
Sketch Theory as a Framework

for Knowledge Management

NASA IV&V Workshop

9–11 September 2014

Morgantown, WV

Dr. Ralph L. Wojtowicz
Shepherd University Baker Mountain Research Corporation

Shepherdstown, WV Yellow Spring, WV

rwojtowi@shepherd.edu ralphw@bakermountain.org

Baker

Mountain

Science Technology Service

http://www.nasa.gov
http://www.shepherd.edu
htp://www.bakermountain.org


Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions

Representing Knowledge and Reasoning

Mathematical Logic
(Frege 1879)

A ⇒B B ⇒C
A ⇒C

Databases + SQL
(Codd 1968)

part name price quantity
2537 resistors $ 5.99 10
2948 servo motors $12.99 5
3647 Arduinos $31.99 52

Semantic Web OWL/RDF
+ Description Logic (1999)

<rdfs:label xml:lang="en">vibrissa</rdfs:label>

<oboInOwl:hasRelatedSynonym>

<oboInOwl:Synonym>

<rdfs:label xml:lang="en">whisker</rdfs:label>

</oboInOwl:Synonym>

</oboInOwl:hasRelatedSynonym>

www.berkeleybop.org/ontologies/owl/adult mouse anatomy

Sketches (Johnson-Rosebrugh 2000)

+ Q-Sequences (Freyd-Scedrov 1990)
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Opportunity: Limitations of Knowledge Technologies

Mathematical Logic

Computational complexity of some predicate calculus fragments
Complexity of the syntactic category used for knowledge alignment
Challenging to develop a human interface

Databases + SQL

Limited notion of context/view (a single table)
Static schema

Semantic Web OWL/RDF + Description Logic

Lack of modularity: meta-data, instance data and uncertainty
integrated into a monolithic ontology
Limited compositional algebra: (disjoint) unions of ontologies
Need for constraint-preserving maps

Sketch Theory

Meager computational infrastructure (e.g., relative to Jena)
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Sketch Theory Strengths

Facets of Knowledge Models

Storage Queries
Constraints Uncertainty
Alignment Dynamics
Context/Views Software
Reasoning Decision-Making
Translations Human Interface

Knowledge Technologies

• Mathematical Logic (1879)

• Databases + SQL (1968)

• Semantic Web OWL/RDF
+ Description Logic (1999)

• Sketches (1968/2000)
+ Q-Sequences (1990)

Sketch Theory: Overview

• Mature, graph-based foundation
• Vertices = classes or relations
• Edges = type information or maps
• Constraints/meta-data specified

via graph maps (cones/cocones)
• Sketch maps respect constraints
• Grew from category theory in 1968
• Applied to data modeling since 1989

Sketch Theory: Strengths

• Visual/graphical modeling
• Modularity: data/concepts/uncertainty
• Combinatory algebra of sketches
• Concise graphical inference and
inter-convertibility with 1st order logic

• Derived concepts via CW algorithm
• Rich composable views/context
• Dynamics via sketch maps
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Sketch (G ,D,L, C)

A sketch (G ,D,L, C) consists of:

An underlying graph G

A set D of diagrams B → G

A set L of cones L → G

A set C of cocones C → G

The graph maps express the axioms or semantic constraints.
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Set-Based Sketch Models

Set-based model of a graph

Each vertex V is mapped to a set M(V ).

Each edge V
e

−→ W is mapped to a function M(V )
M(e)
−→ M(W ).

M(Resident)

Amina

Faysal

Bashir

Said

M(TribalElement)

Dhulbahante

Isaaq

Darod

M(has)

Set-based model of a sketch (G ,D,L, C)

A sketch model is, first, a model of the underlying graph G .

Sketch constraints impose additional requirements on models.

Expressiveness of the sketch imposes requirements on suitable categories of
semantic models.
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Sketch Models in Other Semantic Categories

Partial function model of a graph edge Resident
has
−→ TribalElement

M(Resident)

Amina

Faysal

Bashir

Said

M(TribalElement)

Dhulbahante

Isaaq

Darod

M(has)

Stochastic matrix model of a graph edge Resident
has
−→ TribalElement

M(Resident)

Amina

Faysal

Bashir

Said

M(TribalElement)

Dhulbahante

Isaaq

Darod

0.8

0.2
1.0

1.0

1.0

M(has)
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Categorical Semantics of Sketches

Vertices are interpreted as objects

Edges are interpreted as morphisms

Classes of constraints (cones and cocones) are distinguished by the
shapes of their base graphs.

