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How many tests do we need? 
Traditional approaches: 
• Structural coverage based 

– Statement, branch; Stronger – MCDC etc. 
• Requirements based 

– What qualifies as covering a requirement? 
– How many tests per requirement? 

• Requirements + structural coverage 
– DO 178B,C 

• Statistical  
– Error detection rate 
– Assumed distribution of faults 

• Ad hoc 
– “Test thoroughly” 
– Until we run out of budget 

 

 



Can we use test data in estimating? 
• Input values 

– Cover all single values 
– Cover all pairs of values, 3-way interactions of values, 

etc. 
• How far should we take this approach? 
• Can it help with structural coverage? 
• Using characteristics of test data in a new way to 

estimate  
– number of tests,  
– when to stop testing.  

 



Background:  how are faults  
distributed by interaction level? 

• Interactions   e.g.,  failure occurs if 
    pressure < 10                                                              (1-way interaction)  
    pressure < 10 & volume > 300                                 (2-way interaction)  
    pressure < 10 & volume > 300 & velocity = 5       (3-way interaction)  
• Maximum interactions for fault triggering was 6 
 



The Interaction Rule 
• Most failures are triggered by one or two parameters,  

and progressively fewer by three or more parameters.  

• Therefore if all faults in a system can be triggered by 
a combination of t or fewer parameters, then testing 
all t-way combinations of parameter values is 
pseudo-exhaustive with a high rate of fault 
detection.  

• The number of tests required to cover all t-way 
combinations is proportional to vt log n, for n 
variables with v values each.  

 



Combinatorial Coverage Measurement  
 Tests Variables 

a b c d 

1 0 0 0 0 

2 0 1 1 0 

3 1 0 0 1 

4 0 1 1 1 

Variable pairs Variable-value 
combinations 
covered 

Coverage 

ab 00, 01, 10                 .75 

ac 00, 01, 10          .75 

ad 00, 01, 11          .75 

bc 00, 11                .50 

bd 00, 01, 10, 11     1.0 

cd 00, 01, 10, 11      1.0 

100% coverage of 33% of combinations 
75% coverage of half of combinations 
50% coverage of 16% of combinations  



Graphing Coverage Measurement  
 

100% coverage of 33% of combinations 
75% coverage of half of combinations 
50% coverage of 16% of combinations  

Bottom line: 
All combinations 
covered to at least 50% 



Adding a test 

Coverage after adding test [1,1,0,1]  



Adding another test 

Coverage after adding test [1,0,1,1] 



Additional test completes coverage 

Coverage after adding test [1,0,1,0] 
All combinations covered to 100% level,  
so this is a covering array.   



Combinatorial Coverage Measurement  
 



Minimum coverage value 

M = .50 => all combinations covered to at least 
50% level 



Fault coverage 
• Proportion of combinations that trigger faults 

covered by a test set 
• Example coverage of a 2-way array 
  Fault distribution           Coverage 
      60% single value          100% 1-way 
      25% 2-way                    100% 2-way 
      10% 3-way                      80% 3-way 
        5% 4-way                       50% 4-way 
Fault coverage = 1(.6) + 1(.25) + .8(.1) + .5(.05) 
                           = .955 



Why does this matter? 
• Fault detection capacity of a t-way covering 

array can be greater than might be expected.   
Example: 
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Decision predicates 

code segment: 
     if (x <= 0 && y <= 0)  branch A 
     else            branch B 
input model partitions of values for x and y: 
     x = {-9999, -1, 0, 1, 9999}    y = {-9999, -1, 0, 1, 9999} 
 
Then of 25 value pairs,  
 9/25 go to A    and 16/25 go to B 
Bt = minimum % of t-way settings triggering a branch 
in this code segment Bt = 9/25 = 36% 



Branch coverage condition 

• Where Bt = minimum proportion of t-way 
combinations to trigger a branch in code 

• Mt = minimum t-way coverage  
• If Mt + Bt > 1 then 100% branch coverage is 

achieved where all variables in decision 
predicates have values from the test variables 
with coverage characteristic Mt 



Why does this matter? 
• Allows determining how many tests needed for 

branch coverage 
• In many cases, branch coverage is possible 

without a full covering array.   
• Example: 

– 10 variables, 5 values each 
– Decision predicates with 2-way combinations 
– 309 tests required for 2-way covering array 
– If at least 2 combinations cause branch for every 

predicate, 225 tests provide full branch coverage 
• Not as good as full covering array, but may still be 

highly effective 



Implications for testing 
• Uncertainty and range of estimates – wide variation for 

t<4, but 4-way fault coverage provides good estimates 
• Impact of # values per variable – as # values increases, 

supplemental coverage decreases, so more tests required 
for same fault coverage 

• Branch coverage condition – for branch predicates with t 
variables, usually don’t need full t-way array to achieve 
100% branch coverage 

• Requirements specification – fault coverage is an 
additional dimension that can be specified in test goals 

• Use results to determine test set size, based on goals 



Factors in determining test set size 
• Estimated fault distribution, e.g. 

– Based on previous similar systems 
– Conservative assumptions of distribution 

• Assurance level goal 
– How much do extra tests contribute to assurance? 

• Allowable range of uncertainty 
– How much is it affected by combinatorial coverage? 

• Coverage goals:  requirements, structural; 
requirements + structural coverage 
– Impact of combinatorial coverage 

 



Est. fault coverage achieved  
with t = 2..5-way tests 
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1 0 0 
2 0 0 
3 0.5 0 
4 0.25 0.5 
5 0.25 0.25 
6 0 0.25 

Average systems Well-tested systems 
(hypothetical dist.) 



Assurance level and range of uncertainty 
Est. fault coverage achieved w/ t = 2..5-way tests 
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Summary 

• Combinatorial methods applied to input test 
data set provide a new dimension in 
evaluating test effectiveness 

• Can be used in determining test set size 
commensurate with test goals and resources 

• Establishes a relationship between 
combinatorial coverage (static) and code 
coverage (dynamic) useful for understanding 
test effectiveness and thoroughness  



 
http://csrc.nist.gov/acts 

Contact:  Rick Kuhn                   
   kuhn@nist.gov 
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