act on the information received. 
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Assurance Cases in Planning and Execution of NASA IV&V Projects 

Travis Dawson, NASA IV&V / TASC 
Samuel R. Brown, NASA IV&V / KeyLogic 

 

ABSTRACT 

Evidence-based assurance, that is, providing mission and safety assurance based on 
documented, objective evidence, is a key goal of NASA’s IV&V Program. The use of 
Assurance Cases is gaining momentum within the Program to help fulfill this goal. Assurance 
Cases are a type of structured argument that is supported by a large body of literature in 
industry and academia. The fundamental Assurance Case structure involves using collected 
evidence to support an argument that proves a claim. Evidence does not simply materialize, 
however – it results from execution of IV&V analysis activities that can only be properly 
planned by considering the end goals as captured in the intended Assurance Case. This 
presentation examines the integration of Assurance Cases into the existing IV&V planning 
process and the impact on IV&V activity execution. 
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Practical Assurance Case Design 

Samuel R. Brown, NASA IV&V / KeyLogic 
 

ABSTRACT 

Assurance case development for a hypothetical, but realistic, spacecraft flight software 
functional domain is described, along with key arguments and sub-claim patterns. In addition, 
strategies for selecting top-level claims and organizing those claims are discussed.  

The spacecraft flight software is a generalized and somewhat simplified planetary mission, with 
adequate information to support assurance claim development. Practical and meaningful 
assurance cases are developed from the software architecture, and both top-down and 
bottom-up methods are explored with examples. In particular, specific examples of strategies 
for both successful and unsuccessful assurance cases are explored. 

Evidence from a variety of sources is then used to provide support to the arguments, leading to 
an evidence-based assurance for the spacecraft flight software domain. Examples of evidence 
sources and their strength are discussed. 
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Independent Formal Verification of Safety-Critical Systems’ 
User Interface: A Space System Case Study  

Manuel Sousa, Universidade do Minho 
José Creissac Campos, Universidade do Minho / HASLab / INESC TEC 

Miriam Alves, Institute of Aeronautics and Space 
Michael D. Harrison, Queen Mary University of London / Newcastle University 

 

ABSTRACT 

Safe operation of safety-critical systems depends on appropriate interactions between the 
human operator and the computer system. Correct specification and verification of such 
safety-critical systems is an important mechanism for determining precisely what the 
software must accomplish before deployment, and this extends to the user interfaces. This 
paper presents a structured, comprehensive and computer-aided approach to formally 
specify and verify user interfaces based on model checking techniques. The paper also 
describes how the approach was applied to a case study whose main goal was to 
independently and formally model and verify the user interface of the Brazilian Institute of 
Aeronautics and Space’s (IAEʼs) Satellite Launching Vehicle Testing and Preparation 
Ground System (TPGS). The IVY tool1 provides support for the approach through a model 
editor (a component for helping in the development of user interface models); a simulation 
tool (a component to allow initial validation through direct interaction with the models); a 
properties editor (a component for helping in the expression of relevant usability related 
properties as logical formulae that might be verified by a model checker); and a trace 
visualizer/analyzer (a component for helping in the analysis of the traces that may be 
produced by the model checker). Independent groups were responsible for: the development 
of the user interface models based on the TPGS Operator Manuals; the critical and 
independent verification of the relevant properties of the models; and the critical 
assessment of the modeling process and suggestions for improvement. During the modeling 
activity, properties were checked to verify that the model was designed as described by the 
operator manuals, as well as to verify whether the system had errors or problems. A novelty of 
the approach is that it allows reasoning about the systemʼs user interface being modeled 
as well as the quality of its operator manuals. To date, a considerable part of the two 
TPGS subsystemsʼ user interfaces has been formally specified and verified and the results 
indicate that the modeling and analysis makes the extension of the model to accommodate 
the remainder of the subsystemʼs behavior a feasible task. Experience with this case study 
has shown that the proposed approach provided a practical and feasible way to 
systematically specify and automatically verify the user interfaces of complex systems. For 
most current approaches verification activities are restricted to document inspections and 
test results analysis, where the interpretation of the results could still be quite subjective, 
and test scenarios may not cover all the possible combinations of actions that can take 
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place. The support of a computer-aided tool was fundamental to accomplishing this activity. 
The overall approach represents a step forward in improving system dependability. The 
intention for the future is to model other TPGSʼs subsystems, in particular user interfaces 
with more complex user-machine interactions than those described herein. The IVY tool is 
being actively extended to make it more accessible to future developers. 
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Scalable and Flexible Static Analysis of Flight-Critical Software  

Guillaume P. Brat, CMU / NASA Ames Research Center  
Arnaud J. Venet, CMU / NASA Ames Research Center  

 

ABSTRACT 

Static analysis is a fully automatic technology for formally verifying critical properties of 
software by inspection of the source code. In the past decade, static analysis has transitioned 
from research lab prototypes to industrial tools used in the production chain of commercial 
airliners. For example, the Astrée static analyzer has been successfully applied to prove the 
absence of runtime errors in the fly-by-wire systems of the Airbus A340 and A380. However, in 
order to achieve this level of assurance on industrial applications, a static analyzer has to be 
specialized for a specific code or family of codes. This is an effort-intensive process requiring 
the attention of experts in the field. Unmanned Aircraft Systems (UAS) operations in the 
National Airspace System, on-board air traffic control and advanced anti-collision systems are 
some of the objectives of the NextGen Air Transportation System, which are implemented 
using vastly different types of software. In order to address these important applications, the 
development of specialized static analyzers needs to be streamlined. In this paper, we 
describe an effort in this direction initiated at NASA Ames Research Center, which is based on 
the development of a library of reusable static analysis components named IKOS. The core 
functionalities of static analysis are encapsulated in a collection of C++ classes that can be 
assembled to implement a static analyzer specialized for a certain application. IKOS has been 
successfully applied to the verification of pointer safety in UAS autopilots ranging from 33 
KLOC to 270 KLOC. IKOS is also being applied to the verification of auto-generated code 
obtained from MATLAB®/Simulink® models, which is becoming the standard for the 
development of flight software. These different applications require specific adaptations of the 
static analysis algorithms, which can be concisely expressed with IKOS while maintaining a 
high level of performance.  
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Accelerating MS Office Work with AMF  

Donald Kranz, NASA IV&V / TASC 
Neal Saito, NASA IV&V / TASC 

Gary Marchiny, NASA IV&V / TASC 
 

ABSTRACT 

The goal for the AMF initiative states: “The goal of this effort is to provide a set of process 
assets, Catalog of Methods inputs, and educational materials from existing IV&V tools and 
resources to develop IV&V Program concepts and definitions of evidence; to build a framework 
for organizing and communicating evidence; and to create methods for refining IV&V 
assurance data into information and assurance statements.” One of the most commonly 
available tools utilized by IV&V is the MS Office suite of products. The AMF provides a 
generalized, repeatable, and efficient method for working with the plethora of documents and a 
SQL database to capture analysis work. A VBA library implementing the AMF user interface, 
business and data layers is available to help the analyst extract information from word and 
excel, as well as report back to any MS Office product from analysis work performed. This 
session will review some of these libraries that are available for MS Excel and MS Word. 
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NATO IV&V: Work in Progress 

Brad Bigelow, NATO Communications and Information Agency (NCIA) 
Arend Smit, Ph.D., M&I/Partners 

 

ABSTRACT 

NATO has a history of applying IV&V to its IT projects. Dating back to the 1980s, IV&V 
involvement still continues to this day. We present an overview of the dynamics of NATO’s 
experience with IV&V in the past. 

In the first years of NATO IV&V, the involvement of IV&V activities started after the award of 
the main project. Usually, the contract was based on an initial requirements analysis. In a 
number of cases, IV&V contractors noted that the project was marred by issues spawned in 
the pre-contract award phase. Such issues then necessitated contract amendments, 
sometimes requiring lengthy (re)negotiations, all too often associated with increased project 
cost and delayed delivery. Faced with this situation, NATO was increasingly willing to fund 
IV&V activities even before contract award, during the preparation of the Invitation for Bid. This 
involvement of IV&V at earlier stage in the project tended to reduce the number of contract 
amendments required during the project’s lifecycle. 

More recently, NATO has expanded the range of IV&V options available to projects. The 
original approach involved the procurement of IV&V services under separate IV&V contracts, 
with dedicated funding. Now, project managers in one of NATO’s major capability 
enhancement programmes can also recruit IV&V services from a central programme support 
unit. As this type of IV&V activity does not require a separate IV&V contract, it allows more 
malleable customization of the project’s IV&V involvement. 
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TraceLab Player: From Researchers to IV&Vers  

Jane Hayes, University of Kentucky 
Jane Huang, University of Kentucky 

Adam Czuaderna, University of Kentucky 
 

ABSTRACT 

The TraceLab framework has now been demonstrated to assist researchers in quickly 
developing and validating new ideas related to requirements traceability. At Traceability of 
Emerging Forms of Software Engineering (TEFSE) in May 2013, applications of TraceLab 
ranged from feature location to semantic-enhanced tracing. In fact, some researchers used 
TraceLab to address problems beyond traceability such as generation of software test cases. 
The latest step in the TraceLab evolution has been to develop a TraceLab player, permitting 
IV&V agents to take a technique that has been developed and validated in TraceLab and "grab 
it" for use as a stand-alone "tool." Basically, the IV&V agent edits a batch file to indicate the 
name and location of input and output files and then runs the technique (such as tracing using 
Latent Dirichlet Allocation (LDA)). This presentation will demonstrate how IV&V agents can use 
the TraceLab player.  
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Use of a Technical Reference in  
NASA Independent Verification and Validation 

Travis Dawson, NASA IV&V / TASC 
 

ABSTRACT 

Providing mission assurance for NASA systems, and other customer systems under 
development, requires documentation of the system under evaluation and the standards and 
criteria against which the system is evaluated. These two categories taken together are called 
the Technical Reference, and are being used at NASA’s IV&V Program to support evidence-
based assurance of customer systems. This presentation describes the intent of the Technical 
Reference, describes typical contents and usage, and present example products in use. 
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Model-Based Testing of Spacecraft Flight Software 

Maria Hernek, European Space and Technology Center (ESTEC) 
 

ABSTRACT 

Software Verification & Validation (V&V) is an important part of the software development 
lifecycle. Integration test cases for the Flight Software (FSW) are traditionally designed 
manually based on requirements written in natural language (i.e., black box testing). Unit test 
cases are traditionally designed manually based on detailed design and also based on the 
knowledge of the corresponding source code (i.e., white box testing). Due to the high criticality 
and complexity of the spacecraft FSW, the requirements for V&V are very stringent and usually 
the manual validation, including both unit testing and integration testing, takes a significant 
effort. 

Model-based testing (MBT) aims at the automation of the design of V&V tests. The difference 
from the usual black-box validation testing is that rather than manually writing tests based on 
the requirements documentation, the test implementation is derived from a formal model of the 
expected system under test (SUT), which captures the functional requirements of the SUT. 

The European Space Agency (ESA) is running an activity to evaluate automatic MBT in the 
context of spacecraft FSW. The main objectives of this study are to evaluate the applicability, 
scalability, efficiency and cost-effectiveness of a specific MBT method, namely sequence-
based specification (SBS) combined with statistical based testing (SBT). 

The scope in terms of tasks includes: 

• Create a formal model of an existing spacecraft FSW system based on system or 
software requirements in natural language. 

• The resulting formal models are refined into test models which are used for automatic 
test case generation. 

• The generated test cases are integrated into the Software Verification Facility (SVF). 
Tests are executed and analysed (outcome, time, effort, and coverage). 

This presentation reports on the results of this activity. 
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Model-Based Testing of NASA Systems 

Dharmalingam Ganesan, Fraunhofer Center for Experimental Software Engineering 
(CESE) 

 

ABSTRACT 

Software testing is not only expensive but also often not rigorous enough, thus bugs can slip 
into the field with costly consequences. This is often due to the manual nature of the testing 
process. In recent years, several software test case execution frameworks (e.g., JUnit) have 
been developed and used in many organizations. Such frameworks are very helpful to 
automatically run the test cases during nightly builds. They also help the programmers verify 
their source code modifications (a.k.a. regression testing). However, the job of designing the 
test cases is outside the scope of these test execution frameworks. Programmers (or testers) 
have to construct test cases manually. To overcome this limitation, model-based testing 
(MBT), which is a technique that derives test cases from an explicit behavioral model, has 
been proposed. MBT is gaining popularity in the research community and recently in industry, 
too. 

When a software implementation already exists, models of the implementation’s expected 
behavior can be used to generate an innumerable number of test cases. As part of the NASA’s 
Software Assurance Research Program (SARP), researchers at Fraunhofer have developed 
methods and tools for analyzing models and automatically generating test cases from the 
model of the expected behavior. The generated test cases are automatically converted into 
appropriate test execution frameworks such as JUnit, CUnit, etc. Our methods and tools have 
been applied on several NASA systems. For example, core functions of NASA’s Goddard 
Mission Services Evolution Center (GMSEC) framework were tested using MBT. The same 
model was used to test several programming languages and middleware technologies that are 
supported by the GMSEC framework. Similarly, file system APIs of the NASA’s OS abstraction 
layer were tested using MBT, too. In all endeavors, we were successful in detecting previously 
unknown errors, even in systems that are used in production. Not to mention the fact that 
several requirements-level issues such as contradictions and incompleteness were detected, 
too. Work is underway at JPL to apply MBT to test parts of the Soil Moisture Active Passive 
(SMAP) mission functions. 