Classes of sketches are distinguished by their classes of constraints.

Like logics and OWL species, these have different expressive powers.

Small sample of the sketch semantics landscape

Sketch Partial Stoch. Čencov Prob. 0 Dempster Fuzzy Convex
Class Set Func. Matrices Cat. Refl. Shafer Sets Sets
Regular • • • • • • • •

Finite Limit • • × × × × • •
Finite Coproduct • • • • • • • •
Entity-Attribute • • × × × × • •

Mixed • • × × × × • •
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Civics Sketch S1

First formulation of civics concepts:

Two classes: People and Elected officials

People have Elected representatives via r .

Elected officials are instances of people via u.

Elected officials represent themselves via a diagram.

Sketch

Graph Diagram Theory

Elected People

u

r

Elected People

Elected

u

r
id

Elected People

u

r

id id

u ◦ r

The diagram truncates the infinite list of composites (property chains).

u ◦ r r ◦ u u ◦ r ◦ u r ◦ u ◦ r · · ·
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Civics Sketch S2

Alternative formulation of the concepts:

One class: Citizens

Citizens have elected representatives via e.

Elected officials represent themselves via a diagram.

Sketch

Graph Diagram Theory

Citizens

e

Citizens Citizens

Citizens

e

e
e

Citizens

id

e

Number and names of vertices in S1 and S2 differ.

The edges u and r of S1 have no corresponding edges in S2.

The edge e of S2 has no corresponding edge in S1.
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Civics Theory T1

Sorts: People, Elected

Function symbols:
u : Elected −→ People r : People −→ Elected

Axiom: elected officials represent themselves

⊤ ⊢x (r(u(x)) = x)

Set semantics

Elected
People

Elected

u

rid

Partial function semantics

Elected
People

Elected

u

rid
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Civics Theory T2

Sorts: Citizens

Function symbols:

e : Citizens −→ Citizens

Axiom: elected officials represent themselves

⊤ ⊢x (e(e(x)) = e(x))

Set semantics

Citizens

Partial function semantics

Citizens
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Logic-Based Inference: Sequent Calculus

Structural Rules1

(ϕ ⊢~x ϕ)
(ϕ ⊢~x ψ)

(

ϕ[~s/~x ] ⊢~y ψ[~s/~x ]
)

(ϕ ⊢~x ψ) (ψ ⊢~x χ)

(ϕ ⊢~x χ)

Implication

((ϕ ∧ ψ) ⊢~x χ)

(ϕ ⊢~x (ψ ⇒ χ))

Equality

(⊤ ⊢x (x = x))

((~x = ~y) ∧ ϕ ⊢~z ϕ[~y/~x ])

Quantification2

(

ϕ ⊢~x,y ψ
)

((∃y)ϕ ⊢~x ψ)

(

ϕ ⊢~x,y ψ
)

(ϕ ⊢~x (∀y)ψ)

Conjunction

(ϕ ⊢~x ⊤) ((ϕ ∧ ψ) ⊢~x ϕ) ((ϕ ∧ ψ) ⊢~x ψ)
(ϕ ⊢~x ψ) (ϕ ⊢~x χ)

(ϕ ⊢~x (ψ ∧ χ))

Disjunction

(⊥ ⊢~x ϕ) (ϕ ⊢~x (ϕ ∨ ψ)) (ψ ⊢~x (ϕ ∨ ψ))
(ϕ ⊢~x χ) (ψ ⊢~x χ)

((ϕ ∨ ψ) ⊢~x χ)

Distributive Axiom3

((ϕ ∧ (ψ ∨ χ) ⊢~x (ϕ ∧ ψ) ∨ (ϕ ∧ χ))

Frobenius Axiom3

((ϕ ∧ ((∃y)ψ) ⊢~x (∃y) (ϕ ∧ ψ))

Excluded Middle: (⊤ ⊢~x ϕ ∨ ¬ϕ)

Contexts are suitable for the formulae that occur on both sides of ⊢.
1 In the substitution rule, ~y contains all the variables of ~x .
2 Bound variables do not also occur free in any sequent.
3 These are required in coherent logic but are derivable in full first-order logic.
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Proof of (u(x) = u(y)) ⊢x ,y (x = y) for Civics Theory T1

