Sketch Theory as a Framework for Knowledge Management

NASA IV&V Workshop

9-11 September 2014

Morgantown, WV

Dr. Ralph L. Wojtowicz

Shepherd University Shepherdstown, WV rwojtowi@shepherd.edu

Baker Mountain Research Corporation Yellow Spring, WV ralphw@bakermountain.org

www.bakermountain.org/talks/nasa2014.pdf

ralphw@bakermountain.org

9-11 September 2014

1/29

Introduction Sketches Logic Inference Alignment Context on Context on Conclusions Software Conclusions on Context on Context on Conclusions o

- Mathematical Logic
 - Computational complexity of some predicate calculus fragments
 - Complexity of the syntactic category used for knowledge alignment
 - Challenging to develop a human interface
- Databases + SQL
 - Limited notion of context/view (a single table)
 - Static schema
- Semantic Web OWL/RDF + Description Logic
 - Lack of modularity: meta-data, instance data and uncertainty integrated into a monolithic ontology
 - Limited compositional algebra: (disjoint) unions of ontologies
 - Need for constraint-preserving maps
- Sketch Theory
 - Meager computational infrastructure (e.g., relative to Jena)

Introduction ○○●	Sketches 000000	Logic 00	Inference 00000	Alignment 00000	Context 00	Transformatio	ons Software	Conclusio 00	
Sketch	Theor	y Sti	rength	S					
Facets o	of Knov	wledg	e Mode	ls I	Kno	wledge -	Technolog	ies	
Storage Constrai Alignmei Context/ Reasonir Translati	nts nt /Views ng ions	Queri Unce Dyna Softw Decis Huma	ies rtainty mics vare iion-Maki an Interfa	ng ace	 Mathematical Logic (1879) Databases + SQL (1968) Semantic Web OWL/RDF + Description Logic (1999) Sketches (1968/2000) + Q-Sequences (1990) 				
Sketch	n Theo	ry: O	verview		Sket	ch Theo	ry: Streng	ths	
 Mature, graph-based foundation Vertices = classes or relations Edges = type information or maps Constraints/meta-data specified via graph maps (cones/cocones) Sketch maps respect constraints Grew from category theory in 1968 Applied to data modeling since 1989 					Visual/g Modular Combina Concise inter-cor Derived Rich cor Dynamic	graphical m rity: data/ atory alget graphical nvertibility concepts v mposable v cs via sket	nodeling concepts/ur ora of sketch inference an with 1st or via CW algo views/conte ch maps	ncertaint nes Id der logic orithm xt	y :

www.bakermountain.org/talks/nasa2014.pdf

ralphw@bakermountain.org

9-11 September 2014

3/29

- A sketch $(G, \mathcal{D}, \mathcal{L}, \mathcal{C})$ consists of:
 - An underlying graph G
 - A set \mathcal{D} of diagrams $B \to G$
 - A set \mathcal{L} of cones $L \to G$
 - A set \mathcal{C} of cocones $\mathcal{C} \to \mathcal{G}$
- The graph maps express the axioms or semantic constraints.

Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions of Set-Based Sketch Models

Set-based model of a graph

- Each vertex V is mapped to a set M(V).
- Each edge $V \xrightarrow{e} W$ is mapped to a function $M(V) \xrightarrow{M(e)} M(W)$.

Set-based model of a sketch (G, D, L, C)

- A sketch model is, first, a model of the underlying graph G.
- Sketch constraints impose additional requirements on models.
- Expressiveness of the sketch imposes requirements on suitable categories of semantic models.

www.bakermountain.org/talks/nasa2014.pdf

ralphw@bakermountain.org

• Partial function model of a graph edge Resident \xrightarrow{has} TribalElement

• Stochastic matrix model of a graph edge Resident $\stackrel{\text{has}}{\longrightarrow}$ TribalElement

Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions on Categorical Semantics of Sketches

- Vertices are interpreted as objects
- Edges are interpreted as morphisms
- Classes of constraints (cones and cocones) are distinguished by the shapes of their base graphs.
- Classes of sketches are distinguished by their classes of constraints.
- Like logics and OWL species, these have different expressive powers.