We use “lightweight” state machines as the modeling notation to kick-off the MBT process. 
This process requires state machines to be hand-drawn by the testers/engineers. When the 
number of states grows due to inherent complexity of the system under test, it will be laborious 
and sometimes error-prone to hand-draw all states and transitions. To scale up MBT, we apply 
advanced modeling notations and tools (e.g., SpecExplorer) that are capable of automatically 
generating state machines from a model program, which is similar to a regular program but 
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enriched with a few modeling constructs. The tester develops a model program, which is 
usually much simpler than the real system under test because several details are abstracted in 
the model program. From the model program, different state machines and test cases for 
different scenarios are automatically derived and tested against the system under test. 

Inputs to our methods include requirements, specifications, example usages of the system 
under test and existing test cases. The output includes requirement issues, a suite of ready-to-
run test cases that can be integrated to the build process. Model construction is a manual 
process. However, model analysis, test case generation and execution are fully automatic. As 
a return on investment, organizations will get requirements issues (if any), ready-to-run test 
cases, models, and bugs (if any) of applying model-based testing. In this presentation, we will 
present our experiences of applying MBT on mission-critical systems. 
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Architecture of the AMF 

Donald Kranz, NASA IV&V / TASC 
Tom Gullion, NASA IV&V / TASC 
Neal Saito, NASA IV&V / TASC 

Gary Marchiny, NASA IV&V / TASC 
 

ABSTRACT 

The Analysis and Management Framework (AMF) is a three-tier, evidence-based assurance 
architecture used to support verification and validation efforts. This session explains the origin 
and principles used to develop the architecture. Those interested in understanding the basics 
of the design of the AMF will find this session useful. Passing business objects between 
different technologies allows sharing of information across platforms. Domain model elements 
supporting versioning and polymorphic behavior provide a platform for expanding upon the 
successes of previous projects. Participants that become aware of the AMF’s capabilities and 
rationale can more efficiently implement the AMF’s available functionality based on their 
unique project needs.  
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IV&V Techniques for Robotics on OSIRIS-REx 

Charles R. Price, NASA IV&V / TASC 
Ricky Forquor, NASA IV&V 

David Turner, NASA IV&V / NEW-BOLD Enterprises 
 

ABSTRACT 

This paper will describe recently developed IV&V techniques for the Touch and Go Sample 
Acquisition Mechanism (TAGSAM) robotic subsystem on the Origins Spectral Interpretation 
Resource Identification Security - Regolith Explorer (OSIRIS-Rex) spacecraft. The techniques 
include initial assessment of MRD materials, scale model development, kinematic animation 
development, facilitated discussions, assessment of the Japan Aerospace Exploration Agency 
(JAXA) Hayabusa mission, review of the NASA IV&V Program’s OSIRIS-Rex Portfolio Based 
Risk Assessment (PBRA), development of scenarios based on the Design Reference Mission, 
development of off-nominal branch scenario paths, assessment of developer’s fault trees, 
providing process assets for the NASA IV&V Program’s Catalog of Methods and capturing of 
these techniques into an accessible robotics wiki. 
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Evaluating the t-way Combinatorial Technique for  
Determining the Thoroughness of a Test Suite 

Charles R. Price, NASA IV&V / TASC 
Ricky Forquer, NASA IV&V 

Adelbert Lagoy, NASA IV&V 
D. Richard Kuhn, National Institute of Standards and Technology (NIST) 

Raghu N. Kacker, NIST 
 

ABSTRACT 

An innovative technique developed by NIST that determines the thoroughness of a test suite 
by measuring the t-way combinations of input and configuration variables is being evaluated as 
an IV&V capability development task. This evaluation of the t-way technique targets the testing 
done on the Global Precipitation Measurement (GPM) mission heater control software by its 
developer and subsequently analyzed by IV&V.  
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Automated Design-Time Analysis for the GOES-R System 

David Hall, NASA Ames Research Center 
Corina Pasareanu, NASA Ames Research Center 

 

ABSTRACT 

The National Oceanic and Atmospheric Administration (NOAA) operates a system of 
Geostationary Operational Environmental Satellites (GOES) to provide continuous weather 
imagery and monitoring of meteorological and space environment data to protect life and 
property across the United States. Two GOES satellites remain operational at all times 
providing coverage for the eastern United States and most of the Atlantic Ocean and the 
western United States and Pacific Ocean basin. The NOAA/NASA GOES-R project represents 
the next generation of GOES. It provides continuity of the GOES mission and improvement of 
its remotely sensed environmental data. The system will be software intensive and will consist 
of many interacting components. 

The GOES-R system must be extremely reliable and correct. Testing is typically used to 
ensure software reliability. However, testing is often manual and time-consuming, and it is 
used late in the software life cycle, after the code has been written and when it is very 
expensive to fix discovered interaction errors. 

We describe an effort at NASA Ames that performs systematic analysis of a portion of the 
state transition behavior of the ground segment of the GOES-R system using design-time 
information. Identifying and correcting errors at design time is typically easier and more cost-
effective. But even if the system is already implemented, behavior identified from the design 
specifications can be used to guide testing and assess completeness of the test cases. 
Various design components of the GOES-R ground segment have been modeled using 
MATLAB®’s Stateflow® notation, which have been automatically translated into an intermediate 
executable representation using NASA Ames' Polyglot system. Automated test case 
generation and verification with respect to prescribed requirements have been performed using 
NASA Ames' PathFinder tool-set. 

 

  



Proceedings of NASA's 2013 Annual Workshop on Independent Verification and Validation of Software 

53 

IV&V Guidance for IV&V for Product Line Software 

Charles R. Price, NASA IV&V / TASC 
 

ABSTRACT 

Product line software is a series of software deliveries produced by a common software 
developer for use in different space mission applications, where succeeding software 
deliveries contain heritage components that are reused or modified components from previous 
deliveries. 

This paper will describe the recently developed Guide for IV&V of Product Line Software that 
resulted from a capability development task that reviewed all NASA IV&V Program heritage 
reports and sought crowdsourced information, commentary and opinions from the NASA IV&V 
community. 
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Assurance Cases for Software Releases in  
ISS Sustaining Phase of Development 

Sarma Susarla, NASA IV&V / TASC 
 

ABSTRACT 

The presentation gives an overview of the development process for new software releases 
during sustaining phase of International Space Station (ISS) and how IV&V interfaces with the 
development throughout the life cycle to analyze the various artifacts in performing Computer 
Software Configuration Item’s (CSCI's) requirement review, design/code review, test review, 
software integration review, and software on-orbit transition review. The presentation describes 
how assurance cases are developed in each of those reviews culminating in the final 
assurance case that the software meets mission objectives for on-orbit transition 
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Applying NASA-STD-7009 Standard to Models and Simulations 

Darilyn Dunkerley, NASA IV&V / TASC 
 

ABSTRACT 

NASA’s Standard for Models and Simulations (NASA-STD-7009), created in response to the 
Columbia Shuttle Accident, addresses the dynamic development environment associated with 
projects developing model-based software and systems. The Columbia Accident Investigation 
Board (CAIB) observed that development projects that employ models and simulations (M&S) 
suffer from complexity of configuration management, since both the models/simulations as well 
as the modeled systems and software components themselves are under constant revision. 
M&S techniques are increasingly applied in the development projects which receive NASA’s 
IV&V Program analysis services. This paper documents key concepts from NASA-STD-7009 
to assist analysts in evaluating the extent to which a given development project’s M&S artifacts 
(which include safety-critical components) comply with this emergent standard.  
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Data-Driven IV&V Decision Support 

Chris Williams, NASA IV&V / TMC 
 

ABSTRACT 

NASA’s IV&V Program produces various types of data in support of its activities, and this data 
is not always able to be used in an effective manner to support decision-making at both the 
lower levels and the higher management levels. The NASA IV&V Program’s Software 
Assurance Tools (SWAT) team has been working with others in the Program (e.g., IVVO Data 
Management Planning, TQ&E) to prepare a foundation for data capture and use that will 
provide a more robust decision support capability. 

Some of the key data related items that will be addressed during this presentation include (1) 
data availability, (2) data presentation, (3) ad hoc reporting, (4) metrics, and (5) IV&V decision 
support. 

Some specific examples that may be addressed in this topic include: 

• JIRA/Confluence gadgets and plugins 
• ‘ORBIT Snapshot’ data 
• COMPASS tool (IV&V method utilization, technical guidance for Technical Scope & 

Rogor (TS&R) creation) 
• SQL Server reporting services (ad hoc reporting) 
• Static code and dynamic analysis metrics 
• On-orbit issue anomaly data 
• REST web services (e.g., RiskManager tool data access) 
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Modeling the Image-Processing Behavior of the  
NASA Voyager Mission with ASSL 

Emil Vassev, University College Dublin 
Mike Hinchey, University of Limerick 

 

ABSTRACT 

NASA exploration missions increasingly rely on the concepts of autonomic computing, exploiting these to 
increase the survivability of remote missions, particularly when human tending is not feasible. This paper presents 
initial results of long-term research targeted at the design and implementation of prototype models for future 
Voyager-like missions that rely on principles of autonomic computing. Here, we employ the Autonomic System 
Specification Language (ASSL) to build a formal model and to generate a prototype for the image-processing 
behavior of the NASA Voyager Mission. This helps to validate existing features and perform experiments through 
simulation. Moreover, this prototype lays the basis for future experiments whereby autonomic features are added 
in a stepwise manner. 
 

1. INTRODUCTION 
There are few engineering activities as complex as the effective design, construction, and maintenance of the spacecraft 
employed in exploration missions. Autonomic Computing (AC) has emerged as a promising approach to the development of 
large-scale self-managing complex systems [1]. The general idea of AC is the handling of complexity in computer systems 
through self-management based on high-level objectives. 

The building blocks of AC systems are architectural components called autonomic elements (AEs) [1, 2]. In general, an 
AE extends programming elements (i.e., objects, components, services) to define a self-contained computational unit with 
specified interfaces and explicit context dependencies. Essentially, an AE encapsulates rules, constraints and mechanisms for 
self-management, and can dynamically interact with other AEs. From a more applied perspective, AC builds upon existing 
technology, with the goal of developing management capabilities that can be applied to both new and legacy systems.  

NASA is approaching AC with interest, recognizing in its concepts a bridge towards “the new age of space exploration” 
where spacecraft should be independent, autonomous, and “smart” [1]. Both the Autonomous Nano-Technology Swarm 
(ANTS) concept mission [3, 4] and the Deep Space One (DS1) mission [1] represent the new generation of AC-based 
unmanned missions. AC software makes spacecraft autonomic systems capable of planning and executing many activities 
onboard the spacecraft to meet the requirements of changing objectives and harsh external conditions. 

We investigate some hypotheses regarding the design and implementation of future Voyager-like missions that 
incorporate some of the principles of AC. Our objective is to build prototype software models that help in the comparison of 
features and issues of the actual Voyager mission with hypothesized possible autonomic approaches, thus giving significant 
benefits to the development of future space-exploration systems. To realize these goals, we experiment with ASSL 
(Autonomic System Specification Language) [5], an AC-dedicated framework providing a powerful formal notation and 
computational tools to help AC researchers with problem formation, system design, system analysis and evaluation, and 
system implementation. However, to improve the efficiency of the autonomic-features modeling, our next step is to use 
requirements engineering to capture the necessary requirements identifying autonomic features.  

The rest of this paper is organized as follows. In Section 2, we present the Voyager Mission together with our research 
objectives and goals. Section 3 describes how we used ASSL to specify autonomic features and generate a prototype of the 
NASA Voyager Mission. Section 4 presents experimental results, and finally, Section 5 concludes the paper with the benefits 
for space missions and a discussion on autonomy requirements engineering along with concluding remarks and future work.  
 

2. RESEARCH OBJECTIVES 
The great success of the NASA Voyager Mission, designed and built over 30 years ago, and the fact that autonomous behavior 
persists in the Voyager requirements, make the same a good example for future space missions. Here, it is our understanding 
that both prototyping and formal modeling, which will aid in the design and implementation of future Voyager-like missions, 
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are becoming increasingly necessary and important as the urgent need emerges for higher levels of assurance regarding 
correctness.  
 

2.1. The NASA Voyager Mission 
The NASA Voyager Mission [6] was designed for exploration of the Solar System. The mission started in 1977, when the twin 
spacecraft Voyager I and Voyager II were launched (see Figure 1). The original mission objectives were to explore the outer 
planets of the Solar System. As the Voyagers flew across the Solar System, they took pictures of planets and their satellites and 
performed close-up studies of Jupiter, Saturn, Uranus, and Neptune. 

 

 
Figure 1. Voyager spacecraft [6] 

After successfully accomplishing their initial mission, both Voyagers are now on an extended mission, dubbed the “Voyager 
Interstellar Mission”. This mission is an attempt to chart the heliopause boundary, where the solar winds and solar magnetic 
fields meet the so-called interstellar medium [7]. All this makes Voyager the most successful planetary exploration mission of 
all time. This success is due to the fact that: 

• The spacecraft were designed and implemented rigorously, and as a result both are still “healthy” today; 
• NASA engineers designed the spacecraft hardware “for the long haul”, by installing a system that allows for enhanced 

remote control programming “to give the spacecraft even greater capability than they possessed when they left Earth”.  
 