1 (u(x) = u(y)) ⊢x,y (u(x) = u(y)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Id
2 (u(x) = u(y)) ⊢x,y ⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⊤
3 ⊤ ⊢x (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . axiom
4 ⊤ ⊢x,y (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub (3)
5 ⊤ ⊢x,y (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub (3)
6 (x = y) ∧ (r(x) = z) ⊢x,y,z (r(y) = z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq1
7 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y,z (r(u(y)) = x) . . . . . . . . . . . . . . . . . . . . . . . .Subs (6)
8 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y (r(u(y)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . Subs (7)
9 (x = y) ⊢x,y (y = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . previous proof
10 (r(u(y)) = x) ⊢x,y (x = r(u(y))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Subs (9)
11 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y (x = r(u(y))) . . . . . . . . . . . . . . . . . . . . . Cut (8), (10)
12 (x = y) ∧ (y = z) ⊢x,y,z (x = z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . previous proof
13 (x = r(u(y))) ∧ (r(u(y)) = y) ⊢x,y,z (x = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subs (12)
14 (x = r(u(y))) ∧ (r(u(y)) = y) ⊢x,y (x = y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Subs (13)
15 (u(x) = u(y)) ⊢x,y (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (2), (4)
16 (u(x) = u(y)) ⊢x,y (u(x) = u(y)) ∧ (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . .∧I (1), (15)
17 (u(x) = u(y)) ⊢x,y (x = (r(u(y))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (16), (11)
18 (u(x) = u(y)) ⊢x,y (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (2), (5)
19 (u(x) = u(y)) ⊢x,y (x = r(u(y))) ∧ (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . .∧I (17), (18)
20 (u(x) = u(y)) ⊢x,y (x = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cut (19), (14)
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Prover9 Proof

Input file:
formulas(assumptions).

all x (r(u(x)) = x).

end of list.

formulas(goals).

all x all y (u(x) = u(y)) -> (x = y).

end of list.

Proof:
1 (all x r(u(x)) = x) ....................# label(non clause). [assumption].

2 (all x all y u(x) = u(y)) -> x = y .................# label(non clause)
# label(goal). [goal].

3 r(u(x)) = x. ...................................................[clausify(1)].

4 u(x) = u(y). ........................................................[deny(2)].

5 c2 != c1. ...........................................................[deny(2)].

6 x = y. ............................ [para(4(a,1),3(a,1,1)),rewrite([3(2)])].

7 $F. .........................................................[resolve(6,a,5,a)].

The shorter proof by contradiction uses classical first-order logic.

First-order horn logic has lower computational complexity in general.
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Sketch-Based Inference: Q-Sequences

Idea: leverage the notion of Q-sequence to implement a reasoning
engine for sketch-based knowledge models.

P. J. Freyd and A. Scedrov. Categories, Allegories. 1990

D. E. Rydeheard and R. M. Burstall. Computational Category Theory. 1988

Analogy:
Q-sequence proof ⇐⇒ logical inference

functional programming ⇐⇒ procedural
(Haskell) programming (C)

A Q-sequence is a finite list of finitely-presented categories, maps and
quantifiers Qi .

A0 A1 A2 · · · An−1 An

Q0 Q1 Q2 Qn−2 Qn−1

Satisfaction of a Q-sequence in a category (sketch) is defined via a
universal mapping property.
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Q-Sequence Proof of a Subtype Property in S1

In civics sketch S1, we may conclude

that Elected is a subclass of People.
Graph Diagram

Elected People

u

r

Elected People

Elected

u

r
id

Given any x and y as shown:

Z
x

+
--

y
11 Elected

u
// People

Z
x

+
--

y
11 Elected

u
// People

r
// Elected

Z
x

+
--

y
11 Elected

id
// Elected

Z
x

--

y
11 Elected

It follows that u is a monomorphism (one-to-one) in any model.
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Presentations

A sketch | first-order theory | ontology is a presentation of knowledge.

Presentations generate additional knowledge needed for alignment.

Logical theory T syntactic category CT
Ontology rules
Sketch S theory of a sketch T (S)

Different presentations may generate equivalent structures.

Sketches S1 and S2 representing common concepts are aligned by finding a
sketch V and sketch maps as shown.

S1

��

V

ww♦♦
♦♦
♦♦

''❖
❖❖

❖❖
❖ S2

��

T (S1)

''P
PP

PP
P

T (S2)

ww♥♥
♥♥
♥♥

TTheory of a (linear) sketch

Carmody-Walters algorithm for computing left Kan extensions:
generalizes Todd-Coxeter procedure used in computational group theory
Complexity difficult to characterize: can depend on order of constraints
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Logic-Based Alignment: Provable Equivalence

How can we align the civics theories?

