The Challenges of Assuring Vision Systems for Space Missions

Presented by Charley Price and Vincent Howard, with key contributions by Jeremy Yagle, NASA LaRC

September 11, 2014
Agenda

<table>
<thead>
<tr>
<th>1) Advanced robotic missions</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Robotic vision-driven closed loop control</td>
<td>07</td>
</tr>
<tr>
<td>3) Challenges faced by IV&V for assuring such vision systems</td>
<td>13</td>
</tr>
<tr>
<td>4) Mitigations for IV&V vision systems challenges</td>
<td>15</td>
</tr>
<tr>
<td>5) Wrap Up and Take Aways</td>
<td>20</td>
</tr>
</tbody>
</table>
Two Advanced Robotic Missions

The two missions are:

• Asteroid Redirect Mission
 • A Robotic mission to move an asteroid to lunar orbit
 • (Followed by a Human mission to study the asteroid in lunar orbit.)
 http://www.nasa.gov/mission_pages/asteroids/initiative/

• Mars 2020
 • The next Mars surface rover mission
 http://mars.jpl.nasa.gov/mars2020/
Design Option A:

Capture an asteroid,
...and move it to lunar orbit.

Design Option B:

Pluck a boulder from the surface of an asteroid,
...and move it to lunar orbit.
Similar to Curiosity
Leaned down ~40% to accommodate caching samples for return to Earth.

Has new zoom camera on mast for longer range vision operations.

...rove, conduct science, collect rocks and other samples.
The Challenges of Assuring Vision Systems for Space Missions

Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced robotic missions</td>
<td>02</td>
</tr>
<tr>
<td>2) Robotic vision-driven closed loop control</td>
<td>07</td>
</tr>
<tr>
<td>Challenges faced by IV&V for assuring such vision systems</td>
<td>13</td>
</tr>
<tr>
<td>Mitigations for IV&V vision systems challenges</td>
<td>15</td>
</tr>
<tr>
<td>Wrap Up and Take Aways</td>
<td>20</td>
</tr>
</tbody>
</table>
Angles of specific stars are measured & used to update s/c attitude.

Ensures thrusters are pointed correctly

- Both Apollo spacecraft used optical alignment telescopes for ~37 star catalog.
- Shuttle steered its attitude to point star trackers at ~100 navigation stars.
 - Original Space Station used star trackers and ~100,000 stars
 - ISS currently, the Russian Segment tracks stars; the US Segment uses GPS and ring laser gyros.
NASA Missions Operate in Complex, Dynamic Environments

Objects of Interest
- Simple and complex
- Natural and fabricated
- Singular, layered, cluttered
- Varying, shifting illumination
- At varied distances
- In varied motions

Actuation Systems
- Manipulation
- Rover
- Spacecraft

So, what’s a space vision system for?
The Vision System Provides Reference Geometry for Action
Example of serial effects of vision algorithms

Vision System Algorithms

Input Image

Filtering → Feature Extraction → Object Identification → Object Location Estimation → Object Pose Estimation

Reference Information

Planning & Control
Vision Systems Significance to NASA

• Vision systems enable capabilities:
 • Autonomous control of mechanisms in complex environments.
 • Faster response time than teleoperation, i.e. ‘move and wait’
 • Autonomous, judicious, reduction of voluminous image data for downlink.

• These capabilities assure that NASA missions with long communication time delays have:
 • More efficient use of available resources such as
 • Martian daylight
 • Downlink bandwidth
 • Ground control staffing

• Better hazard avoidance & anomaly resolution
The Challenges of Assuring Vision Systems for Space Missions

Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced robotic missions</td>
<td>02</td>
</tr>
<tr>
<td>Robotic vision-driven closed loop control</td>
<td>07</td>
</tr>
<tr>
<td>3) Challenges faced by IV&V for assuring vision systems</td>
<td>13</td>
</tr>
<tr>
<td>Mitigations for IV&V vision systems challenges</td>
<td>15</td>
</tr>
<tr>
<td>Wrap Up and Take Aways</td>
<td>20</td>
</tr>
</tbody>
</table>
Vision Systems Challenges

• Framing the problem space:
 • Reducing huge data sets to small essential sets
 • What is intended for the vision system to see?
 • What key features can the vision system identify?