In the course of this research, we explored the image-processing system implemented on board the Voyager spacecraft. In 
order to take pictures, Voyager II carries two television cameras on board – one for wide-angle images and one for narrow-
angle images, where each camera records images with a resolution of 800x800 pixels. Both cameras can record images in 
black-and-white only, but each camera is equipped with a set of color filters, which helps in the reconstruction of images be as 
fully-colored ones.  

To transmit pictures to Earth, Voyager II uses its 12-foot dish antenna (see Figure 1) to send streams of pixels. It uses the 
same microwave frequencies used for radar. However, due to the long distance and to fundamental laws of physics, the 
strength of the radio signal is diminished proportionally and it reaches antennas on Earth with a strength 20 billion times 
weaker [8]. To counter this, the signals are received by a network of enormous antennas located in Australia, Japan, California, 
and Spain. Next, all the faint signals received from Voyager II are combined and processed by the Voyager Mission base on 
Earth to reduce electronic noise, blend, and filter the composed pictures. 

 

2.2. Our Research Objectives 
Our long-term objectives are the modeling and implementation of autonomic system prototypes of future Voyager-like 
missions, thus allowing for benchmark experiments to compare prototyped autonomic features and issues with the actual 
Voyager Mission. To achieve these goals, we intend to apply ASSL to build formal models and generate functional prototypes 
for the Voyager mission. The generated prototypes will help us to validate the features in question and perform further 
investigations based on practical results under simulated conditions. Note that knowledge of the Voyager Mission enables us to 
compare issues arising in the mission itself with potential approaches to their mitigation. 
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Here, our first objective is to specify with ASSL and generate a prototype model for the image-processing behavior 
observed in the NASA Voyager mission. Note that while exploring the Solar System, the Voyagers were able to detect 
interesting objects and take pictures of the same on-the-fly. This reveals a form of autonomic event-driven behavior, which we 
specify with / ASSL. 

 

3. RESEARCH 
This research is centered around the ASSL framework. We use ASSL to specify the Voyager Mission in a stepwise manner 
(feature by feature) and generate a series of prototypes, which we evaluate in simulated conditions. The latter are usually 
modeled as events that trigger special autonomic policies in the generated prototypes. We evaluate the behavior of the 
generated prototypes through special log records produced by any ASSL-generated application. These log records inform us 
about important state-transition operations allowing us to trace the behavior of the prototype in question. 
 

3.1. ASSL 
In general, ASSL considers ASs as composed of AEs interacting over interaction protocols. To specify autonomic systems, 
ASSL uses a multi-tier specification model [5] that is designed to be scalable and to expose a judicious selection and 
configuration of infrastructure elements and mechanisms needed by an AS. The ASSL tiers are abstractions of different aspects 
of the AS under consideration, such as self-management policies, communication interfaces, execution semantics, actions, etc. 
There are three major tiers (three major abstraction perspectives), each composed of sub-tiers (see Figure 2): 

• AS tier — forms a general and global AS perspective, where we define the general system rules in terms of service-
level objectives (SLO) and self-management policies, architecture topology, and global actions, events, and special 
metrics applied in these rules.  

• AS Interaction Protocol (ASIP) tier — forms a perspective that defines the means of communication between AEs. 
The ASIP tier is composed of channels, communication functions, and messages. 

• AE tier — forms a unit-level perspective, where we define interacting sets of individual AEs with their own behavior. 
This tier is composed of AE rules (SLO and self-management policies), an AE interaction protocol (AEIP), AE 
friends (a list of AEs forming a circle of trust), recovery protocols, special behavior models and outcomes, AE 
actions, AE events, and AE metrics.  
 

AS Service-Level Objectives 

AS Self-Management Policies 
AS Architecture 
AS Actions 
AS Events 
AS Metrics 
AS Messages 

AS Channels 
AS Functions 
AE Service-Level Objectives 

AE Self-Management Policies 
AE Friends 

AEIP 

AE Messages 
AE Channels 
AE Functions 
AE Managed Elements 

AE Recovery Protocols 
AE Behavior Models 
AE Outcomes 
AE Actions 
AE Events 
AE Metrics 

 
Figure 2. ASSL multi-tier specification model. 
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3.2. Specifying and Generating Prototypes with ASSL 
The ASSL tiers are intended to specify different aspects of the AS in question, but it is not necessary to employ all of those in 
order to model an AS. Usually, an ASSL specification is built around self-management policies, which make that specification 
AC-driven. The ASSL formal model addresses policy specification at both AS and AE tiers. Policies are specified with special 
constructs called fluents and mappings: 

• Fluents are states with duration and when the system gets into a specific fluent, a policy may be activated. 
• Mappings map particular fluents to particular actions to be undertaken by the specified AS. 

 
ASSL expresses fluents with fluent-activating and fluent-terminating events, i.e., the self-management policies are driven by 
events. In order to express mappings, conditions and actions are considered, where the former determine the latter in a 
deterministic manner.  

The following ASSL code presents an example specification of a self-healing policy. The interested reader is advised to 
consult [6] for more details on the ASSL specification model and grammar.  

 
ASSELF_MANAGEMENT {  
 SELF_HEALING {  
  FLUENT inLosingSpacecraft {  
   INITIATED_BY { EVENTS.spaceCraftLost } 
   TERMINATED_BY { EVENTS.earthNotified }  
  }  
  MAPPING { 
   CONDITIONS { inLosingSpacecraft  } 
   DO_ACTIONS { ACTIONS.notifyEarth }  
  } 
 } 
}  

 
Once a specification is complete, it can be validated with the ASSL built-in consistency checking mechanism and a functional 
prototype can be generated automatically. The prototypes generated with the ASSL framework are fully-operational 
multithreaded event-driven applications with embedded messaging. 
 

3.3. Voyager Image-Processing Behavior Algorithm 
An autonomous-specific behavior is observed in the Voyager spacecraft when a picture must be taken and sent to Earth (see 
Section 2.1). The following elements describe the algorithm we applied to specify the image-processing behavior observed in 
the Voyager mission with ASSL. 

1) The Voyager II spacecraft:  
1.1) uses its cameras to monitor space objects and decide when it is time to take a picture;  
1.2) takes a picture with its wide-image camera or with its narrow-image camera;  
1.3) notifies the antennas on Earth with “image session start” messages that an image transmission is about to start;  
1.4) applies each color filter and sends the stream of pixels for each filter to Earth;  
1.5) notifies antennas on Earth for the end of each session with “image session end” messages.  

2) The antennas on Earth:  
2.1) are prompted to receive the image by the “image session start” messages (one per applied filter);  
2.2) receive image pixels;  
2.3) are prompted to terminate the image sessions by “image session end” messages;  
2.4) send the collected images to the Voyager Mission base on Earth.  

3) The Voyager Mission base on Earth receives the image messages from the antennas. 
 

4. RESEARCH RESULTS 
In the course of this project, we successfully specified the image-processing behavior of the NASA Voyager Mission with 
ASSL. Here we applied the ASSL multi-tier specification model [5] to specify the Voyager II Mission as an autonomic system 
(AS) composed of the Voyager II spacecraft and four antennas on Earth, all specified as distinct AEs. Next, we generated the 
Java application skeleton for the prototype of the Voyager II Mission and experimented with it to explore important state-
transition operations ongoing in the system at run-time and to trace the behavior of the generated system. 
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4.1. Specifying Voyager Mission with ASSL 
In order to specify the algorithm described in Section 3.3, we applied the ASSL multi-tier specification model and specified the 
Voyager II Mission at the three main ASSL tiers – AS (autonomic system) tier, ASIP (autonomic system specification 
protocol) tier, and AE (autonomic element) tier (see Section 3.1). Hence, in our specification, we specified the Voyager II 
spacecraft and the antennas on Earth as AEs that follow their encoded autonomic behavior and exchange predefined ASSL 
messages over predefined ASSL communication channels. The Voyager mission autonomic behavior is specified at both AS 
and AE tiers as a self-management policy called IMAGE_PROCESSING. Thus, the global autonomic behavior of the Voyager II 
Mission is determined by the specification of that policy at each AE and at the global AS tier. 

Due to space limitations, we cannot present the entire specification, which is rather long (over 1100 lines of ASSL code). 
An appendix is added at the end of this paper to present the full ASSL specification (see Appendix A).  

 
4.1.1. AS Tier Specification 
At this tier, we specified the global AS-level autonomic behavior of the Voyager Mission. This behavior is encoded in the 
specification of an IMAGE_PROCESSING self-management policy. At this tier, that policy specifies an image-receiving process 
taking place at the four antennas on Earth (located in Australia, Japan, California, and Spain). In fact, as specified at the AS 
Tier, this policy forms the autonomic image-processing behavior of the Voyager Mission base on Earth. 

Here, we specified four “inProcessingImage_” fluents (one per antenna), which are initiated by events prompted when an 
image has been received, and terminated by events prompted when the received image has been processed (see Appendix A). 
Further, all the four fluents are mapped to a processImage action. The following specification sample shows a fluent 
specification together with its mapping: 

 
FLUENT inProcessingImage_AntSpain  { 
 INITIATED_BY { EVENTS.imageAntSpainReceived } 
 TERMINATED_BY { EVENTS.imageAntSpainProcessed } 
} 
MAPPING { 
 CONDITIONS { inProcessingImage_AntAustralia} 
 DO_ACTIONS {ACTIONS.processImage("Antenna_Australia") } 
} 

 
Here, the specification of the events that initiate and terminate that fluent is the following: 
 

EVENT imageAntSpainReceived {  
 ACTIVATION  {  
  RECEIVED { ASIP.MESSAGES.msgImageAntSpain }  
 } 
 } 
EVENT imageAntSpainProcessed { } 

 
Note that the processImage action is an IMPL action [5], i.e., it is a kind of abstract action that does not specify any statements 
to be performed [6]. The ASSL framework considers the IMPL actions as “to be manually implemented” after code generation. 
The following is a partial specification of that action: 

 
ACTION IMPL processImage {  
 PARAMETERS { string antennaName } 
 GUARDS { 
  ASSELF_MANAGEMENT.OTHER_POLICIES. 

 IMAGE_PROCESSING.inProcessingImage_AntAustralia  
  OR  

  ASSELF_MANAGEMENT.OTHER_POLICIES. 
  IMAGE_PROCESSING.inProcessingImage_AntJapan  
   … 
 } 
 TRIGGERS { 
  IF  antennaName  =  "Antenna_Australia"  THEN  
   EVENTS.imageAntAustraliaProcessed   
  END ELSE  … 
 } 
} 

 
Here, the processImage action is specified to accept a single parameter. The latter allows that action to process images from all 
four antennas. Moreover, there is a special GUARDS clause that is specified to prevent execution of the action when none of the 
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four fluents is initiated. The action triggers an imageAnt[antenna name]Processed event if the action is performed with no 
exceptions.  

 
4.1.2. ASIP Tier Specification 
At this tier, we specified the AS-level communication protocol – the autonomic system interaction protocol (ASIP) (see 
Section 3.1). This communication protocol is specified to be used by the four antennas when these communicate with the 
Voyager Mission base on Earth. Here, at this tier we specified four image messages (one per antenna), a communication 
channel that is used to communicate these messages, and communication functions (e.g., sendImageMsg and receiveImageMsg; 
see Appendix A) to send and receive these messages over that communication channel. Note that the communication functions 
accept a parameter that allows same communication functions to send or receive messages to and from different antennas. 
Please refer to Appendix A for the ASSL specification of the Voyager ASIP. 

 
4.1.3. AE Tier Specification  
At this tier, we specified five AEs. The Voyager II spacecraft and all four antennas on Earth (the antennas located in Australia, 
Japan, California, and Spain), are specified as AEs. Note that here, we specified the IMAGE_PROCESSING self-management 
policy at the level of single AE and thus, this policy is realized over all AEs specified for the Voyager Mission.  

In this sub-section, we present important details of this specification. Please, refer to Appendix A for the complete AE Tier 
specification. 
 
AE Voyager. The most complex AE is the one specified for the Voyager II spacecraft. To express the IMAGE_PROCESSING 
self-management policy for this AE, we specified two fluents: inTakingPicture and inProcessingPicturePixels. The following 
ASSL listing presents that self-management policy with both fluents and their mapping sections.  

 
AESELF_MANAGEMENT { 
 OTHER_POLICIES {     
  POLICY IMAGE_PROCESSING { 
   FLUENT inTakingPicture {  
    INITIATED_BY { EVENTS.timeToTakePicture } 
    TERMINATED_BY { EVENTS.pictureTaken } 
   } 
   FLUENT inProcessingPicturePixels {  
    INITIATED_BY { EVENTS.pictureTaken } 
    TERMINATED_BY { EVENTS.pictureProcessed } 
   } 
   MAPPING { 
    CONDITIONS { inTakingPicture } 
    DO_ACTIONS { ACTIONS.takePicture } 
   } 
   MAPPING { 
    CONDITIONS { inProcessingPicturePixels } 
    DO_ACTIONS { ACTIONS.processPicture } 
   } 
  } 
 } 
} // AESELF_MANAGEMENT 

 
Here, the inTakingPicture fluent is initiated by a timeToTakePicture event and terminated by a pictureTaken event. This event 
also initiates the inProcessingPicturePixels fluent, which is terminated by the pictureProcessed event. Both fluents are mapped 
to the actions takePicture and processPicture respectively. 