Sketch Class	Set	Partial Func.	Stoch. Matrices	Čencov Cat.	Prob. 0 Refl.	Dempster Shafer	Fuzzy Sets	Convex Sets
Regular	•	•	•	•	•	•	٠	•
Finite Limit	٠	•	×	×	×	×	•	٠
Finite Coproduct	٠	•	•	•	•	٠	•	٠
Entity-Attribute	•	•	×	×	×	×	٠	•
Mixed	٠	•	×	×	×	×	٠	•

Small sample of the sketch semantics landscape

www.bakermountain.org/talks/nasa2014.pdf

First formulation of civics concepts:

- Two classes: People and Elected officials
- People have Elected representatives via r.
- Elected officials are instances of people via *u*.
- Elected officials represent themselves via a diagram.

• The diagram truncates the infinite list of composites (property chains). $u \circ r$ $r \circ u$ $u \circ r \circ u$ $r \circ u \circ r$...

Alternative formulation of the concepts:

- One class: Citizens
- Citizens have elected representatives via e.
- Elected officials represent themselves via a diagram.

- Number and names of vertices in \mathbb{S}_1 and \mathbb{S}_2 differ.
- The edges *u* and *r* of S₁ have no corresponding edges in S₂.
- The edge e of S₂ has no corresponding edge in S₁.

- Sorts: People, Elected
- Function symbols:
 - $u: \mathsf{Elected} \longrightarrow \mathsf{People}$ r

 $r: \mathsf{People} \longrightarrow \mathsf{Elected}$

• Axiom: elected officials represent themselves

 $\top \vdash_x (r(u(x)) = x)$

- Sorts: Citizens
- Function symbols:

 $e: \mathsf{Citizens} \longrightarrow \mathsf{Citizens}$

• Axiom: elected officials represent themselves

$$\top \vdash_x (e(e(x)) = e(x))$$

Set semantics

Partial function semantics

Logic-Based Inference: Sequent Calculus

Inference

Sketches

Transformations

Software

Conclusions

1	$(u(x) = u(y)) \vdash_{x,y} (u(x) = u(y)) \dots$	Id
2	$(u(x) = u(y)) \vdash_{x,y} \top \dots$	Τ
3	$\top \vdash_{x} (r(u(x)) = x) \dots $	axiom
4	$\top \vdash_{x,y} (r(u(x)) = x) \dots$	Sub (3)
5	$\top \vdash_{x,y} (r(u(y)) = y) \dots $	Sub (3)
6	$(x = y) \land (r(x) = z) \vdash_{x,y,z} (r(y) = z) \dots $	Eq1
0	$(u(x) = u(y)) \land (r(u(x)) = x) \vdash_{x,y,z} (r(u(y)) = x) \dots$	Subs (6)
8	$(u(x) = u(y)) \land (r(u(x)) = x) \vdash_{x,y} (r(u(y)) = x) \ldots \ldots$	Subs (7)
9	$(x = y) \vdash_{x,y} (y = x) \dots$	previous proof
10	$(r(u(y)) = x) \vdash_{x,y} (x = r(u(y))) \dots \dots$	Subs (9)
	$(u(x) = u(y)) \land (r(u(x)) = x) \vdash_{x,y} (x = r(u(y))) \dots \dots \dots$	Cut (8), (10)
12	$(x = y) \land (y = z) \vdash_{x,y,z} (x = z)$	previous proof
13	$(x = r(u(y))) \land (r(u(y)) = y) \vdash_{x,y,z} (x = y) \dots$	Subs (12)
14	$(x = r(u(y))) \land (r(u(y)) = y) \vdash_{x,y} (x = y) \dots \dots \dots \dots$	Subs (13)
15	$(u(x) = u(y)) \vdash_{x,y} (r(u(x)) = x)$	Cut (2), (4)
16	$(u(x) = u(y)) \vdash_{x,y} (u(x) = u(y)) \land (r(u(x)) = x) \ldots \ldots \ldots$	
1	$(u(x) = u(y)) \vdash_{x,y} (x = (r(u(y))) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	Cut (16), (11)
18	$(u(x) = u(y)) \vdash_{x,y} (r(u(y)) = y) \dots $	Cut (2), (5)
19	$(u(x) = u(y)) \vdash_{x,y} (x = r(u(y))) \land (r(u(y)) = y) \ldots \ldots \ldots$	
20	$(u(x) = u(y)) \vdash_{x,y} (x = y) \dots$	Cut (19), (14)

www.bakermountain.org/talks/nasa2014.pdf

Introduction Sketches Logic on lnference Alignment Context on transformations Software on the second secon