T1 T2

u : Elected → People e : Citizens → Citizens
r : People → Elected
⊤ ⊢x (r(u(x)) = x) ⊤ ⊢x (e(e(x)) = e(x))
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Logic-Based Alignment: Provable Equivalence

How can we align the civics theories?

T1 T2

u : Elected → People e : Citizens → Citizens
r : People → Elected
⊤ ⊢x (r(u(x)) = x) ⊤ ⊢x (e(e(x)) = e(x))

Provable equivalence: Every axiom of T1 is a theorem of T2 and
conversely.
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Logic-Based Alignment: Provable Equivalence

How can we align the civics theories?

T1 T2

u : Elected → People e : Citizens → Citizens
r : People → Elected
⊤ ⊢x (r(u(x)) = x) ⊤ ⊢x (e(e(x)) = e(x))

Provable equivalence: Every axiom of T1 is a theorem of T2 and
conversely.

This notion aligns theories that have the same signature.
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Logic-Based Alignment: Provable Equivalence

How can we align the civics theories?

T1 T2

u : Elected → People e : Citizens → Citizens
r : People → Elected
⊤ ⊢x (r(u(x)) = x) ⊤ ⊢x (e(e(x)) = e(x))

Provable equivalence: Every axiom of T1 is a theorem of T2 and
conversely.

This notion aligns theories that have the same signature.

Alignment typically involves use of derived concepts.
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Logic-Based Alignment: Provable Equivalence

How can we align the civics theories?

T1 T2

u : Elected → People e : Citizens → Citizens
r : People → Elected
⊤ ⊢x (r(u(x)) = x) ⊤ ⊢x (e(e(x)) = e(x))

Provable equivalence: Every axiom of T1 is a theorem of T2 and
conversely.

This notion aligns theories that have the same signature.

Alignment typically involves use of derived concepts.

We need a concept that is less restrictive than provable equivalence.
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Logic-Based Alignment: Morita Equivalence

Theories T1 and T2 are Morita equivalent if their categories of models
ModT(D) (in any appropriate semantic category D) are equivalent.

ModT1(D) ≈ ModT2(D)
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Logic-Based Alignment: Morita Equivalence

Theories T1 and T2 are Morita equivalent if their categories of models
ModT(D) (in any appropriate semantic category D) are equivalent.

ModT1(D) ≈ ModT2(D)

Theories are Morita equivalent iff their syntactic categories are.

CT1 ≈ CT2
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Logic-Based Alignment: Morita Equivalence

Theories T1 and T2 are Morita equivalent if their categories of models
ModT(D) (in any appropriate semantic category D) are equivalent.

ModT1(D) ≈ ModT2(D)

Theories are Morita equivalent iff their syntactic categories are.

CT1 ≈ CT2

This notion solves the alignment problem for our civics theories.
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Logic-Based Alignment: Morita Equivalence

Theories T1 and T2 are Morita equivalent if their categories of models
ModT(D) (in any appropriate semantic category D) are equivalent.

ModT1(D) ≈ ModT2(D)

Theories are Morita equivalent iff their syntactic categories are.

CT1 ≈ CT2

This notion solves the alignment problem for our civics theories.

It can be difficult to use in practice: syntactic categories are infinite
even for very simple theories.
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Logic-Based Alignment: Syntactic Categories

The syntactic category CT of a theory T is constructed as follows:

objects: α-equivalence classes of formulae-in-context: {~x .ϕ}

morphisms : {~x.ϕ}
[θ]

// {~y .ψ}

θ ⊢~x,~y ϕ ∧ ψ ϕ ⊢~x (∃~y )θ θ ∧ θ[~z/~y ] ⊢~x,~y,~z (~z = ~y)

composition: {~x.ϕ}
[θ]

//

[(∃~y)(θ∧γ)]
##❍

❍
❍
❍
❍
❍
❍
❍
❍

{~y .ψ}

[γ]

��

{~z .χ}

identity: {~x.ϕ}
[ϕ∧(~x′=~x)]

// {~x ′.ϕ[~x ′/~x ]}

We restrict the formulae ϕ and θ to be of the appropriate class:
cartesian/regular/coherent/first-order.
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Alignment of the Civics Sketches

X X

X

f

f
f

Elected People

Elected

u

r
id

Citizens Citizens

Citizens

e

e
e

S1 Elected People

u

r

S2
Citizens

e

V

X

f

T (S1) Elected People

u

r

id id

u ◦ r

T (S2)Citizens

id

e

T

Elected People

u

r

id id

u ◦ r

www.bakermountain.org/talks/nasa2014.pdf ralphw@bakermountain.org 9–11 September 2014 21/29

http://www.bakermountain.org/talks/nasa2012.pdf


Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions

Sketch Views

A view V =⇒ S of a sketch S is a sketch V and a sketch map

V // T (S)

from S to the theory T (S) of S.

