

Space Hardware

http://www.nasa.gov/centers/ivv/JSTAR/ITC.html

Steve Yokum Steve.Yokum@TMCTechnologies.com

> NASA IV&V Facility 100 University Drive Fairmont, WV 26554

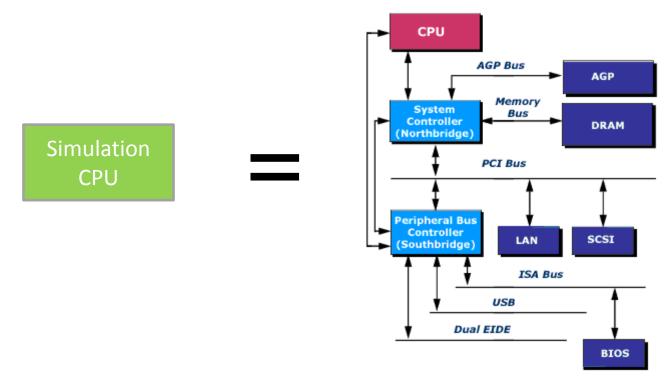
- The Need for Space Hardware
- JSTAR Resources
- Use Case

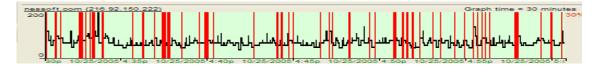
The Need for Space Hardware

Software Capabilities

- Software Models of Hardware have tremendous benefits:
 - Functionally equivalent
 - Portable/Sharable
- But still possess a few limitations:
 - Timing
 - Performance
 - Accuracy under Anomaly and Exceptions.

OFTWA


- Timing bugs can be some of the most difficult to resolve
 - May take hours/days to reproduce
 - Inconsistent
 - Often the result of complex interactions between multiple threads


• A Software Model is limited because it must model multiple chipsets in a single CPU

- Each chipset must be given *scheduled* CPU time in the host processor.
 - Asynchronous events (e.g. interrupts):
 - Only generated when chip is scheduled
 - Possibly arrive in a different order from hardware.
 - Latency/Jitter
 - Difficult to recreate exact timings between components. Software Model is virtually instant.

- The assembly instructions of each virtual chipset must be run by the host CPU for each chip in a virtual emulation.
 - This can make real-time difficult to achieve
 - Only matters if external components are interfaced
 - Ground Station
 - Dynamics Model
 - Hardware

Function	Address	Instruction
ghs_eofn_init7Exe	0x00017050	addi r12,r12,6084
ghs_eofn_init7Exe	0x00017054	stw r12,12(r3)
ghs_eofn_init7Exe	0x00017058	li r11,0
ghs_eofn_init7Exe	0x0001705c	stw r11,-32728(r13)
ghs_eofn_init7Exe	0x00017060	beqlr
ghs_eofn_init7Exe	0x00017064	b 0xlce04
ct7ExecCSCFP11Exe	0x00017068	stwu r1,-32(r1)
ct7ExecCSCFP11Exe	0x0001706c	stmw r27,12(r1)
ct7ExecCSCFP11Exe	0x00017070	mr r27,r8
ct7ExecCSCFP11Exe	0x00017074	li r9,0
ct7ExecCSCFP11Exe	0x00017078	mflr r0
ct7ExecCSCFP11Exe	0x0001707c	stw r0,36(r1)
ct7ExecCSCFP11Exe	0x00017080	mr r31,r3
ct7ExecCSCFP11Exe	0x00017084	stw r9,0(r31)

CPU

PC

MAR

MDR

CU

DMA Controller

IR

Bus

Bus

Bus

General

Purpose

Registers

I/O

Inter

-face

I/O

Inter

-face

0

Bus

Device

Device

ALU

Accumula-

tor

Address

Data

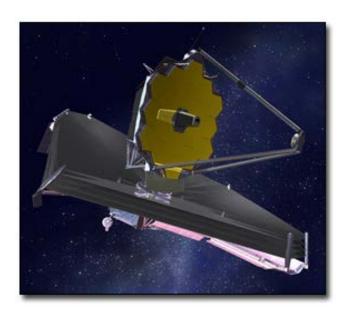
Control

Memory

- Modelling hardware in software can be a tremendous undertaking
- It involves capturing:
 - Interrupts
 - DMA
 - Registers
 - Memory Maps
 - Buses (PCI, VME, etc)
 - Exceptions
 - Interactions of multiple components
 - Recreating system timings

- Some of the problems that often occur when modeling hardware:
 - The hardware specification is not accurate nor complete
 - Due to the complexity of the task, often the nominal paths are modeled, but the exceptions and anomalies get left out.
 - Analog interfaces are free of noise
- In specialized cases, this can make recreating errors impossible.