- Input file: ٩ formulas(assumptions). all x (r(u(x)) = x). end of list. formulas(goals). all x all y $(u(x) = u(y)) \rightarrow (x = y)$. end of list. Proof: 1 (all x r(u(x)) = x)# label(non clause). [assumption]. 2 (all x all y u(x) = u(y)) \rightarrow x = y# label(non clause) # label(goal). [goal]. 3 r(u(x)) = x.[clausify(1)]. 4 u(x) = u(y). [deny(2)]. 5 c2 != c1.[deny(2)]. 6 x = y.[para(4(a,1),3(a,1,1)),rewrite([3(2)])]. 7 \$F.[resolve(6,a,5,a)].
- The shorter proof by contradiction uses classical first-order logic.
- First-order horn logic has lower computational complexity in general.

Introduction Sketches Logic Inference Alignment Context on Sketch-Based Inference: Q-Sequences

- Idea: leverage the notion of *Q*-sequence to implement a reasoning engine for sketch-based knowledge models.
- P. J. Freyd and A. Scedrov. Categories, Allegories. 1990
- D. E. Rydeheard and R. M. Burstall. Computational Category Theory. 1988
- Analogy: Q-sequence proof \iff logical inference

functional programming \iff procedural (Haskell) programming (C)

• A *Q*-sequence is a finite list of finitely-presented categories, maps and quantifiers *Q_i*.

• Satisfaction of a *Q*-sequence in a category (sketch) is defined via a universal mapping property.

www.bakermountain.org/talks/nasa2014.pdf

ralphw@bakermountain.org

15/29

Q-Sequence Proof of a Subtype Property in \mathbb{S}_1

Alignment

Context

Inference

0000

In civics sketch S_1 , we may conclude that Elected is a subclass of People.

Software

Conclusions

Transformations

Given any x and y as shown:

Sketches

Introduction

 $Z \xrightarrow{x}_{y} Elected \xrightarrow{u} People$ $Z \xrightarrow{x}_{y} Elected \xrightarrow{u} People \xrightarrow{r} Elected$ $Z \xrightarrow{x}_{y} Elected \xrightarrow{id} Elected$ $Z \xrightarrow{x}_{y} Elected$

It follows that u is a monomorphism (one-to-one) in any model.

ralphw@bakermountain.org

Introduction	Sketches	Logic	Inference	Alignment	Context	Transformations	Software	Conclusions
000	000000	00	00000	●0000	00	00	00	00
Present	ations	;						

- A sketch | first-order theory | ontology is a presentation of knowledge.
- Presentations generate additional knowledge needed for alignment.

Logical theory ${\mathbb T}$	syntactic category $\mathcal{C}_{\mathbb{T}}$
Ontology	rules
$Sketch\ \mathbb{S}$	theory of a sketch $\mathcal{T}(\mathbb{S})$

- Different presentations may generate equivalent structures.
- Sketches S₁ and S₂ representing common concepts are aligned by finding a sketch V and sketch maps as shown.

- Theory of a (linear) sketch
 - Carmody-Walters algorithm for computing left Kan extensions: generalizes Todd-Coxeter procedure used in computational group theory
- Complexity difficult to characterize: can depend on order of constraints www.bakermountain.org/talks/nasa2014.pdf ralphw@bakermountain.org 9–11 September 2014 17/29

\mathbb{T}_1	\mathbb{T}_2
$u: Elected \to People$	$e: Citizens \rightarrow Citizens$
r: People o Elected	
$\top \vdash_x (r(u(x)) = x)$	$\top \vdash_x (e(e(x)) = e(x))$

• How can we align the civics theories?

\mathbb{T}_1	\mathbb{T}_2
u: Elected o People	$e: Citizens \to Citizens$
r: People o Elected	
$\top \vdash_x (r(u(x)) = x)$	$\top \vdash_x (e(e(x)) = e(x))$

• Provable equivalence: Every axiom of \mathbb{T}_1 is a theorem of \mathbb{T}_2 and conversely.