In addition, we specified an AEIP (autonomic element interaction protocol) (see Section 3.1), which is used by the Voyager 
AE to communicate with the four antenna AEs and to monitor and control the two cameras (wide-image camera and narrow-
image camera) on board. Thus, with this AEIP we specify (see Appendix A):  

• ASSL messages needed to send an image pixel and messages that notify the antenna AEs that an image-receiving 
session is about to begin or end; 

• a private communication channel; 
• three communication functions that send the AEIP messages over the AEIP communication channel. 
• Two special managed elements (termed wideAngleCamera and narrowAngleCamera) to specify interface functions 

needed by the Voyager AE to monitor and control both cameras. Through their interface functions, both managed 
elements are used by the actions mapped to the fluents inTakingPicture and inProcessingPicturePixels to take pictures, 
apply filters, and detect interesting space objects. 
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The following specification sample shows a partial specification of one of these managed elements.    
    

MANAGED_ELEMENT wideAngleCamera {  
 INTERFACE_FUNCTION takePicture { } 
 … 
 INTERFACE_FUNCTION countInterestingObjects  { 
   RETURNS { integer }  
 }  } 

 
Moreover, an interestingObjects metric is specified to count all detected interesting objects, which the Voyager AE takes 
pictures of. The source of this metric is specified as one of the managed element interface functions (countInterestingObjects); 
i.e., the metric gets updated by that interface function.  

 
METRIC interestingObjects  {  
 METRIC_TYPE {  RESOURCE }   
 METRIC_SOURCE {  AEIP.MANAGED_ELEMENTS. 
  wideAngleCamera.countInterestingObjects  } 
 THRESHOLD_CLASS  {  integer [ 0~ )  } 
} 

 
Note that the timeToTakePicture event (it activates the inTakingPicture fluent) is prompted by a change in this metric’s value. 
Here, in order to simulate this condition, we also activate this event every 60 seconds on a periodic basis. 
 

EVENT timeToTakePicture  { 
 ACTIVATION  {  
  CHANGED  {  METRICS.interestingObjects } 
    OR   
  PERIOD {  60 SEC } 
  } 
} 

 
The four antenna AEs are specified as friends (at the FRIENDS sub-tier) of the Voyager AE. According to the ASSL semantics 
[5] friends can share private interaction protocols. Thus, the antenna AEs can use the messages and channels specified by the 
AEIP of the Voyager AE.  
 
Antenna AEs. We specified the four antennas receiving signals from the Voyager II spacecraft as AEs, i.e., we specified AEs 
termed Antenna_Australia, Antenna_Japan, Antenna_California, and Antenna_Spain. Here, the IMAGE_PROCESSING self-
management policy for these AEs is specified with a few pairs of inStartingImageSession - inCollectingImagePixels fluents. A 
pair of such fluents is specified per image filter and determines states of the antenna AE when an image-receiving session is 
starting and when the antenna AE is collecting the image pixels.  

Because the Voyager AE processes the images by applying different filters and sends each filtered image separately, we 
specified for each applied filter different fluents in the antenna AEs (see Appendix A for the complete IMAGE_PROCESSING 
specification at the antenna AEs). This allows an antenna AE to process a collection of multiple filtered images 
simultaneously. Note that according to the ASSL formal semantics, a fluent cannot be re-initiated while it is initiated, thus 
preventing the same fluent be initiated simultaneously twice or more times [5]. 

Here, these fluents are initiated and terminated by AE events specified to be prompted by the Voyager AE’s messages 
notifying that an image-receiving session begins or ends. The following partial specification shows two of the 
IMAGE_PROCESSING fluents. These fluents are mapped to AE actions that collect the image pixels per filtered image.  

 
FLUENT inStartingGreenImageSession {    
 INITIATED_BY { EVENTS.greenImageSessionIsAboutToStart }  
 TERMINATED_BY { EVENTS.imageSessionStartedGreen } 
} 
FLUENT inCollectingImagePixelsBlue {     
 INITIATED_BY { EVENTS.imageSessionStartedBlue } 
 TERMINATED_BY { EVENTS.imageSessionEndedBlue } 
} 

 
In addition, an inSendingImage fluent is specified. This fluent activates when the antenna AE is done with the image collection 
work, i.e., all the filtered images (for all the applied filters) have been collected. The fluent is mapped to a sendImage action 
that sends the filtered images as one image to the Voyager Mission base on Earth. 

The following listing presents two of the events used to initiate those fluents. 
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EVENT greenImageSessionIsAboutToStart {  
 ACTIVATION {  SENT { AES.Voyager.AEIP.MESSAGES. 
       msgGreenSessionBeginAus } } 
 } 
EVENT imageSessionStartedBlue {  
 ACTIVATION {  RECEIVED { AES.Voyager.AEIP.MESSAGES.  
      msgBlueSessionBeginAus } }  
} 

 
Note that the greenImageSessionIsAboutToStart event is prompted when the Voyager’s msgGreenSessionBeginSpn message has 
been sent, and the imageSessionStartedBlue event is prompted when the Voyager AE’s msgBlueSessionBeginSpn message has 
been received by the antenna.  

Moreover, each antenna AE specifies communication functions that allow the AE receives the Voyager AE’s messages 
(see Appendix A). These communication functions are called by the AE actions. 

  

4.2. Structure and Behavior of the Voyager Prototype  
In this endeavor, we experimented with the prototype generated from the ASSL specification of the Voyager II Mission. Our 
goal was to demonstrate that the ASSL-generated prototype is capable of self-managing in respect of the specified with 
ASSL self-management policies.  
 
4.2.1. Structure  
With ASSL we generated a Voyager prototype that is a pure software solution; i.e., the Voyager spacecraft and the four 
antennas were implemented as interacting components embedded in a Java application. It is important to mention that instead 
of generating a monolithic application, the ASSL framework strives to organize the generated ASs in a granular fashion. 
Thus, at runtime, an ASSL-generated prototype has a multi-granular structure composed of instances (objects) of the 
specified tiers in the ASSL specification of the Voyager Mission. Here all tier instances together form the runtime object 
model of the Voyager’s prototype (see Figure 3). Similar to the applied ASSL specification model (see Section 3.1), the 
prototype’s runtime object model has a somewhat hierarchical composition where sub-tier instances are grouped around 
instances of major tiers. Figure 3(a) depicts the runtime object model of a Voyager prototype generated with ASSL and 
Figure 3(b) presents a runtime object model for an AE generated for that prototype. Note that both Figure 3(a) and Figure 
3(b) present generic object models. Thus, concrete models have an arbitrary number and types of nodes derived from their 
corresponding ASSL specification. 

 

 
Figure 3. (a) AS Runtime Object Model; (b) AE Runtime Object Model 

 
Figure 3(b) presents the granular structure of an AE object model. Here, at the core of the AE we can see four objects 
forming a special AE control loop. As depicted, the latter is composed of the objects M (monitor), A (analyzer), S (simulator), 
and E (executor). ASSL generates these objects to provide a sort of control over the autonomic behavior of the AE [5]. 
 
4.2.2. Behavior 
Due to specific features, common to all the Java applications generated with ASSL, at runtime, a Voyager prototype produces 
log records, which show important state-transition operations ongoing in the system [6]. Here, we used these records to trace 
and evaluate the behavior of the generated prototype model.  
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In order to perform this exercise, we compiled the generated Java code with Java 1.6.0 first, and then we ran the compiled 
code. The latter ran smoothly with no errors. First, it started all system threads as it is partially shown in the following log 
records. Note that starting all system threads first is a standard running procedure applied to all prototype models generated 
with the ASSL framework.  
 

Log Records “Starting System Threads” 
 
1) EVENT 'as.aes.antenna_california.events.IMAGESESSIONENDEDBLUE': started 
2) EVENT 'as.aes.antenna_california.events.IMAGESESSIONSTARTEDGREEN': started 
3) EVENT 'as.aes.antenna_california.events.REDIMAGESESSIONISABOUTTOSTART': started 
4) EVENT 'as.aes.antenna_california.events.IMAGESESSIONENDEDGREEN': started 
5) EVENT 'as.aes.antenna_california.events.IMAGESESSIONSTARTEDRED': started 
6) EVENT 'as.aes.antenna_california.events.IMAGESESSIONENDEDRED': started 
7) EVENT 'as.aes.antenna_california.events.IMAGEANTCALIFORNIASENT': started 
8) EVENT 'as.aes.antenna_california.events.GREENIMAGESESSIONISABOUTTOSTART': started 
9) EVENT 'as.aes.antenna_california.events.BLUEIMAGESESSIONISABOUTTOSTART': started 
10) EVENT 'as.aes.antenna_california.events.IMAGESESSIONSTARTEDBLUE': started 
11) FLUENT 'as.aes.antenna_california.aeself_management.image_processing. INSENDINGIMAGE': started 
12) FLUENT 'as.aes.antenna_california.aeself_management.image_processing. INCOLLECTINGIMAGEPIXELSBLUE': started 
13) FLUENT 'as.aes.antenna_california.aeself_management.image_processing. INCOLLECTINGIMAGEPIXELSGREEN': started 
14) FLUENT 'as.aes.antenna_california.aeself_management.image_processing. INSTARTINGBLUEIMAGESESSION': started 
15) FLUENT 'as.aes.antenna_california.aeself_management.image_processing. INCOLLECTINGIMAGEPIXELSRED': started 
16) FLUENT 'as.aes.antenna_california.aeself_management.image_processing. INSTARTINGGREENIMAGESESSION': started 
17) FLUENT 'as.aes.antenna_california.aeself_management.image_processing. INSTARTINGREDIMAGESESSION': started 
18) POLICY 'as.aes.antenna_california.aeself_management.IMAGE_PROCESSING': started 
19) AE 'as.aes.ANTENNA_CALIFORNIA': started 

 
Here records 1 through to 19 show the start-up process of the ANTENNA_CALIFORNIA autonomic element. Similar log records 
notified us that all the threads in all generated AEs started successfully. After starting up all the threads, the system ran in idle 
mode for 60 seconds, when the TIMETOTAKEPICTURE timed event occurred (see record 99). This event is specified in the 
Voyager AE to run on regular basis every 60 seconds (see Section 4.1.3) and it triggers a series of system transitions 
following the specified autonomic behavior. The following log records demonstrate that the runtime image-processing 
behavior followed correctly the ASSL specification of the IMAGE_PROCESSING policy.  

 
Log Records “Voyager Autonomic Behavior” 
 
99) EVENT 'as.aes.voyager.events.TIMETOTAKEPICTURE': has occurred 
100) FLUENT 'as.aes.voyager.aeself_management.image_processing.INTAKINGPICTURE': has been initiated 
101) ACTION 'as.aes.voyager.actions.TAKEPICTURE': has been performed 
102) EVENT 'as.aes.voyager.events.PICTURETAKEN': has occurred 
103) FLUENT 'as.aes.voyager.aeself_management.image_processing.INTAKINGPICTURE': has been terminated 
104) FLUENT 'as.aes.voyager.aeself_management.image_processing. INPROCESSINGPICTUREPIXELS': has been initiated 
105) ACTION 'as.aes.voyager.actions.PROCESSFILTEREDPICTURE': has been performed 
106) ACTION 'as.aes.voyager.actions.PROCESSFILTEREDPICTURE': has been performed 
107) ACTION 'as.aes.voyager.actions.PROCESSFILTEREDPICTURE': has been performed 
108) ACTION 'as.aes.voyager.actions.PROCESSPICTURE': has been performed 
109) EVENT 'as.aes.voyager.events.PICTUREPROCESSED': has occurred 
110) EVENT 'as.aes.antenna_japan.events.BLUEIMAGESESSIONISABOUTTOSTART': has occurred 
111) EVENT 'as.aes.antenna_spain.events.REDIMAGESESSIONISABOUTTOSTART': has occurred 
112) FLUENT 'as.aes.antenna_spain.aeself_management.image_processing. INSTARTINGREDIMAGESESSION': has been initiated 
113) FLUENT 'as.aes.antenna_japan.aeself_management.image_processing. INSTARTINGBLUEIMAGESESSION': has been initiated 
114) EVENT 'as.aes.antenna_spain.events.BLUEIMAGESESSIONISABOUTTOSTART': has occurred 
115) FLUENT ‘as.aes.voyager.aeself_management.image_processing. 

INPROCESSINGPICTUREPIXELS': has been terminated 

 
Here, records 99 through to 103 show the initiation and termination of the voyager’s INTAKINGPICTURE fluent. This resulted in 
the execution of the TAKEPICTURE action (see record 101), which triggered the PICTURETAKEN event (see record 102). The 
latter consecutively initiated the INPROCESSINGPICTUREPIXELS fluent. Records 104 through to 109 and record 115 show the 
initiation and termination of that fluent. The INPROCESSINGPICTUREPIXELS fluent prompted the execution of the 
PROCESSPICTURE action (see record 108), which executed the PROCESSFILTEREDPICTURE action three times (see records 
105 through to 107). Each time, this action was called to apply a different filter color (blue, red, or green) and sent the 
filtered image to the antennas on Earth. Note that this action also uses the Voyager AE’s AEIP-specified functions (see 
Appendix A) sendBeginSessionMsgs and sendEndSessionMsgs to send begin-session and end-session messages for each 
applied filter to the antennas on Earth.  

