
IV&V Lessons Learned From a
Memory-Scrub Anomaly

Software Issues and Anomaly Analysis
NASA IV&V Facility
Fairmont, WV, USA

NASA’s 2014 International IV&V Workshop
Fairmont, WV, USA

September 9 – 11, 2014

Agenda

• Software Issues and Anomaly Analysis
Overview

• Anomaly Description
• Background Information
• Anomaly Analysis
• Anomaly Remedy
• Observations
• IV&V Lessons Learned

2

Software Issues and Anomaly Analysis
Overview

• Improve software IV&V processes, methods, and procedures.
– Study software-related anomalies and mishaps experienced during

space missions
– Study software issues arising in the course of development of software

supporting these missions
– Not just limited to just NASA, and not just limited to space

• Keep abreast of the development of new and emerging
technologies, as applicable to and employed by space mission
software, and to pass on this knowledge to the IV&V analysts.

• Take an approach that provides the IV&V community with
evidence based resources that can be practically used in their
day-to-day work.

3

Anomaly Description

• The telemetry results of a memory scrubbing application on
science mission indicated the detection of uncorrectable
errors at several (ultimately unknown number) memory
addresses in system memory.

• As an added dimension to the anomaly, a number of these
addresses unexpectedly had, not just one, but two
uncorrectable error detections associated with them.

• The anomaly occurred again at a later point during the
mission, a few years after the first incident, when
uncorrectable double-bit errors in the same area of system
memory were detected and reported

4

Background Information

• Based on the anomaly description, we need to
cover:
1) How memory scrubbing was performed
2) How bit errors were logged and handled
3) How bit errors were reported in telemetry

5

Background Information: How
Memory Scrubbing Was Performed

• Memory scrubbing was performed by a radiation-
hardened embedded component, utilizing Error
Detection and Correction (EDAC), which featured
a Single-Error Correction, Double-Error
Detection (SECDED) code.
– Stored several bits of Error Correction Code (ECC)

associated with each data write operation.
– Provided capability to automatically scrub memory,

given some limited configuration by flight software
(FSW).

– Took ~4.7 seconds to scrub all of system memory.

6

Background Information: How Bit
Errors Were Logged & Handled

• Memory interrupt hooked by a custom
interrupt service routine (ISR) defined in FSW.

• ISR handled all system memory interrupts.
• When a memory interrupts occurred: (see

next five slides)

Key point: The ISR was implemented at a FSW level, but got called every time that a
hardware memory interrupt was generated from the component.

7

Background Information: How Bit
Errors Were Logged & Handled

1. ISR saved interrupt status register information and
got a record of any errors that occurred.
– For each interrupt call, only up to 4 errors could be

handled at a time.
• Each error entry consisted of two (8-bit) words: “error syndrome”

and address of detected error

Key point: Only 4 errors could be handled per interrupt.

8

Background Information: How Bit
Errors Were Logged & Handled

2. ISR performed some set of actions based on
the values gleaned from the register.

• In the case of bit errors, the logic in the IRS

took the following actions:

9

Background Information: How Bit
Errors Were Logged & Handled

• Correctable-Bit Error
– Stored error memory location to correctable error log

table
• If memory address not already logged in correctable error log

table, put in table (table capacity: 10 entries).
• If the memory address already in table, increment a counter for

address in table, showing number of occurrences of errors at that
address.

Key point(s): Only 10 entries could be held in the correctable error log table and if a
memory address was already in the table, a counter would be incremented.

Subtle Key point: There was no need for the ISR to correct the correctable error. The
hardware component used for memory scrubbing reported a correctable error via
interrupt, but automatically fixed any correctable errors on its own. 10

Background Information: How Bit
Errors Were Logged & Handled

• Uncorrectable Bit-Error
– Stored error memory location to uncorrectable error log

table
• If memory address not already logged in uncorrectable error log

table, put in table (table capacity: 10 entries).
• If the memory address already in table, increment a counter for

address in table, showing number of occurrences of errors at that
address.

• AND…

Key point: Since the error detected was uncorrectable, the ISR had to do something
about it.

11

Background Information: How Bit
Errors Were Logged & Handled

• Uncorrectable Bit-Error (cont.)

– “Refreshed” memory location where error occurred.
• Problem: Incorrect data at an error location could not be

corrected (uncorrectable bit-errors), but not desirable to detect
same error in subsequent memory-scrubbing cycles, either.

• Solution: Read data bits at affected memory location, and write
them back.

– Because EDAC bits were added by hardware on write, check-bits associated
with memory at error location would be “fixed” when data was re-written.

– The contents of the memory would still be intermediate (most likely bad)
from a FSW use perspective, but the scrub routine would not flag an error.

Key point: Each time an uncorrectable error was detected, IRS refreshed the memory
location so that it would not be flagged again on subsequent memory scrub passes.