Below are several views of the civics sketch S1 = Elected People

u

r

Elected People

Elected People
r

Elected(R) People(R)

Elected(D) People(D)

T (S1)

Elected People

u

r

id id

u ◦ r
S2

Citizens

e •

• •

e

e

e

A model of S induces a model of T (S) and of its views V → T (S)
M
→ Set.

Views may be composed V2 =⇒ V1 =⇒ S.

View Update Problem: Under what conditions can updates to a model of V
be propagated to a model of S ?
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Challenge: Construct Views Tailored to Contexts

Research area with narrower scope: context-sensitive Internet search
Google patent for “methods, systems and apparatus including
computer program products, in which context can be used to rank
search results” (USPTO 8,209,331 — 2012)

Yandex personalized web search challenge: www.kaggle.com

Techniques to infer context from activities and rank data elements
Variable-length hidden Markov model
Parametric models of users
RankNet, LambdaRank, RankSVM

Performance metrics used for context-sensitive rankings
Normalized discounted cumulative gain (scoring in Kaggle competition)

Kendall’s τ comparison of rankings
Jaccard distance between top N rankings and target
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Sketch Maps and Model Maps

A sketch map S1 → S2 is a graph map
G1

// G2

that preserves all the constraints of S1.
B // G1

// G2

We use sketch maps to formulate the alignment problem.

Given models M1 and M2 of a sketch S, a model map M1 → M2 is a
collection of morphisms (one for each vertex V of G)

M1(V )
τv

// M2(V )

that are consistent with the edges of G .

Example:

Resident

live in
��

M1(Resident)

M1(lives in)
��

τ
// M2(Resident)

M2(lives in)
��

Village M1(Village) τ
// M2(Village)
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Transforming Sketches into Logical Theories

Sketches are related to first-order logical theories by theorems of the form:
Given any sketch S of class X , there is a logical theory T of class Y for
which S and T have equivalent classes of models.

D2.2 of Johnstone’s Sketches of an Elephant: A Topos Theory Compendium

gives explicit constructions of T from S and conversely.

Class of Fragment of
Sketches Predicate Calculus Logical Connectives
finite limit cartesian =, ⊤, ∧, ∃∗

regular regular =, ⊤, ∧, ∃
coherent coherent =, ⊤, ∧, ∃, ⊥, ∨
geometric geometric =, ⊤, ∧, ∃, ⊥,

∨

σ-coherent σ-coherent =, ⊤, ∧, ∃, ⊥,

∞
∨

i=1finitary σ-coherent
∗ In cartesian logic, only certain existentially quantified formulae are allowed.
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Software Infrastructure

Set-based models of entity-attribute sketches can be implemented using
database features.

Sketch database schema
Vertex table with automatically-generated (Serial) key

Edge A
e

−→ B foreign key in A-table referencing B-table key
Constraints triggers

Challenge: manage distributed sketch models, views and constraints —
Google Megastore, Tenzing and Spanner; Apache Cassandra and Accumulo

Reasoning
Transform to first-order theory then employ theorem prover
Q-sequence reasoning using computation category theory tools:
Rydeheard and Burstall (ML implementations) 1988

Theory of a (linear) sketch

Carmody-Walters algorithm for computing left Kan extensions:
generalizes Todd-Coxeter procedure used in computational group theory
Complexity difficult to characterize: can depend on order of constraints
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Easik Tool for Modeling with Sketches

Entity Attribute Sketch Implementation Kit (Easik)

http://mathcs.mta.ca/research/rosebrugh/Easik

Build sketches, views and constraints

Interface with MySQL or Postgres for (set-based models)

No reasoning engine
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Program

The sketch data model demonstrates valuable features
Functional paradigm: syntax, models and maps
Separation of meta-data from instance data
Uncertainty and lack of information accounted for in models
Context-sensitive views which can be composed and combined
Formulation of the alignment problem using a well-defined
mathematical construction (theory of a sketch)
Reasoning via graphical Q-sequences or transformation to predicate
calculus fragment

Research challenges
Implement sketch constraints on large, distributed models
Leverage insights, datasets and performance metrics from the narrower
problem of context-sensitive Internet search
Develop and implement semi-automated alignment tool
Integrate reasoning and modeling algorithms with instance data into a
common software platform
Characterize sketch classes corresponding to OWL species
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