Introduction Sketches Logic Inference Alignment Context on Software Conclusions on Context on Software on Software

\mathbb{T}_1	\mathbb{T}_2
u: Elected o People	$e: Citizens \to Citizens$
r: People o Elected	
$\top \vdash_x (r(u(x)) = x)$	$\top \vdash_x (e(e(x)) = e(x))$

- Provable equivalence: Every axiom of \mathbb{T}_1 is a theorem of \mathbb{T}_2 and conversely.
- This notion aligns theories that have the same signature.

Introduction Sketches Logic Inference Alignment Context on Software Conclusions Software Conclusions Software Conclusions Software Conclusions Software Conclusions Software Conclusions Software Softwar

\mathbb{T}_1	\mathbb{T}_2
u: Elected o People	$e: Citizens \to Citizens$
r: People o Elected	
$\top \vdash_x (r(u(x)) = x)$	$\top \vdash_x (e(e(x)) = e(x))$

- Provable equivalence: Every axiom of \mathbb{T}_1 is a theorem of \mathbb{T}_2 and conversely.
- This notion aligns theories that have the same signature.
- Alignment typically involves use of derived concepts.

Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions on Logic-Based Alignment: Provable Equivalence

\mathbb{T}_1	\mathbb{T}_2
u: Elected o People	$e: Citizens \to Citizens$
r: People o Elected	
$\top \vdash_x (r(u(x)) = x)$	$\top \vdash_x (e(e(x)) = e(x))$

- Provable equivalence: Every axiom of \mathbb{T}_1 is a theorem of \mathbb{T}_2 and conversely.
- This notion aligns theories that have the same signature.
- Alignment typically involves use of derived concepts.
- We need a concept that is less restrictive than provable equivalence.

 Theories T₁ and T₂ are Morita equivalent if their categories of models Mod_T(D) (in any appropriate semantic category D) are equivalent.

 $\mathsf{Mod}_{\mathbb{T}_1}(\mathcal{D})\,pprox\,\mathsf{Mod}_{\mathbb{T}_2}(\mathcal{D})$

Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions of Software Software

 Theories T₁ and T₂ are Morita equivalent if their categories of models Mod_T(D) (in any appropriate semantic category D) are equivalent.

$$\mathsf{Mod}_{\mathbb{T}_1}(\mathcal{D})\,pprox\,\mathsf{Mod}_{\mathbb{T}_2}(\mathcal{D})$$

• Theories are Morita equivalent iff their syntactic categories are.

 $\mathcal{C}_{\mathbb{T}_1}\ \approx\ \mathcal{C}_{\mathbb{T}_2}$

Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions of Context Software Conclusions of Conclusions o

 Theories T₁ and T₂ are Morita equivalent if their categories of models Mod_T(D) (in any appropriate semantic category D) are equivalent.

$$\mathsf{Mod}_{\mathbb{T}_1}(\mathcal{D})\,pprox\,\mathsf{Mod}_{\mathbb{T}_2}(\mathcal{D})$$

- Theories are Morita equivalent iff their syntactic categories are. $C_{T_1} \approx C_{T_2}$
- This notion solves the alignment problem for our civics theories.

Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions of Softwa

 Theories T₁ and T₂ are Morita equivalent if their categories of models Mod_T(D) (in any appropriate semantic category D) are equivalent.

$$\mathsf{Mod}_{\mathbb{T}_1}(\mathcal{D})\,pprox\,\mathsf{Mod}_{\mathbb{T}_2}(\mathcal{D})$$

• Theories are Morita equivalent iff their syntactic categories are.

 $\mathcal{C}_{\mathbb{T}_1} ~pprox ~\mathcal{C}_{\mathbb{T}_2}$

- This notion solves the alignment problem for our civics theories.
- It can be difficult to use in practice: syntactic categories are infinite even for very simple theories.