• Robustness during lighting variability to prevent:
 • Missed feature detection
 • Mis-identification of object of interest
 • Incorrect object position and/or pose determination

• Range-dependent uncertainties:
 • Perspective geometric morphing
 • Light intensity level increase
 • Increase of details in image

• Fidelity of field testing/verification prior to operations
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced robotic missions</td>
<td>02</td>
</tr>
<tr>
<td>Robotic vision-driven closed loop control</td>
<td>07</td>
</tr>
<tr>
<td>Challenges faced by IV&V for assuring vision systems</td>
<td>13</td>
</tr>
<tr>
<td>4) Mitigations for IV&V vision systems challenges</td>
<td>15</td>
</tr>
<tr>
<td>Wrap Up and Take Aways</td>
<td>20</td>
</tr>
</tbody>
</table>
The **Vision Systems Technical Reference** addresses:

- **Vision Risks**
 - Characterizes risks associated with the vision system, and associated mitigations.

- **Vision Requirements**
 - Defines the critical tasks that the vision system shall carry out, and relevant information to request from the developers.

- **Vision Design Analysis**
 - Characterizes the envelope in which the vision system is to operate with the greatest probability of mission success.

- **Vision Implementation**
 - Guidelines for implementation of computer vision systems.

- **Vision Test Analysis**
 - Addresses nominal and off nominal conditions to simulate...
The Vision Technical Reference Site Map on Confluence

Capability Development / Capability Development Home / Robotics

Computer Vision Technical Reference

Added by Vincent Howard, last edited by Vincent Howard on Aug 06, 2014 (view change)

- Site Map
- Mission Vision System Function:
 - Assumptions
 - Risks
 - Requirements
 - Design Analysis
 - Test Analysis
 - Implementation
 - Test Questions
 - Vision Algorithm Information
 - Analyst's Reference Table
Mitigations for VS IV&V: A Vision System Testbed for the Analyst

• Vision System Purpose
 • To test operating envelope of a vision system’s object identification, position, and attitude estimation algorithm by comparing it against an independent truth measurement system.

• Testing of a vision system’s algorithm components:
 • Vision algorithms can be deconstructed into constituent parts, which can then generate outputs specific to each individual filter or technique.
 • Attitude and position estimate algorithms can be tested to ensure and quantify the vision system's accuracy.

• Simulating the mission environment:
 • Using the satellite drawings and diagrams, analysts can create a 3D-printed scale model with appropriate details.
 • The test bed can simulate lighting conditions during mission operations.
Mitigations for VS IV&V: The Vision System Testbed Architecture

- ITX Laptop
- ITX Main
- Inverse Kinematics
- TPC/IP Sockets
- RoBoard Main
- (Servo Outputs)
- Physical Scale Target Model
- Truth System Cameras
- Video Feed
- Arm Commands
- Robotic Arm
- Rigid Frame
- Target Satellite
- Vision System Camera
- Vision Processing

Inversed Kinematics

ITX

Laptop
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced robotic missions</td>
<td>02</td>
</tr>
<tr>
<td>Robotic vision-driven closed loop control</td>
<td>07</td>
</tr>
<tr>
<td>Challenges faced by IV&V for assuring vision systems</td>
<td>13</td>
</tr>
<tr>
<td>Mitigations for IV&V vision systems challenges</td>
<td>15</td>
</tr>
</tbody>
</table>

5) Wrap Up and Take Aways | 20 |
Wrap Up and Take Aways

- NASA continues to push the envelope in space exploration.

- Complex robotic operations are part of the planned Asteroid Redirect and Mars 2020 missions.

- The vision systems included in these missions offer new challenges for the developers and for the IV&V analysts.

- Mediations for the IV&V challenges have been presented as a Vision System Technical Reference and a Vision System Testbed for use by IV&V analysts.
• Questions?
 • Missions?
 • Robotics?
 • Vision systems?

• Thank you for your time and interest!