Subsequently, these messages prompted three [color]ImageSessionIsAboutToStart events for each antenna, one per a filter 
color (see record 110 for the BLUEIMAGESESSIONISABOUTTOSTART event). Next these events initiated in the antenna AEs 
three inStarting[color]ImageSession fluents, one per filter color (see record 113 for the INSTARTINGBLUEIMAGESESSION 

fluent). Each of these fluents prompted the execution of the STARTIMAGECOLLECTSESSION action (see records 116). Note 
that this action was executed twelve times (one time for each applied filter per antenna) and it prompted the operation of 
receiving the begin-session messages. Subsequently, the antennas received these messages and corresponding events were 
prompted to terminate inStarting[color]ImageSession fluents and initiate fluents to collect the image pixels.  
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For each antenna AE, the pixel-collection fluent prompted the execution of a special pixel-collection action (see Appendix 
A). Thus, that action was executed for each antenna three times, one per a filter color. Internally, this action received image 
messages specified at the ASIP tier (see Section 4.1.2) including special end-session messages that terminated the image-
transmission sessions (per filter color and per antenna). 

Next, every received end-session message terminated the current active fluent for the current antenna AE. In addition, the 
last end-session message, for every antenna, initiated another fluent (termed inSendingImage – see Appendix A) that 
prompted the execution of a special action (termed sendImage; see Appendix A). The latter prepared the collected image and 
sent it to the Voyager Mission base on Earth. Further, this operation prompted a particular event at each antenna that 
terminated the inSendingImage fluent. Further, the system continued repeating the same steps on a regular basis due to the 
TIMETOTAKEPICTURE timed event (see record 99), which occurs every 60 seconds (see the timeToTakePicture ASSL 
specification in Section 4.1.3). It is important to mention that the run-time behavior of the generated prototype model for the 
Voyager II mission strictly followed that specified with the ASSL IMAGE_PROCESSING self-management policy. 

 

5. DISCUSSION AND CONCLUSION 
In the most basic of terms, experiments are said to be valid if they do what they are supposed to do. In that context, the 
experiments and evaluation results described here are valid and they demonstrated that the Voyager’s prototype developed 
with ASSL is able to perform image processing as the original mission did. Although programmed as an autonomic policy, the 
image-processing behavior implanted in our prototype does not extend the original event-driven behavior observed in the 
Voyager Mission, but rather copies the same. Here, under simulated conditions (the prototype is triggered to take pictures 
every 60 sec), the prototype successfully transmitted blended images to (virtual) antennas on Earth, where these images were 
redirected to the mission base for further processing.  

It is important to mention though, that in its initial version, the Voyager’s prototype abstracts the components of the 
spacecraft without evaluating their behavior. Hence, the next prototype model will specify the Voyager spacecraft’s radio, 
antenna, and two cameras as distinct managed elements. This will allow the evaluation of their behavior (via metrics and 
events) and extending the IMAGE_PROCESSING policy with other self-management features. For example, fluents that react on 
malfunction in some of these components can trigger self-healing policies. In such a case, we are planning to implement two 
scenarios: remote-assistance self-healing and on-board self-healing. The former will copy the behavior of the original 
spacecraft, where remote assistance is provided in the form of radio contact and remote control programming. However, the 
on-board self-healing will add new autonomic features, which do not exist in the original spacecraft. Having the self-healing 
operations automated will allow us to evaluate to some extent the potential impact of AC on the maintenance required by the 
Voyager Mission. 

 

5.1. Benefits for Space Systems  
As we have stated, both the ASSL specifications of the Voyager Mission and the prototypes of the same can be extremely 
useful for the design and implementation of future Voyager-like missions. The ability to compare features and issues with the 
actual mission and with hypothesized possible autonomic approaches gives significant benefit. 

In our approach, we develop Voyager prototypes in a series of incremental and iterative steps where each prototype 
includes new autonomic features. This helps to evaluate the performance of each feature and gradually construct a model of a 
future Voyager-like system. Here, different prototypes can be tried and tested (and benchmarked as well), and get valuable 
feedback before we implement the real system. 

Moreover, this approach helps to discover eventual design flaws in both the original system and the prototype models. 
Currently, the features are validated through experiments. However, the new ASSL model checking mechanism currently 
under development [9] will allow for automatic feature validation and discovery of design flaws. Hence, the Voyager 
prototypes assist in refining the potential risks in the development and exploitation of future missions, helping in the 
considerable reduction in development and maintenance costs. 

 

5.2. Autonomy Requirements for Space Missions  
An important part of the work on modeling autonomic features for space missions is to identify the autonomy requirements for 
such features. Although in this first step of building prototypes for autonomic Voyager-like missions we did not really use 
requirements engineering to capture the needed autonomic features, for autonomic features, which are not that explicitly stated, 
we will need to go through all the steps of a thorough requirements process. Part of this research, is our work on an approach to 
Autonomy Requirements Engineering (ARE) [10] intended to address requirements related to adaptation issues, in particular: 
1) what adaptations are possible; 2) under what constrains; and 3) how those adaptations are realized. Note that adaptations 
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arise when a system needs to cope with changes to ensure realization of the system’s objectives. The self-adaptation abilities of 
a system are considered as autonomic features.  

The ARE approach combines generic autonomy requirements (GAR) [11] with goal-oriented requirements engineering 
(GORE) [12]. Using this approach, software engineers can determine what autonomic features to develop for a particular 
space mission (e.g., Voyager) as well as what artifacts that process might generate (e.g., goals models, requirements 
specification, etc.). The inputs required by this approach are the mission goals and domain-specific GAR reflecting specifics 
of the mission class (e.g., interplanetary missions). 

The first step in developing any new software-intensive system is to determine the system’s functional and non-
functional requirements. The former requirements define what the system will actually do, while the latter requirements refer 
to its qualities, such as performance, along with any constraints under which the system must operate. Despite differences in 
application domain and functionality, all autonomic systems extend upstream the regular software-intensive systems with 
special self-management objectives (self-* objectives). Basically, the self-* objectives provide the system’s ability to au-
tomatically discover, diagnose, and cope with various problems. This ability depends on the system’s degree of autonomicity, 
quality and quantity of knowledge, awareness and monitoring capabilities, and quality characteristics such as adaptability, 
dynamicity, robustness, resilience, and mobility [11]. Basically, this is the basis of the ARE approach [10, 11, 12]: autonomy 
requirements are detected as self-objectives backed up by different capabilities and quality characteristics outlined by the 
GAR model. Note that the approach targets exclusively the self-* objectives as the only means to explicitly determine and 
define autonomy requirements. Thus, it is not meant to handle the regular functional and non-functional requirements of the 
systems, presuming that those might by tackled by the traditional requirements engineering approaches, e.g., use case 
modeling, domain modeling, constraints modeling (OCL), etc. Functional and non-functional requirements might be captured 
by the ARE approach only as part of the self-* objectives elicitation, i.e., some of the GAR’s requirements might be 
considered as functional and non-functional requirements. 

The ARE approach starts with the creation of a goals model that represents system objectives and their interrelationships 
for the mission in question. For this, we use GORE where ARE goals are generally modeled with intrinsic features such as 
type, actor, and target, with links to other goals and constraints in the requirements model. Goals models might be organized 
in different ways copying with the mission specifics and engineers’ understanding about the mission goals. Thus we may 
have 1) hierarchical structures where goals reside different level of granularity; 2) concurrent structures where goals are 
considered as concurrent; etc. The goals models are not formal and we use natural language along with UML-like diagrams 
to record them.  

The next step in the ARE approach is to work on each one of the system goals along with the elicited environmental 
constraints to come up with the self-* objectives representing autonomic features and providing the autonomy requirements 
for this particular system’s behavior. In this phase, the GAR model is applied to a single mission goal to derive autonomy 
requirements in the form of goal’s supportive and alternative self-* objectives along with the necessary capabilities and 
quality characteristics. In the first part of this phase, we record the GAR model in natural language. In the second part 
though, we may use a formal notation (e.g., ASSL) to express this model in a more precise way. Note that, this model carries 
more details about the autonomy requirements, and can be further used for different analysis activities, including 
requirements validation and verification. However, the formal model is not mandatory in this approach and we can simply 
write the requirements details in natural language instead. Of course, a formal model has significant advantages over a natural 
language, which lay mainly in the ambiguity of the natural language and the mathematical precision provided by the formal 
notation’s semantics.  

Although ASSL is not designed to tackle autonomy requirements, it could be extremely powerful when handling the so-
called event-based autonomy [13]. ASSL aims at event-driven autonomic behavior. Recall that to specify self-management 
policies, we need to specify appropriate events (see Section 4.1.1). Here, we rely on the reach set of event types exposed by 
ASSL. For example, to specify ASSL events, one may use logical expressions over SLOs (service-level objectives), or may 
relate events with metrics, other events, actions, time, and messages (see Section 3.1). Moreover, ASSL allows for the 
specification of special conditions that must be stated before an event is prompted. Therefore, events can be constrained by 
adding such conditions to their specification. Because ASSL is event-driven (exposes a rich set of possible events raised in 
the environment and the system itself), special competence models can be built by using the self-management policies and 
relying on ASSL fluents and actions to provide for desired behaviors. Note that ASSL implies layering for structuring 
functionalities in event-driven autonomy and provides computational structures that can be possibly effective when handling 
autonomy requirements. Moreover, the platform can effectively handle goals models through the specification of the service-
level objectives, i.e., each mission goal might be specified as a distinct SLO and globally-defined SLOs (at the level of the 
AS Tier) might capture the relationships between those SLOs.  

Although very efficient and powerful, ASSL does not provide real reasoning capabilities, which might be required for 
more complex self-management problems. Actually, reasoning along with knowledge representation is required for the 
highest level of autonomy – the so-called goal-oriented autonomy [13]. At Lero, we are currently developing a formal 
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method called KnowLang [14] incorporating the ASSL features along with knowledge representation and reasoning. With 
KnowLang, the ARE-captured self-* objectives are specified with special policies (similar to the ASSL policies) associated 
with goals, special situations, actions (eventually identified as system capabilities), metrics, etc. Thus, the self-* objectives 
are represented as policies describing at an abstract level what the spacecraft will do when particular situations arise. The 
situations are meant to represent the conditions needed to be met in order for the system to switch to a self-* objective while 
pursuing a system goal. KnowLang has been successfully used to specify autonomy requirements for the ESA’s 
BepiColombo Mission [12] – a mission similar to Voyager targeting scientific study of Mercury. 

ARE could be used at several stages in the work flow from initiating a mission concept through to building and 
launching a spacecraft: 

• High-level mission goals can be used in conjunction with a fairly general GAR model to generate a high level model 
incorporating the autonomy requirements (self-* objectives). This model could be combined with a reasoning engine 
to establish whether or not all the requirements are mutually compatible. It could also be used to communicate the 
requirements as long as the engineers can see what alternative behavior is required when the mission is following a 
particular goal and under what circumstances.  

• The model could be used to assist in the compilation of the Autonomy Requirements (AR) section of the System 
Requirements Specification document. The goals model along with the autonomy requirements elicited per goal will 
form such a section. This eventually, will help to easily derive some of the functional and non-functional 
requirements – related to the monitoring activities, knowledge, and AR (autonomy requirements) quality attributes..  

• The process of writing the ARs could also be used to add further details to the ARE model. 
• With the necessary tool support it should be possible to formally validate and verify the formally specified ARs 

(with ASSL or KnowLang).  
• Eventually, if both the ARs written in a natural language and the formal model are made available together to the 

software design engineers, it should help to ensure more accurate implementation of the software with fewer bugs.  
 