Introduction Sketches Logic Inference Alignment Context Transformations Software Conclusions on Softwa

 \bullet The syntactic category $\mathcal{C}_{\mathbb{T}}$ of a theory \mathbb{T} is constructed as follows:

objects:	$lpha$ -equivalence classes of formulae-in-context: $\{ec{x}.arphi\}$				
morphisms :	$\{\vec{x}.\varphi\} \xrightarrow{[\theta]} \{\vec{y}.\psi\}$				
	$\theta \vdash_{\vec{x}, \vec{y}} \varphi \land \psi \qquad \varphi \vdash_{\vec{x}} (\exists \vec{y}) \theta \qquad \theta \land \theta[\vec{z}/\vec{y}] \vdash_{\vec{x}, \vec{y}, \vec{z}} (\vec{z} = \vec{y})$				
composition:	$\{\vec{x}.\varphi\} \xrightarrow{[\theta]} \{\vec{y}.\psi\}$				
	$[(\exists \vec{y})(\theta \land \gamma)] \qquad \qquad [\gamma]$				
	$\{\vec{z}.\chi\}$				
identity:	$\{\vec{x}.\varphi\} \xrightarrow{[\varphi \land (\vec{x}'=\vec{x})]} \{\vec{x'}.\varphi[\vec{x'}/\vec{x}]\}$				

• We restrict the formulae φ and θ to be of the appropriate class: cartesian/regular/coherent/first-order.

Alignment of the Civics Sketches

• A view $\mathcal{V} \Longrightarrow \mathbb{S}$ of a sketch \mathbb{S} is a sketch \mathcal{V} and a sketch map

- A model of S induces a model of $\mathcal{T}(S)$ and of its views $\mathcal{V} \to \mathcal{T}(S) \xrightarrow{M} \text{Set}$.
- Views may be composed $\mathcal{V}_2 \Longrightarrow \mathcal{V}_1 \Longrightarrow \mathbb{S}$.
- View Update Problem: Under what conditions can updates to a model of \mathcal{V} be propagated to a model of \mathbb{S} ?

www.bakermountain.org/talks/nasa2014.pdf

22/29

Introduction Sketches Logic Inference Alignment Context 00 Context 00 Context 00 Context 00 Context 00 Context 00 Contexts

- Research area with narrower scope: context-sensitive Internet search
 - Google patent for "methods, systems and apparatus including computer program products, in which context can be used to rank search results" (USPTO 8,209,331 2012)
 - Yandex personalized web search challenge: www.kaggle.com
- Techniques to infer context from activities and rank data elements
 - Variable-length hidden Markov model
 - Parametric models of users
 - RankNet, LambdaRank, RankSVM
- Performance metrics used for context-sensitive rankings
 - Normalized discounted cumulative gain (scoring in Kaggle competition)
 - Kendall's au comparison of rankings
 - Jaccard distance between top N rankings and target

Sketch Maps and Model Maps

Sketches

• A sketch map $\mathbb{S}_1 \to \mathbb{S}_2$ is a graph map $G_1 \longrightarrow G_2$

Inference

that preserves all the constraints of \mathbb{S}_1 . $B \longrightarrow G_1 \longrightarrow G_2$

- We use sketch maps to formulate the alignment problem.
- Given models M_1 and M_2 of a sketch \mathbb{S} , a model map $M_1 \to M_2$ is a collection of morphisms (one for each vertex V of G)

Alignment

$$M_1(V) \xrightarrow{\tau_v} M_2(V)$$

that are consistent with the edges of G.

• Example:

Introduction

www.bakermountain.org/talks/nasa2014.pdf

Transformations

00

Software

Conclusions

Transfo	rming	Sket	ches in	nto Log	ical T	heories		
						00		
Introduction	Sketches	Logic	Inference	Alignment	Context	Transformations	Software	Conclusions

- Sketches are related to first-order logical theories by theorems of the form: Given any sketch S of class X, there is a logical theory T of class Y for which S and T have equivalent classes of models.
- D2.2 of Johnstone's *Sketches of an Elephant: A Topos Theory Compendium* gives explicit constructions of \mathbb{T} from \mathbb{S} and conversely.

Class of	Fragment of	
Sketches	Predicate Calculus	Logical Connectives
finite limit	cartesian	$=, \top, \land, \exists^*$
regular	regular	=, ⊤, ∧, ∃
coherent	coherent	=, \top , \land , \exists , \bot , \lor
geometric	geometric	=, \top , \land , \exists , \bot , \lor
		∞
$\sigma\text{-coherent}$	$\sigma ext{-coherent}$	=, $ op$, \wedge , \exists , \perp , \bigvee
finitary	$\sigma ext{-coherent}$	<i>i</i> =1

* In cartesian logic, only certain existentially quantified formulae are allowed.