NOTE!!! Even if a memory location could not be logged, because the error table was
full, the bits still got updated. These were logically independent operations. 12

Background Information: How Bit
Errors Were Reported in Telemetry

• A higher-level FSW memory scrub routine was
responsible for reporting errors via telemetry.
– The FSW memory scrub routine, which reported bit-error

data, ran approximately every 5 seconds, based off of
housekeeping requests for said error data.

– The routine read the error log tables, populated by the ISR,
incremented generic single and double-bit error counters
based on said information, and sent off both the counters
and the log entries in the table for reporting.

– Finally, the routine cleared the error log tables.
Key point: The ISR tables were read and cleared every 5 seconds

13

Background Information: Summary

• Summary so far:
– A hardware component was responsible for

performing EDAC and supported SECDED.
• This component also transparently handled the correction

aspect if a single-bit error was detected and could scan
system memory in about 4.7 seconds

– The hardware component would also issue memory
interrupts which were serviced by an ISR implemented
in FSW.

• The ISR recorded memory errors into a table, and refreshed
memory where an uncorrectable error was detected.

– The FSW memory scrub routine reported on and
cleared the ISR error log tables every 5 seconds.

14

Anomaly Analysis

• We will look at a set of factors associated with the
anomaly and attempt to understand why they were
seen.

• Factor 1: The actual number of uncorrectable errors
and locations was not able to be determined.
– The ISR error log table for each type of error was limited to

10 locations.
• Bit errors affecting additional memory locations within a single 5-

second FSW memory scrub cycle were not recorded by the ISR.
• FSW memory scrub cycle counters were based on the data

recorded in the ISR error log tables.

15

Anomaly Analysis

• Factor 2: Examination of the telemetry indicated that
there were several entries in the uncorrectable error
log table with a count of 2.
– ISR should “fix” memory at the error location to prevent

second detection.
– The 5 second FSW memory scrub cycle should clear the ISR

table when it completes.
• This implies that the system memory scrub (hardware component)

would have to scan an address, detect an uncorrectable error at an
address, log it, loop back around to the same address, and detect
the issue again, all before the table is cleared by FSW.

• Technically possible, as the FSW cycle is 5 seconds and the
component cycle is ~4.7.

16

Anomaly Analysis

• Factor 2 (cont.)

– There are 2 scenarios which could have occurred
• An uncorrectable error occurred, was mitigated by the

ISR, and then occurred again in the same location
within one 5 second FSW scrub cycle.

• The part of the ISR which updates the check-bits
somehow was not effective and the hardware scrub
cycle (4.7 seconds) got back around and hit the same
address twice within the 5-second FSW scrub cycle.

17

Anomaly Analysis

• Factor 2 (cont.)

– Evidence for scenario 1
• Probability is very low.

– Evidence for scenario 2
• The ISR functionality responsible for refreshing the memory,

in the case of an uncorrectable error, seems to make an
asynchronous function call.

– Since the ISR is implemented in software (above the processor) ,
the operation to refresh the memory has to be flushed from the
cache to memory.

– The presence of multiple uncorrectable errors may have created
a condition where the cache and system memory were out of
sync.

18

Anomaly Analysis
• The root cause of the main aspect of the anomaly,

namely the incidence of the double-bit errors in data
storage, is unknown.

• One possibility is that the radiation present in the
space environment in the form of one or more charged
particles, interacting with the memory cells is the
culprit.
– However, the particle flux data from a NASA Sun-observing

spacecraft, as well as the data from the radiation
measured by a science instrument on board the affected
spacecraft itself, do not point to unusual radiation levels,
at least not at the time of the first incidence of the
anomaly.

19

Anomaly Analysis

• Another possibility is an intermittent
hardware problem within the printed wiring
board of the SC.
– The fact that the two incidences of the anomaly

took place in the same general location of system
memory, with some of the same memory
addresses affected in both cases, lends more
credibility to this possibility.

– An isolated galactic charged-particle shower could
have acted as a catalyst to the hardware problem.

20

Anomaly Remedy

• The mission operation’s reaction to two
incidents of the anomaly was to take no
action.

• This inaction was a result of the realization
that the affected memory in both cases
resided in an area of system memory that was
not critical.

21

Observations

• An EDAC scheme was in place in flight software to
routinely check for bit errors in the stored data
on board the spacecraft, correct the single-bit
errors, and identify the memory addresses of
data with uncorrectable multi-bit errors of at
least order two, if not higher order in some cases.
– There was apparently no effective fault management

mechanism to respond to the detection of
uncorrectable multi-bit errors, other than time-
delayed monitoring of EDAC telemetry by the mission
operators and deciding on how to respond to any
anomalies from the ground.

22

Observations

• The limitation of the FSW on being able to
record only up to 10 memory addresses of the
data with detected bit errors left the mission
operators in the dark as to the real extent of
the anomaly.