5.3. Future Work 
Future work is concerned with further prototype development by including new autonomic features. Together with a detailed 
specification of the Voyager spacecraft components, we intend to build prototypes incorporating self-healing, self-protecting, 
and self-adapting policies. These will help to construct an intelligent Voyager-like system able to react automatically to 
hazards in space by finding possible solutions and applying those on-board with no human interaction. ARE shall be applied to 
capture the right autonomy requirements for those autonomic features. We will continue experimenting with both platforms – 
ASSL and KnowLang, eventually targeting event-driven and goal-oriented autonomy for Voyager-like missions. 
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APPENDIX A: ASSL SPECIFICATION MODEL FOR THE NASA VOYAGER MISSION 
 
//==================== autonomic system VOYAGER MISSION ==================== 
//================ IMAGE-PROCESSING self-management policy ================= 
// 
// This is the full specification of the Voyager2 mission.  
// All the four antennas are operational. 
// 
// Note: 
// - the voyager's cameras are set to apply three filters blue, red, and green; 
// - the wide-angle camera takes pictures 100 x 50 pixels; 
// - the narrow-angle camera takes pictures 50 x 50 pixels. 
// - to trigger the self-management mechanism we specified a PERIOD { 60 sec )  
//   activation in the Voyager's timeToTakePicture event.  
//      
//========================================================================== 
AS VOYAGER_MISSION {   

TYPES { Pixel } 
 VARS { integer numPixelsPerImage } // determines the image size in pixels 
 
 ASSELF_MANAGEMENT { 
  OTHER_POLICIES {     
   POLICY IMAGE_PROCESSING { 
    FLUENT inProcessingImage_AntAustralia {         
     INITIATED_BY { EVENTS.imageAntAustraliaReceived } TERMINATED_BY { EVENTS.imageAntAustraliaProcessed } } 
    FLUENT inProcessingImage_AntJapan {         
     INITIATED_BY { EVENTS.imageAntJapanReceived }  TERMINATED_BY { EVENTS.imageAntJapanProcessed } } 
    FLUENT inProcessingImage_AntCalifornia {         
     INITIATED_BY { EVENTS.imageAntCaliforniaReceived }  TERMINATED_BY { EVENTS.imageAntCaliforniaProcessed } } 
    FLUENT inProcessingImage_AntSpain {         
     INITIATED_BY { EVENTS.imageAntSpainReceived } TERMINATED_BY { EVENTS.imageAntSpainProcessed } } 
    MAPPING { 
     CONDITIONS { inProcessingImage_AntAustralia} DO_ACTIONS { ACTIONS.processImage("Antenna_Australia") } } 
    MAPPING { 
     CONDITIONS { inProcessingImage_AntJapan} DO_ACTIONS { ACTIONS.processImage("Antenna_Japan") } } 
    MAPPING { 
     CONDITIONS { inProcessingImage_AntCalifornia} DO_ACTIONS { ACTIONS.processImage("Antenna_California") } } 
    MAPPING { 
     CONDITIONS { inProcessingImage_AntSpain} DO_ACTIONS { ACTIONS.processImage("Antenna_Spain") } } 
   } 
  } 
 } // ASSELF_MANAGEMENT 
 
 ASARCHITECTURE { 
  AELIST {AES.Voyager, AES.Antenna_Australia, AES.Antenna_Japan, AES.Antenna_California, AES.Antenna_Spain} 
  DIRECT_DEPENDENCIES {  
   DEPENDENCY AES.Antenna_Australia { AES.Voyager } 
   DEPENDENCY AES.Antenna_Japan { AES.Voyager } 
   DEPENDENCY AES.Antenna_California { AES.Voyager } 
   DEPENDENCY AES.Antenna_Spain { AES.Voyager } 
  } 
  GROUPS { 
   GROUP VoyagerGroup {  
    MEMBERS { AES.Voyager, AES.Antenna_Australia, AES.Antenna_Japan, AES.Antenna_California, AES.Antenna_Spain } } 
  }  
 } // ASARCHITECTURE 
 
 ACTIONS { 
  ACTION IMPL processImage { // process an image sent by a specific antenna  
   PARAMETERS { string antennaName } 
   GUARDS { ASSELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inProcessingImage_AntAustralia OR  
    ASSELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inProcessingImage_AntJapan OR 
    ASSELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inProcessingImage_AntCalifornia OR 
     ASSELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inProcessingImage_AntSpain } 
   TRIGGERS {   
    IF antennaName = "Antenna_Australia" THEN EVENTS.imageAntAustraliaProcessed  END  
    ELSE  
     IF antennaName = "Antenna_Japan" THEN EVENTS.imageAntJapanProcessed END  
     ELSE  
      IF antennaName = "Antenna_California" THEN EVENTS.imageAntCaliforniaProcessed END  
      ELSE  
       IF antennaName = "Antenna_Spain" THEN EVENTS.imageAntSpainProcessed END 
      END 
     END 
    END 
   } 
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  } 
 } // ACTIONS 
 EVENTS { // these events are used in the fluents specification  
  EVENT imageAntAustraliaReceived { ACTIVATION  { RECEIVED { ASIP.MESSAGES.msgImageAntAustralia } } } 
  EVENT imageAntJapanReceived { ACTIVATION  { RECEIVED { ASIP.MESSAGES.msgImageAntJapan } } } 
  EVENT imageAntCaliforniaReceived { ACTIVATION  { RECEIVED { ASIP.MESSAGES.msgImageAntCalifornia } } } 
  EVENT imageAntSpainReceived { ACTIVATION  { RECEIVED { ASIP.MESSAGES.msgImageAntSpain } } } 
 
  EVENT imageAntAustraliaProcessed { } 
  EVENT imageAntJapanProcessed { } 
  EVENT imageAntCaliforniaProcessed { } 
  EVENT imageAntSpainProcessed { } 
 } // EVENTS 
  
} // AS VOYAGER_MISSION 
 
//==================== AS interaction protocol ============ 
ASIP { 
 MESSAGES { 
  MESSAGE msgImageAntAustralia { SENDER { AES.Antenna_Australia }  RECEIVER { ANY } PRIORITY { 1 } MSG_TYPE { BIN } }   
  MESSAGE msgImageAntJapan { SENDER { AES.Antenna_Japan } RECEIVER { ANY } PRIORITY { 1 } MSG_TYPE { BIN } }     
  MESSAGE msgImageAntCalifornia { SENDER { AES.Antenna_California } RECEIVER { ANY } PRIORITY { 1 } MSG_TYPE { BIN } }    
  MESSAGE msgImageAntSpain { SENDER { AES.Antenna_Spain }  RECEIVER { ANY } PRIORITY { 1 } MSG_TYPE { BIN } }     
 } // MESSAGES 
 
 CHANNELS { 
  CHANNEL IMG_Link {  
   ACCEPTS {  ASIP.MESSAGES.msgImageAntAustralia, ASIP.MESSAGES.msgImageAntJapan,  

     ASIP.MESSAGES.msgImageAntCalifornia, ASIP.MESSAGES.msgImageAntSpain }   
   ACCESS { SEQUENTIAL }  
   DIRECTION { INOUT } }  
 } // CHANNELS 
 
 FUNCTIONS { 
  FUNCTION sendImageMsg { 
   PARAMETERS { string antennaName } 
   DOES {  
    IF antennaName = "Antenna_Australia" THEN ASIP.MESSAGES.msgImageAntAustralia >> ASIP.CHANNELS.IMG_Link END  
    ELSE  
     IF antennaName = "Antenna_Japan" THEN ASIP.MESSAGES.msgImageAntJapan >> ASIP.CHANNELS.IMG_Link END  
     ELSE  
      IF antennaName = "Antenna_California" THEN ASIP.MESSAGES.msgImageAntCalifornia >> ASIP.CHANNELS.IMG_Link END  
      ELSE  
       IF antennaName = "Antenna_Spain" THEN ASIP.MESSAGES.msgImageAntSpain >> ASIP.CHANNELS.IMG_Link END  
      END 
     END 
    END 
   } 
  } 
  FUNCTION receiveImageMsg { 
   PARAMETERS { string antennaName } 
   DOES {  
    IF antennaName = "Antenna_Australia" THEN ASIP.MESSAGES.msgImageAntAustralia << ASIP.CHANNELS.IMG_Link END  
    ELSE  
     IF antennaName = "Antenna_Japan" THEN ASIP.MESSAGES.msgImageAntJapan << ASIP.CHANNELS.IMG_Link END 
       ELSE  
        IF antennaName = "Antenna_California" THEN ASIP.MESSAGES.msgImageAntCalifornia << ASIP.CHANNELS.IMG_Link END  
      ELSE  
       IF antennaName = "Antenna_Spain" THEN ASIP.MESSAGES.msgImageAntSpain << ASIP.CHANNELS.IMG_Link END 
      END 
     END  
    END 
   } 
  } 
 } // FUNCTIONS 
} 
 
//==================== autonomic elements ==================== 
AES { 
 
 //==================== AE Voyager ==================== 
 AE Voyager {  
  VARS { boolean isWideAngleImage } //determines the type of picture (wide-angle or narrow-angle) 
  
  AESELF_MANAGEMENT { 
   OTHER_POLICIES {     
    POLICY IMAGE_PROCESSING { 
     FLUENT inTakingPicture {  
      INITIATED_BY { EVENTS.timeToTakePicture } TERMINATED_BY { EVENTS.pictureTaken } } 
     FLUENT inProcessingPicturePixels {  
      INITIATED_BY { EVENTS.pictureTaken } TERMINATED_BY { EVENTS.pictureProcessed } } 
     MAPPING { 
      CONDITIONS { inTakingPicture }  DO_ACTIONS { ACTIONS.takePicture } } 
     MAPPING { 
      CONDITIONS { inProcessingPicturePixels }  DO_ACTIONS { ACTIONS.processPicture } } 
    } 
   } 
  } // AESELF_MANAGEMENT 
 
  //====== AEs that can use the messages and channels specified by this AE ====== 
  FRIENDS {   
   AELIST { AES.Antenna_Australia, AES.Antenna_Japan, AES.Antenna_California, AES.Antenna_Spain }   
  } 
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  //==================== AE interaction protocol ==================== 
  AEIP { 
   MESSAGES {  
    MESSAGE msgImagePixel {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Australia, AES.Antenna_Japan, AES.Antenna_California, AES.Antenna_Spain }  
     MSG_TYPE { BIN } 
    } 
 
    // session messages to be received by Antenna_Australia 
    MESSAGE msgBlueSessionBeginAus {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Australia }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgBlueSessionEndAus {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Australia }  
     MSG_TYPE {  NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgRedSessionBeginAus {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Australia }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgRedSessionEndAus {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Australia }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgGreenSessionBeginAus {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Australia }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgGreenSessionEndAus {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Australia }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
 
    // session messages to be received by Antenna_Japan 
    MESSAGE msgBlueSessionBeginJpn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Japan }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgBlueSessionEndJpn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Japan }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgRedSessionBeginJpn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Japan }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgRedSessionEndJpn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Japan }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgGreenSessionBeginJpn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Japan }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgGreenSessionEndJpn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Japan }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
 
    // session messages to be received by Antenna_California 
    MESSAGE msgBlueSessionBeginCfn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_California }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
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    MESSAGE msgBlueSessionEndCfn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_California }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgRedSessionBeginCfn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_California }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgRedSessionEndCfn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_California }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgGreenSessionBeginCfn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_California }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgGreenSessionEndCfn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_California }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
 
    // session messages to be received by Antenna_Spain 
    MESSAGE msgBlueSessionBeginSpn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Spain }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgBlueSessionEndSpn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Spain }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgRedSessionBeginSpn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Spain }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgRedSessionEndSpn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Spain }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
    MESSAGE msgGreenSessionBeginSpn {  
     SENDER { AES.Voyager }   
     RECEIVER { AES.Antenna_Spain }  
     MSG_TYPE { NEGOTIATION }  
     BODY { BEGIN }  
    }  
    MESSAGE msgGreenSessionEndSpn {  
     SENDER { AES.Voyager }  
     RECEIVER { AES.Antenna_Spain }  
     MSG_TYPE { NEGOTIATION } 
     BODY { END }  
    }  
   } // MESSAGES 
 
   CHANNELS {   
    CHANNEL VOYAGER_Link {   
     ACCEPTS { AEIP.MESSAGES.msgImagePixel,  
      AEIP.MESSAGES.msgBlueSessionBeginAus, AEIP.MESSAGES.msgBlueSessionEndAus,   
      AEIP.MESSAGES.msgRedSessionBeginAus, AEIP.MESSAGES.msgRedSessionEndAus, 
      AEIP.MESSAGES.msgGreenSessionBeginAus, AEIP.MESSAGES.msgGreenSessionEndAus, 
 
      AEIP.MESSAGES.msgBlueSessionBeginJpn, AEIP.MESSAGES.msgBlueSessionEndJpn,   
      AEIP.MESSAGES.msgRedSessionBeginJpn, AEIP.MESSAGES.msgRedSessionEndJpn, 
      AEIP.MESSAGES.msgGreenSessionBeginJpn, AEIP.MESSAGES.msgGreenSessionEndJpn, 
 
      AEIP.MESSAGES.msgBlueSessionBeginCfn, AEIP.MESSAGES.msgBlueSessionEndCfn,   
      AEIP.MESSAGES.msgRedSessionBeginCfn, AEIP.MESSAGES.msgRedSessionEndCfn, 
      AEIP.MESSAGES.msgGreenSessionBeginCfn, AEIP.MESSAGES.msgGreenSessionEndCfn, 
 