JSTAR Resources



- 2 Models:
 - 3U
 - 128 Mb RAM
 - 1553, SpaceWire, Ethernet on cPCl backplane
 - 6U
 - 36 Mb RAM
 - Integrated 1553 and SpaceWire

- The RAD750 is the de-facto processor for many NASA missions, including:
 - Deep Impact
 - Mars Reconnaissance Orbiter
 - STEREO
 - LRO
 - SDO
 - JUNO
 - GPM
 - JWST

Other Resources

- ITC has a variety of 1553 and SpaceWire test sets to simulate common space
 - protocols

Brd 2 Dev 1	RTO A B	RT8 A B	RT16 A B	RT24 A
Monitor SnapShot Storing	RT1 A B	RT9 A B	RT17 A B	RT25 _ A
Archive	RT2 _ A B	RT10 A B	RT18 _ A B	RT26 _ A
Bus load 0.3	RT3 A B	RT11 A B	RT19 _ A B	RT27 _ A
BC Control Loop Count 257	RT4 A B	RT12 _ A B	RT20 A B	RT28 _ A
	RT5 A B	RT13 _ A B	RT21 _ A B	RT29 _ A
	RT6 A B	RT14 A B	RT22 A B	RT30 _ A
	RT7 A B	RT15 A B	RT23 _ A B	RT31 _ A
	1	1		279.14:05:09:384

Capabilities with hardware RAD750

- ITC can execute VxWorks and RTEMS operating systems on the RAD750 platforms
- ITC can recompile and target sections of mission code that require analysis
- ITC is currently building a 1553 and SpaceWire capability to interface with external systems including Software Models

• Juno Anomaly

- Juno had a condition where the processor raised an ISI exception
- Unique to this condition was that the exception kept getting raised at 10Hz instead of the task suspending
- Eventually a system monitor switched sides because the faulting task was not reporting good health

- JPL requested that IV&V try to reproduce the repeated exception behavior
 - Believed to be an OS issue in Task Control Block
 - The ITC software environment would not recreate the ISI exception
 - Moved VxWorks 6.4 image to RAD750 with test application

1111	11	11	11	11	1	1	11	1	11	1	1	1	11	1	1	11	1	1	1	1	11	1	1	1	11																								
1111	11		11	11	1	1	11	1	11	1	1	1	1	1	1	11	1	1	1	1	11	D	1	1	1																								
	1	11	11	11	1	1	11			Ľ1	1	1				1	1	1	1	1	11	ú	1	1						1	1										11	1	1						CR
1		11	11	11	1	1	1		11	n	1	1	1				1	1	1	1	11	n	1						1	n											11	1	1						
11		1	11	11	1	1		1	11	D	1	1	h								11								11												11								
111			11	11	1		1			1	1	1		1											1						1	11	n	1		11	1	1	11		11	1			11			11	11
1111			1	11			11						1												11		1	1	11	11	1			1					11		11			1	1		1	11	1
1111													n			1									11									1		11		_			11			1	1			11	
1111								1								'n					1				11					n						11					11							1	
1111																11									11					n				ĩ							11								11
1111	11			n		2.1			11							11																	h	ï		11					11						15	11	2.2
1111	11	11	11	11	1	1	11	n	11	1	1	1	n	1	1	11	1	1																															
1111	11	11	11	11	1	1	11	1	11	ĥ	i	ī	h	1	1	11	1							De	eù	e	h	01		1e	m	ŧ	s	us	et	er	8												
1111	11	11	11	11	ñ	i	11	n	11	'n	ĩ	ī	n	i	1	n												1																					
1111	11	n	ii	11	1	i	11	i	1	ĥ	i	ī	1	i	1	1						U	×	Ы	nr	k	s		Je	m	s	ic	m	5	ί.	5													
1111	11	11	11	11	ñ	1	11	n	11	ĥ	ĩ	ĩ	n	ñ	1																					n	2	6											
1111																				1																				2		ħ				19	184	1-1	28
							1		1				1	1						1			r		• 9						۳.	1		-		-	~	1			1					-			
																			•				p	•	P	E		T	i.	IM			n	-					ě	0									
																																									rs					2			
) F	~	e.	13	-				~			
																										p	e		h	m	в.	-"	•••	mr	٩_	EN	n												
																H	Ш	в			Re															-1													

- Through specific manipulation of the VxWorks Task Control Block, ITC was able to achieve a cyclic ISI behavior on the RAD750 target
- This information was conveyed back to the contractor so they could focus their analysis
- Ultimately the project determined the fault to be a "fluke" and no corrective action was taken

- There are many tools and methods required to provide successful software IV&V
- Static analysis and Dynamic analysis with software models are major players
- However, there will always be cases where flight equivalent hardware is needed to validate and verify specific software behaviors and anomalies

Contact Information

- Web Page
 - <u>http://www.nasa.gov/centers/ivv/jstar/JSTAR.html</u>
- E-Mail
 - Justin.R.Morris@nasa.gov
- Contact us for...
 - Demonstrations of test beds
 - Middleware usage agreements
 - Simulator development
 - Hardware modeling
 - V&V Services, HWIL Testing, Performance Testing