23

Observations

• The limitation of the ISR in its ability to
simultaneously update check-bits for no more
than four memory addresses of detected bit
errors may have contributed to both missing
information on the detection of some of the
bit errors in earlier memory-scrubbing cycle
and incorrect information on the frequency of
detected errors at some memory addresses.

24

Observations

• The slight difference between the frequencies
of FSW memory scrub and EDAC component
cycles translated into appreciable difference
between the periods of these two cycles. The
realization of this fact was important in the
correct interpretation of the telemetry data
and drawing the correct conclusions from it.

25

IV&V Lessons Learned
• The memory-scrubbing schemes used in spacecraft

applications are usually well-established and reliably
used. As a result, it is not uncommon for IV&V to forgo
the analysis of EDAC software as part of its overall
analysis of flight software. The study of the current
anomaly indicates that while the more standard core
routines in EDAC software, performing the essential
functions of bit error detection and correction, may be
working as expected, the implementation of
supporting functions, such as updating check-bits and
reporting the detection of errors, may have to be
examined by IV&V. Therefore, in general, the IV&V
analysis of EDAC software needs to be in scope.

26

IV&V Lessons Learned

• The detection of uncorrectable bit errors by the
EDAC software should not be an end to itself.
Flight software fault management needs to utilize
this error detection information in a strategy to
autonomously minimize the adverse effects of
uncorrectable bit errors. IV&V needs to look for
the evidence of fault management taking an
active role in this respect, starting with the
requirements analysis of the fault management
software.

27

IV&V Lessons Learned

• In parallel with the utilization of flight
software fault management to alleviate the
effects of uncorrectable bit errors, the mission
operators need to have access to complete
and accurate telemetry data on EDAC
operations to be able to take effective timely
actions if needed. As part of the analysis of
EDAC software, IV&V needs to focus on the
EDAC functions, which support the reporting
of EDAC results to the ground.

28

IV&V Lessons Learned

• An understanding of caching, synchronous, and
asynchronous operations should be applied to
IV&V evaluation of EDAC software

• As part of the analysis of EDAC software, IV&V
needs to examine FSW functions related to EDAC,
that use cache memory.

• Specifically, IV&V should attempt to determine
conditions where cache and system memory
values could be out of sync, and identify devices
with direct memory access that could be affected
by the condition.

29

IV&V Lessons Learned

• Recognition of the slight difference between the
periods of housekeeping and memory-scrub
cycles was critical for the anomaly investigators to
be able to piece together what had happened
during the anomaly. Similarly, in its analysis of
EDAC software, or for that matter any other
components of software, IV&V needs to be aware
of differences in time characteristics of various
software functions, no matter how subtle these
differences may be.

30

IV&V Lessons Learned

• Analyzing actual execution time deltas for functions
that are nominally scheduled for the same cycle rate,
especially when one or more of the functions is
implemented in some form of hardware solution,
may prove to be beyond the current state of IV&V
practice. Nevertheless, IV&V should always examine
any critical shared resource (such as the ISR log
tables in this anomaly) to ensure that the protections
guarding them from conflicted access are sufficient.

31

IV&V Lessons Learned

• It is not adequate to simply rely on the timing
of common scheduling cycles to ensure de-
conflicted access, since the cycles may diverge
due to any number of factors.

• Depending on the criticality of a shared
queue, IV&V should determine if alerts are
needed to indicate an overflow, and if so
verify the design is adequate to prevent loss of
data.

32

Contact Information

Software Issues and Anomaly Analysis

• NASA Lead: Keenan Bowens – Keenan.L.Bowens@nasa.gov
• Technical Lead: Larry Ullom – Lawrence.C.Ullom@ivv.nasa.gov
• Daniel Painter – Joseph.D.Painter@ivv.nasa.gov
• Koorosh Mirfakhraie – Koorosh.Mirfakhraie@ivv.nasa.gov

33

	IV&V Lessons Learned From a Memory-Scrub Anomaly
	Agenda
	Software Issues and Anomaly Analysis Overview
	Anomaly Description
	Background Information
	Background Information: How Memory Scrubbing Was Performed
	Background Information: How Bit Errors Were Logged & Handled
	Background Information: How Bit Errors Were Logged & Handled
	Background Information: How Bit Errors Were Logged & Handled
	Background Information: How Bit Errors Were Logged & Handled
	Background Information: How Bit Errors Were Logged & Handled
	Background Information: How Bit Errors Were Logged & Handled
	Background Information: How Bit Errors Were Reported in Telemetry
	Background Information: Summary
	Anomaly Analysis
	Anomaly Analysis
	Anomaly Analysis
	Anomaly Analysis
	Anomaly Analysis
	Anomaly Analysis
	Anomaly Remedy
	Observations
	Observations
	Observations
	Observations
	IV&V Lessons Learned
	IV&V Lessons Learned
	IV&V Lessons Learned
	IV&V Lessons Learned
	IV&V Lessons Learned
	IV&V Lessons Learned
	IV&V Lessons Learned
	Contact Information