      AEIP.MESSAGES.msgBlueSessionBeginSpn, AEIP.MESSAGES.msgBlueSessionEndSpn,   
      AEIP.MESSAGES.msgRedSessionBeginSpn, AEIP.MESSAGES.msgRedSessionEndSpn, 
      AEIP.MESSAGES.msgGreenSessionBeginSpn, AEIP.MESSAGES.msgGreenSessionEndSpn 
     }  
     ACCESS { DIRECT }  
     DIRECTION { INOUT }  
    }  
   } 
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   FUNCTIONS {  
    FUNCTION sendImagePixelMsg {  
     DOES { AEIP.MESSAGES.msgImagePixel >> AEIP.CHANNELS.VOYAGER_Link }  
    } 
    FUNCTION sendBeginSessionMsgs {  
     PARAMETERS { string filterName } 
     DOES {  
      IF filterName = "blue" THEN 
       AEIP.MESSAGES.msgBlueSessionBeginAus >> AEIP.CHANNELS.VOYAGER_Link;  
       AEIP.MESSAGES.msgBlueSessionBeginJpn >> AEIP.CHANNELS.VOYAGER_Link;  
       AEIP.MESSAGES.msgBlueSessionBeginCfn >> AEIP.CHANNELS.VOYAGER_Link;  
       AEIP.MESSAGES.msgBlueSessionBeginSpn >> AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE 
       IF filterName = "red" THEN  
        AEIP.MESSAGES.msgRedSessionBeginAus >> AEIP.CHANNELS.VOYAGER_Link;  
        AEIP.MESSAGES.msgRedSessionBeginJpn >> AEIP.CHANNELS.VOYAGER_Link;  
        AEIP.MESSAGES.msgRedSessionBeginCfn >> AEIP.CHANNELS.VOYAGER_Link;  
        AEIP.MESSAGES.msgRedSessionBeginSpn >> AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN  
         AEIP.MESSAGES.msgGreenSessionBeginAus >> AEIP.CHANNELS.VOYAGER_Link;  
         AEIP.MESSAGES.msgGreenSessionBeginJpn >> AEIP.CHANNELS.VOYAGER_Link;  
         AEIP.MESSAGES.msgGreenSessionBeginCfn >> AEIP.CHANNELS.VOYAGER_Link;  
         AEIP.MESSAGES.msgGreenSessionBeginSpn >> AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
    FUNCTION sendEndSessionMsgs {  
     PARAMETERS { string filterName } 
     DOES {  
      IF filterName = "blue" THEN 
       AEIP.MESSAGES.msgBlueSessionEndAus >> AEIP.CHANNELS.VOYAGER_Link;  
       AEIP.MESSAGES.msgBlueSessionEndJpn >> AEIP.CHANNELS.VOYAGER_Link;  
       AEIP.MESSAGES.msgBlueSessionEndCfn >> AEIP.CHANNELS.VOYAGER_Link;  
       AEIP.MESSAGES.msgBlueSessionEndSpn >> AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE 
       IF filterName = "red" THEN 
        AEIP.MESSAGES.msgRedSessionEndAus >> AEIP.CHANNELS.VOYAGER_Link;  
        AEIP.MESSAGES.msgRedSessionEndJpn >> AEIP.CHANNELS.VOYAGER_Link;  
        AEIP.MESSAGES.msgRedSessionEndCfn >> AEIP.CHANNELS.VOYAGER_Link;  
        AEIP.MESSAGES.msgRedSessionEndSpn >> AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN 
         AEIP.MESSAGES.msgGreenSessionEndAus >> AEIP.CHANNELS.VOYAGER_Link;  
         AEIP.MESSAGES.msgGreenSessionEndJpn >> AEIP.CHANNELS.VOYAGER_Link;  
         AEIP.MESSAGES.msgGreenSessionEndCfn >> AEIP.CHANNELS.VOYAGER_Link;  
         AEIP.MESSAGES.msgGreenSessionEndSpn >> AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
   } // FUNCTIONS 
 
   MANAGED_ELEMENTS {  
    MANAGED_ELEMENT wideAngleCamera {         
     INTERFACE_FUNCTION takePicture { } 
     INTERFACE_FUNCTION applyFilterBlue { } 
     INTERFACE_FUNCTION applyFilterRed { } 
     INTERFACE_FUNCTION applyFilterGreen { } 
     INTERFACE_FUNCTION getPixel { } 
     INTERFACE_FUNCTION countInterestingObjects { RETURNS { integer } } 
    } 
    MANAGED_ELEMENT narrowAngleCamera {         
     INTERFACE_FUNCTION takePicture { } 
     INTERFACE_FUNCTION applyFilterBlue { } 
     INTERFACE_FUNCTION applyFilterRed { } 
     INTERFACE_FUNCTION applyFilterGreen { } 
     INTERFACE_FUNCTION getPixel { } 
    } 
   } 
  } // AEIP 
 
  ACTIONS {     
   ACTION takePicture { // take a picture of an interesting spot/object 
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inTakingPicture } 
    DOES {  
     IF AES.Voyager.isWideAngleImage THEN 
      call AEIP.MANAGED_ELEMENTS.wideAngleCamera.takePicture; 
      AES.Voyager.isWideAngleImage = false; 
      AS.numPixelsPerImage = 100*50  // an image has 100 x 50 pixels  
     END  
     ELSE  
      call AEIP.MANAGED_ELEMENTS.narrowAngleCamera.takePicture; 
      AES.Voyager.isWideAngleImage = true; 
      AS.numPixelsPerImage = 50*50  // an image has 50 x 50 pixels 
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     END 
    } 
    TRIGGERS { EVENTS.pictureTaken } 
   } 
 
 /*  ACTION prepareImagePixelMsg { // wraps the pixel into the msgImagePixel message 
    DOES { call AEIP.MANAGED_ELEMENTS.narrowAngleCamera.getPixel }      
   } 
 */ 
   ACTION processFilteredPicture { 
    PARAMETERS { string filterName }   
    VARS { integer numPixels } 
    DOES {  
     IF AES.Voyager.isWideAngleImage THEN 
      IF filterName = "blue" THEN 
       call AEIP.MANAGED_ELEMENTS.wideAngleCamera.applyFilterBlue 
      END; 
      IF filterName = "red" THEN 
       call AEIP.MANAGED_ELEMENTS.wideAngleCamera.applyFilterRed 
      END; 
      IF filterName = "green" THEN 
       call AEIP.MANAGED_ELEMENTS.wideAngleCamera.applyFilterGreen 
      END 
     END 
     ELSE 
      IF filterName = "blue" THEN 
       call AEIP.MANAGED_ELEMENTS.narrowAngleCamera.applyFilterBlue 
      END; 
      IF filterName = "red" THEN 
       call AEIP.MANAGED_ELEMENTS.narrowAngleCamera.applyFilterRed 
      END; 
      IF filterName = "green" THEN 
       call AEIP.MANAGED_ELEMENTS.narrowAngleCamera.applyFilterGreen 
      END 
     END; 
 
     call AEIP.FUNCTIONS.sendBeginSessionMsgs (filterName); 
 
     numPixels = 0; 
     DO {           
     // call ACTIONS.prepareImagePixelMsg; 
       call AEIP.MANAGED_ELEMENTS.narrowAngleCamera.getPixel; 
      call AEIP.FUNCTIONS.sendImagePixelMsg; 
      numPixels = numPixels + 1 
     }  WHILE numPixels < AS.numPixelsPerImage; 
 
     call AEIP.FUNCTIONS.sendEndSessionMsgs (filterName) 
    } 
   } 
 
   ACTION processPicture { // process all picture pixels - apply filters and send pixels to Earth 
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inProcessingPicturePixels } 
    DOES {  
     call ACTIONS.processFilteredPicture("blue"); 
     call ACTIONS.processFilteredPicture("red"); 
     call ACTIONS.processFilteredPicture("green") 
    } 
    TRIGGERS { EVENTS.pictureProcessed } 
   } 
  } // ACTIONS 
 
  EVENTS { 
   EVENT timeToTakePicture {  
    ACTIVATION { CHANGED { METRICS.interestingObjects} OR  PERIOD { 60 SEC } }  
   } 
   EVENT pictureTaken { } 
   EVENT pictureProcessed { } 
  } // EVENTS 
 
  METRICS {     
   METRIC interestingObjects { // increments when a new interesting spot or object has been found 
    METRIC_TYPE { RESOURCE }   
    METRIC_SOURCE {  AEIP.MANAGED_ELEMENTS.wideAngleCamera.countInterestingObjects } 
    DESCRIPTION {"counts the interesting spots and objects to be taken pictures of"}  
    VALUE { 0 } 
    THRESHOLD_CLASS { integer [0~) } 
   } 
  } 
 
 } // AE Voyager 
 
 //==================== AE Antenna_Australia ==================== 
 AE Antenna_Australia {  
 
  AESELF_MANAGEMENT { 
   OTHER_POLICIES {     
    POLICY IMAGE_PROCESSING { 
     FLUENT inStartingBlueImageSession {         
  
      INITIATED_BY { EVENTS.blueImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedBlue } 
     } 
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     FLUENT inStartingRedImageSession {         
  
      INITIATED_BY { EVENTS.redImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedRed } 
     } 
     FLUENT inStartingGreenImageSession {         
  
      INITIATED_BY { EVENTS.greenImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedGreen } 
     } 
     FLUENT inCollectingImagePixelsBlue {         
  
      INITIATED_BY { EVENTS.imageSessionStartedBlue } 
      TERMINATED_BY { EVENTS.imageSessionEndedBlue } 
     } 
     FLUENT inCollectingImagePixelsRed {         
  
      INITIATED_BY { EVENTS.imageSessionStartedRed } 
      TERMINATED_BY { EVENTS.imageSessionEndedRed } 
     } 
     FLUENT inCollectingImagePixelsGreen {         
  
      INITIATED_BY { EVENTS.imageSessionStartedGreen } 
      TERMINATED_BY { EVENTS.imageSessionEndedGreen } 
     } 
     FLUENT inSendingImage {  
      INITIATED_BY { EVENTS.imageSessionEndedGreen } 
      TERMINATED_BY { EVENTS.imageAntAustraliaSent } 
     } 
     MAPPING { 
      CONDITIONS { inStartingBlueImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("blue") } 
     } 
     MAPPING { 
      CONDITIONS { inStartingRedImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("red") } 
     } 
     MAPPING { 
      CONDITIONS { inStartingGreenImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsBlue } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("blue") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsRed } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("red") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsGreen } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inSendingImage } 
      DO_ACTIONS { ACTIONS.sendImage } 
     } 
    } 
   } 
  } // AESELF_MANAGEMENT 
 
  //====== AEIP for this AE ====== 
  AEIP { 
   FUNCTIONS {  
    FUNCTION receiveImagePixelMsg {  
     DOES { AES.Voyager.AEIP.MESSAGES.msgImagePixel << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link }  
    } 
    FUNCTION receiveSessionBeginMsg { 
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginAus << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
        AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginAus << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginAus << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
    FUNCTION receiveSessionEndMsg {  
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndAus << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
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        AES.Voyager.AEIP.MESSAGES.msgRedSessionEndAus << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndAus << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
   } 
   MANAGED_ELEMENTS { } 
  } 
 
  ACTIONS {    
   ACTION startImageCollectSession {       
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingBlueImageSession OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingRedImageSession OR   
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingGreenImageSession }    
    DOES { 
     CALL AEIP.FUNCTIONS.receiveSessionBeginMsg (filterName) 
    } 
   } 
   ACTION collectImagePixels {   
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsBlue OR  
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsRed OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsGreen }  
   
    VARS { integer numPixels } 
    DOES { 
     numPixels = 0; 
     DO {           
      CALL AEIP.FUNCTIONS.receiveImagePixelMsg; 
      numPixels = numPixels + 1 
     } WHILE numPixels < AS.numPixelsPerImage ; 
 
     CALL AEIP.FUNCTIONS.receiveSessionEndMsg (filterName) 
    } 
   } 
   ACTION IMPL prepareImage { } 
   ACTION sendImage { 
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inSendingImage } 
    DOES {  
     CALL IMPL ACTIONS.prepareImage; 
     CALL ASIP.FUNCTIONS.sendImageMsg("Antenna_Australia");  
     CALL ASIP.FUNCTIONS.receiveImageMsg("Antenna_Australia") 
    } 
   } 
  } // ACTIONS 
   
  EVENTS { 
   EVENT blueImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginAus } } } 
   EVENT redImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginAus } } } 
   EVENT greenImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginAus } } } 
   EVENT imageSessionStartedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginAus } } } 
   EVENT imageSessionEndedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndAus } } } 
   EVENT imageSessionStartedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginAus } } } 
   EVENT imageSessionEndedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionEndAus } } } 
   EVENT imageSessionStartedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginAus } } } 
   EVENT imageSessionEndedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndAus } } } 
   EVENT imageAntAustraliaSent { ACTIVATION { SENT { ASIP.MESSAGES.msgImageAntAustralia } } } 
  } // EVENTS 
 
 } 
 
 //==================== AE Antenna_Japan ==================== 
 AE Antenna_Japan {  
 
  AESELF_MANAGEMENT { 
   OTHER_POLICIES {     
    POLICY IMAGE_PROCESSING { 
     FLUENT inStartingBlueImageSession {         
  
      INITIATED_BY { EVENTS.blueImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedBlue } 
     } 
     FLUENT inStartingRedImageSession {         
  
      INITIATED_BY { EVENTS.redImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedRed } 
     } 
     FLUENT inStartingGreenImageSession {         
  
      INITIATED_BY { EVENTS.greenImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedGreen } 
     } 
     FLUENT inCollectingImagePixelsBlue {         
  
      INITIATED_BY { EVENTS.imageSessionStartedBlue } 
      TERMINATED_BY { EVENTS.imageSessionEndedBlue } 
     } 
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     FLUENT inCollectingImagePixelsRed {         
  
      INITIATED_BY { EVENTS.imageSessionStartedRed } 
      TERMINATED_BY { EVENTS.imageSessionEndedRed } 
     } 
     FLUENT inCollectingImagePixelsGreen {         
  