Introduction Sketches Logic Inference Alignment Context Pransformations Software Conclusion 000 000000 00 00000 00000 00 00 00 00 0	Softwar	o Infra	octru	sturo					
	Introduction 000	Sketches 000000	Logic 00	Inference 00000	Alignment 00000	Context 00	Transformations	Software ●0	Conclusions

 Set-based models of entity-attribute sketches can be implemented using database features

Sketch	database schema
Vertex	table with automatically-generated (Serial) key
$Edge\; A \stackrel{e}{\longrightarrow} B$	foreign key in A-table referencing B-table key
Constraints	triggers

- Challenge: manage distributed sketch models, views and constraints Google Megastore, Tenzing and Spanner; Apache Cassandra and Accumulo
- Reasoning
 - Transform to first-order theory then employ theorem prover
 - Q-sequence reasoning using computation category theory tools: Rydeheard and Burstall (ML implementations) 1988
- Theory of a (linear) sketch
 - Carmody-Walters algorithm for computing left Kan extensions: generalizes Todd-Coxeter procedure used in computational group theory
 - Complexity difficult to characterize: can depend on order of constraints

Easik Tool for Modeling with Sketches

- Entity Attribute Sketch Implementation Kit (Easik)
- http://mathcs.mta.ca/research/rosebrugh/Easik
- Build sketches, views and constraints
- Interface with MySQL or Postgres for (set-based models)
- No reasoning engine

www.bakermountain.org/talks/nasa2014.pdf

Introduction	Sketches	Logic	Inference	Alignment	Context	Transformations	Software	Conclusions
000	000000	00	00000	00000	00	00	00	●○
Prograi	n							

- The sketch data model demonstrates valuable features
 - Functional paradigm: syntax, models and maps
 - Separation of meta-data from instance data
 - Uncertainty and lack of information accounted for in models
 - Context-sensitive views which can be composed and combined
 - Formulation of the alignment problem using a well-defined mathematical construction (theory of a sketch)
 - Reasoning via graphical Q-sequences or transformation to predicate calculus fragment
- Research challenges
 - Implement sketch constraints on large, distributed models
 - Leverage insights, datasets and performance metrics from the narrower problem of context-sensitive Internet search
 - Develop and implement semi-automated alignment tool
 - Integrate reasoning and modeling algorithms with instance data into a common software platform
 - Characterize sketch classes corresponding to OWL species

Introduction	Sketches	Logic	Inference	Alignment	Context	Transformations	Software	Conclusions
000	000000	00	00000	00000	00	00	00	○●
Referen	ices							

- M. Barr and C. Wells. Toposes Triples and Theories. Springer-Verlag. 1985
- M. Barr and C. Wells. Category Theory for Computing Sciences. Prentice-Hall. 1990
- S. Carmody, M. Leeming and R. F. C. Walters. The Todd-Coxeter Procedure and Left Kan Extensions. J. Symbolic Computation. 19:459–488. 1995
- P. Freyd and A. Scedrov. *Categories Allegories*. North-Holland. 1990
- J. W. Gray. The Category of Sketches as a Model for Algebraic Semantics. In *Categories in Computer Science and Logic*. V. 92 of Contemporary Mathematics. AMS. 1989
- M. Johnson and R. Rosebrugh. Sketch Data Models, Relational Schema and Data Specifications. Electronic Notes in Theoretical Computer Science. 61(6):1–13. 2002
- M. Johnson, R. Rosebrugh and R. J. Wood. Lenses, Fibrations and Universal Translations. Mathematical Structures in Computer Science. 22:25–42. 2012
- P. E. Johnstone. *Sketches of an Elephant: A Topos Theory Compendium*. Oxford University Press. 2002
- F. W. Lawvere and S. Schanuel. *Conceptual Mathematics*. Cambridge University Press. 2nd Ed. 2009
- S. Mac Lane. Categories for the Working Mathematician. 2nd Ed. Springer-Verlag. 1999
- O. E. Rydeheard and R. M. Burstall. Computational Category Theory. Prentice-Hall. 1988

29/29