      INITIATED_BY { EVENTS.imageSessionStartedGreen } 
      TERMINATED_BY { EVENTS.imageSessionEndedGreen } 
     } 
     FLUENT inSendingImage {  
      INITIATED_BY { EVENTS.imageSessionEndedGreen } 
      TERMINATED_BY { EVENTS.imageAntJapanSent } 
     } 
     MAPPING { 
      CONDITIONS { inStartingBlueImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("blue") } 
     } 
     MAPPING { 
      CONDITIONS { inStartingRedImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("red") } 
     } 
     MAPPING { 
      CONDITIONS { inStartingGreenImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsBlue } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("blue") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsRed } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("red") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsGreen } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inSendingImage } 
      DO_ACTIONS { ACTIONS.sendImage } 
     } 
    } 
   } 
  } // AESELF_MANAGEMENT 
 
  //====== AEIP for this AE ====== 
  AEIP { 
   FUNCTIONS {  
    FUNCTION receiveImagePixelMsg {  
     DOES { AES.Voyager.AEIP.MESSAGES.msgImagePixel << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link }  
    } 
    FUNCTION receiveSessionBeginMsg { 
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginJpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
        AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginJpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginJpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
    FUNCTION receiveSessionEndMsg {  
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndJpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
        AES.Voyager.AEIP.MESSAGES.msgRedSessionEndJpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndJpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
   } 
   MANAGED_ELEMENTS { } 
  } 
 
  ACTIONS {     
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   ACTION startImageCollectSession {       
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingBlueImageSession OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingRedImageSession OR   
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingGreenImageSession }    
    DOES { 
     CALL AEIP.FUNCTIONS.receiveSessionBeginMsg (filterName) 
    } 
   } 
   ACTION collectImagePixels {   
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsBlue OR  
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsRed OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsGreen }  
   
    VARS { integer numPixels } 
    DOES { 
     numPixels = 0; 
     DO {           
      CALL AEIP.FUNCTIONS.receiveImagePixelMsg; 
      numPixels = numPixels + 1 
     } WHILE numPixels < AS.numPixelsPerImage ; 
     CALL AEIP.FUNCTIONS.receiveSessionEndMsg (filterName) 
    } 
   } 
   ACTION IMPL prepareImage { } 
   ACTION sendImage { 
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inSendingImage } 
    DOES {  
     CALL IMPL ACTIONS.prepareImage; 
     CALL ASIP.FUNCTIONS.sendImageMsg("Antenna_Japan");  
     CALL ASIP.FUNCTIONS.receiveImageMsg("Antenna_Japan") 
    } 
   } 
  } // ACTIONS 
   
  EVENTS { 
   EVENT blueImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginJpn } } } 
   EVENT redImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginJpn } } } 
   EVENT greenImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginJpn } } } 
   EVENT imageSessionStartedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginJpn } } } 
   EVENT imageSessionEndedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndJpn } } } 
   EVENT imageSessionStartedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginJpn } } } 
   EVENT imageSessionEndedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionEndJpn } } } 
   EVENT imageSessionStartedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginJpn } } } 
   EVENT imageSessionEndedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndJpn } } } 
   EVENT imageAntJapanSent { ACTIVATION { SENT { ASIP.MESSAGES.msgImageAntJapan } } } 
  } // EVENTS 
 } 
 
 //==================== AE Antenna_California ==================== 
 AE Antenna_California {  
 
  AESELF_MANAGEMENT { 
   OTHER_POLICIES {     
    POLICY IMAGE_PROCESSING { 
     FLUENT inStartingBlueImageSession {         
  
      INITIATED_BY { EVENTS.blueImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedBlue } 
     } 
     FLUENT inStartingRedImageSession {         
  
      INITIATED_BY { EVENTS.redImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedRed } 
     } 
     FLUENT inStartingGreenImageSession {         
  
      INITIATED_BY { EVENTS.greenImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedGreen } 
     } 
     FLUENT inCollectingImagePixelsBlue {         
  
      INITIATED_BY { EVENTS.imageSessionStartedBlue } 
      TERMINATED_BY { EVENTS.imageSessionEndedBlue } 
     } 
     FLUENT inCollectingImagePixelsRed {         
  
      INITIATED_BY { EVENTS.imageSessionStartedRed } 
      TERMINATED_BY { EVENTS.imageSessionEndedRed } 
     } 
     FLUENT inCollectingImagePixelsGreen {         
  
      INITIATED_BY { EVENTS.imageSessionStartedGreen } 
      TERMINATED_BY { EVENTS.imageSessionEndedGreen } 
     } 
     FLUENT inSendingImage {  
      INITIATED_BY { EVENTS.imageSessionEndedGreen } 
      TERMINATED_BY { EVENTS.imageAntCaliforniaSent } 
     } 
     MAPPING { 
      CONDITIONS { inStartingBlueImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("blue") } 
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     } 
     MAPPING { 
      CONDITIONS { inStartingRedImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("red") } 
     } 
     MAPPING { 
      CONDITIONS { inStartingGreenImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsBlue } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("blue") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsRed } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("red") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsGreen } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inSendingImage } 
      DO_ACTIONS { ACTIONS.sendImage } 
     } 
    } 
   } 
  } // AESELF_MANAGEMENT 
 
  //====== AEIP for this AE ====== 
  AEIP { 
   FUNCTIONS {  
    FUNCTION receiveImagePixelMsg {  
     DOES { AES.Voyager.AEIP.MESSAGES.msgImagePixel << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link }  
    } 
    FUNCTION receiveSessionBeginMsg { 
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginCfn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
        AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginCfn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginCfn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
    FUNCTION receiveSessionEndMsg {  
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndCfn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
        AES.Voyager.AEIP.MESSAGES.msgRedSessionEndCfn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndCfn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
   } 
   MANAGED_ELEMENTS { } 
  } 
 
  ACTIONS {     
   ACTION startImageCollectSession {       
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingBlueImageSession OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingRedImageSession OR   
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingGreenImageSession }    
    DOES { 
     CALL AEIP.FUNCTIONS.receiveSessionBeginMsg (filterName) 
    } 
   } 
   ACTION collectImagePixels {   
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsBlue OR  
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsRed OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsGreen }  
   
    VARS { integer numPixels } 
    DOES { 
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     numPixels = 0; 
     DO {           
      CALL AEIP.FUNCTIONS.receiveImagePixelMsg; 
      numPixels = numPixels + 1 
     } WHILE numPixels < AS.numPixelsPerImage ; 
     CALL AEIP.FUNCTIONS.receiveSessionEndMsg (filterName) 
    } 
   } 
   ACTION IMPL prepareImage { } 
   ACTION sendImage { 
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inSendingImage } 
    DOES {  
     CALL IMPL ACTIONS.prepareImage; 
     CALL ASIP.FUNCTIONS.sendImageMsg("Antenna_California");  
     CALL ASIP.FUNCTIONS.receiveImageMsg("Antenna_California") 
    } 
   } 
  } // ACTIONS 
   
  EVENTS { 
   EVENT blueImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginCfn } } } 
   EVENT redImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginCfn } } } 
   EVENT greenImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginCfn } } } 
   EVENT imageSessionStartedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginCfn } } } 
   EVENT imageSessionEndedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndCfn } } } 
   EVENT imageSessionStartedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginCfn } } } 
   EVENT imageSessionEndedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionEndCfn } } } 
   EVENT imageSessionStartedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginCfn } } } 
   EVENT imageSessionEndedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndCfn } } } 
   EVENT imageAntCaliforniaSent { ACTIVATION { SENT { ASIP.MESSAGES.msgImageAntCalifornia } } } 
  } // EVENTS 
 } 
 
 //==================== AE Antenna_Spain ==================== 
 AE Antenna_Spain {  
 
  AESELF_MANAGEMENT { 
   OTHER_POLICIES {     
    POLICY IMAGE_PROCESSING { 
     FLUENT inStartingBlueImageSession {         
  
      INITIATED_BY { EVENTS.blueImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedBlue } 
     } 
     FLUENT inStartingRedImageSession {         
  
      INITIATED_BY { EVENTS.redImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedRed } 
     } 
     FLUENT inStartingGreenImageSession {         
  
      INITIATED_BY { EVENTS.greenImageSessionIsAboutToStart } 
      TERMINATED_BY { EVENTS.imageSessionStartedGreen } 
     } 
     FLUENT inCollectingImagePixelsBlue {         
  
      INITIATED_BY { EVENTS.imageSessionStartedBlue } 
      TERMINATED_BY { EVENTS.imageSessionEndedBlue } 
     } 
     FLUENT inCollectingImagePixelsRed {         
  
      INITIATED_BY { EVENTS.imageSessionStartedRed } 
      TERMINATED_BY { EVENTS.imageSessionEndedRed } 
     } 
     FLUENT inCollectingImagePixelsGreen {         
  
      INITIATED_BY { EVENTS.imageSessionStartedGreen } 
      TERMINATED_BY { EVENTS.imageSessionEndedGreen } 
     } 
     FLUENT inSendingImage {  
      INITIATED_BY { EVENTS.imageSessionEndedGreen } 
      TERMINATED_BY { EVENTS.imageAntSpainSent } 
     } 
     MAPPING { 
      CONDITIONS { inStartingBlueImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("blue") } 
     } 
     MAPPING { 
      CONDITIONS { inStartingRedImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("red") } 
     } 
     MAPPING { 
      CONDITIONS { inStartingGreenImageSession } 
      DO_ACTIONS { ACTIONS.startImageCollectSession ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsBlue } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("blue") } 
     } 
     MAPPING { 
      CONDITIONS { inCollectingImagePixelsRed } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("red") } 
     } 
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     MAPPING { 
      CONDITIONS { inCollectingImagePixelsGreen } 
      DO_ACTIONS { ACTIONS.collectImagePixels ("green") } 
     } 
     MAPPING { 
      CONDITIONS { inSendingImage } 
      DO_ACTIONS { ACTIONS.sendImage } 
     } 
    } 
   } 
  } // AESELF_MANAGEMENT 
 
 
  //====== AEIP for this AE ====== 
  AEIP { 
   FUNCTIONS {  
    FUNCTION receiveImagePixelMsg {  
     DOES { AES.Voyager.AEIP.MESSAGES.msgImagePixel << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link }  
    } 
    FUNCTION receiveSessionBeginMsg { 
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginSpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
        AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginSpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginSpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
    FUNCTION receiveSessionEndMsg {  
     PARAMETERS { string filterName }  
     DOES {  
      IF filterName = "blue" THEN       
       AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndSpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
      END 
      ELSE  
       IF filterName = "red" THEN       
        AES.Voyager.AEIP.MESSAGES.msgRedSessionEndSpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
       END 
       ELSE 
        IF filterName = "green" THEN       
         AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndSpn << AES.Voyager.AEIP.CHANNELS.VOYAGER_Link  
        END 
       END 
      END 
     }  
    } 
   } 
   MANAGED_ELEMENTS { } 
  } // AEIP 
 
  ACTIONS {     
   ACTION startImageCollectSession {       
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingBlueImageSession OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingRedImageSession OR   
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inStartingGreenImageSession }    
    DOES { 
     CALL AEIP.FUNCTIONS.receiveSessionBeginMsg (filterName) 
    } 
   } 
   ACTION collectImagePixels {   
    PARAMETERS { string filterName }  
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsBlue OR  
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsRed OR 
        AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inCollectingImagePixelsGreen }  
   
    VARS { integer numPixels } 
    DOES { 
     numPixels = 0; 
     DO {           
      CALL AEIP.FUNCTIONS.receiveImagePixelMsg; 
      numPixels = numPixels + 1 
     } WHILE numPixels < AS.numPixelsPerImage ; 
     CALL AEIP.FUNCTIONS.receiveSessionEndMsg (filterName) 
    } 
   } 
   ACTION IMPL prepareImage { } 
   ACTION sendImage { 
    GUARDS { AESELF_MANAGEMENT.OTHER_POLICIES.IMAGE_PROCESSING.inSendingImage } 
    DOES {  
     CALL IMPL ACTIONS.prepareImage; 
     CALL ASIP.FUNCTIONS.sendImageMsg("Antenna_Spain");  
     CALL ASIP.FUNCTIONS.receiveImageMsg("Antenna_Spain") 
    } 
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   } 
  } // ACTIONS 
   
  EVENTS { 
   EVENT blueImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginSpn } } } 
   EVENT redImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginSpn } } } 
   EVENT greenImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginSpn } } } 
   EVENT imageSessionStartedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionBeginSpn } } } 
   EVENT imageSessionEndedBlue { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgBlueSessionEndSpn } } } 
   EVENT imageSessionStartedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionBeginSpn } } } 
   EVENT imageSessionEndedRed { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgRedSessionEndSpn } } } 
   EVENT imageSessionStartedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionBeginSpn } } } 
   EVENT imageSessionEndedGreen { ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.msgGreenSessionEndSpn } } } 
   EVENT imageAntSpainSent { ACTIVATION { SENT { ASIP.MESSAGES.msgImageAntSpain } } } 
  } // EVENTS 
 } 
} // AES  
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