
Using Combinatorial Methods to
Determine Test Set Size

NASA 2014 International IV&V Workshop
Fairmont, WV

 Rick Kuhn Raghu Kacker Yu Lei
National Institute of Standards & Technology University of Texas Arlington
kuhn@nist.gov, raghu.kacker@nist.gov ylei@uta.edu

mailto:kuhn@nist.gov
mailto:raghu.kacker@nist.gov
mailto:ylei@uta.edu

How many tests do we need?
Traditional approaches:
• Structural coverage based

– Statement, branch; Stronger – MCDC etc.
• Requirements based

– What qualifies as covering a requirement?
– How many tests per requirement?

• Requirements + structural coverage
– DO 178B,C

• Statistical
– Error detection rate
– Assumed distribution of faults

• Ad hoc
– “Test thoroughly”
– Until we run out of budget

Can we use test data in estimating?
• Input values

– Cover all single values
– Cover all pairs of values, 3-way interactions of values,

etc.
• How far should we take this approach?
• Can it help with structural coverage?
• Using characteristics of test data in a new way to

estimate
– number of tests,
– when to stop testing.

Background: how are faults
distributed by interaction level?

• Interactions e.g., failure occurs if
 pressure < 10 (1-way interaction)
 pressure < 10 & volume > 300 (2-way interaction)
 pressure < 10 & volume > 300 & velocity = 5 (3-way interaction)
• Maximum interactions for fault triggering was 6

The Interaction Rule
• Most failures are triggered by one or two parameters,

and progressively fewer by three or more parameters.

• Therefore if all faults in a system can be triggered by
a combination of t or fewer parameters, then testing
all t-way combinations of parameter values is
pseudo-exhaustive with a high rate of fault
detection.

• The number of tests required to cover all t-way
combinations is proportional to vt log n, for n
variables with v values each.

Combinatorial Coverage Measurement
 Tests Variables

a b c d

1 0 0 0 0

2 0 1 1 0

3 1 0 0 1

4 0 1 1 1

Variable pairs Variable-value
combinations
covered

Coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00, 01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

Graphing Coverage Measurement

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

Bottom line:
All combinations
covered to at least 50%

Adding a test

Coverage after adding test [1,1,0,1]

Adding another test

Coverage after adding test [1,0,1,1]

Additional test completes coverage

Coverage after adding test [1,0,1,0]
All combinations covered to 100% level,
so this is a covering array.

Combinatorial Coverage Measurement

Minimum coverage value

M = .50 => all combinations covered to at least
50% level

Fault coverage
• Proportion of combinations that trigger faults

covered by a test set
• Example coverage of a 2-way array
 Fault distribution Coverage
 60% single value 100% 1-way
 25% 2-way 100% 2-way
 10% 3-way 80% 3-way
 5% 4-way 50% 4-way
Fault coverage = 1(.6) + 1(.25) + .8(.1) + .5(.05)
 = .955

Why does this matter?
• Fault detection capacity of a t-way covering

array can be greater than might be expected.
Example:

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

 t = 2 3 4 5

 Fault distribution Fault coverage

Decision predicates

code segment:
 if (x <= 0 && y <= 0) branch A
 else branch B
input model partitions of values for x and y:
 x = {-9999, -1, 0, 1, 9999} y = {-9999, -1, 0, 1, 9999}

Then of 25 value pairs,
 9/25 go to A and 16/25 go to B
Bt = minimum % of t-way settings triggering a branch
in this code segment Bt = 9/25 = 36%

Branch coverage condition

• Where Bt = minimum proportion of t-way
combinations to trigger a branch in code

• Mt = minimum t-way coverage
• If Mt + Bt > 1 then 100% branch coverage is

achieved where all variables in decision
predicates have values from the test variables
with coverage characteristic Mt

Why does this matter?
• Allows determining how many tests needed for

branch coverage
• In many cases, branch coverage is possible

without a full covering array.
• Example:

– 10 variables, 5 values each
– Decision predicates with 2-way combinations
– 309 tests required for 2-way covering array
– If at least 2 combinations cause branch for every

predicate, 225 tests provide full branch coverage
• Not as good as full covering array, but may still be

highly effective

Implications for testing
• Uncertainty and range of estimates – wide variation for

t<4, but 4-way fault coverage provides good estimates
• Impact of # values per variable – as # values increases,

supplemental coverage decreases, so more tests required
for same fault coverage

• Branch coverage condition – for branch predicates with t
variables, usually don’t need full t-way array to achieve
100% branch coverage

• Requirements specification – fault coverage is an
additional dimension that can be specified in test goals

• Use results to determine test set size, based on goals

Factors in determining test set size
• Estimated fault distribution, e.g.

– Based on previous similar systems
– Conservative assumptions of distribution

• Assurance level goal
– How much do extra tests contribute to assurance?

• Allowable range of uncertainty
– How much is it affected by combinatorial coverage?

• Coverage goals: requirements, structural;
requirements + structural coverage
– Impact of combinatorial coverage

Est. fault coverage achieved
with t = 2..5-way tests

0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5
0.000

0.200

0.400

0.600

0.800

1.000

 t = 2 3 4 5

dist1

dist2

Faults
>2-way

Faults
>3-way

1 0 0
2 0 0
3 0.5 0
4 0.25 0.5
5 0.25 0.25
6 0 0.25

Average systems Well-tested systems
(hypothetical dist.)

Assurance level and range of uncertainty
Est. fault coverage achieved w/ t = 2..5-way tests

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

 t = 2 3 4 5
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

 t = 2 3 4 5

dist1

dist2

Average systems Well-tested systems
(hypothetical dist.)

Lower assurance
level and greater
uncertainty

Higher assurance
level and less
uncertainty

Summary

• Combinatorial methods applied to input test
data set provide a new dimension in
evaluating test effectiveness

• Can be used in determining test set size
commensurate with test goals and resources

• Establishes a relationship between
combinatorial coverage (static) and code
coverage (dynamic) useful for understanding
test effectiveness and thoroughness

http://csrc.nist.gov/acts

Contact: Rick Kuhn
 kuhn@nist.gov

mailto:kuhn@nist.gov

	Using Combinatorial Methods to Determine Test Set Size�NASA 2014 International IV&V Workshop�Fairmont, WV �
	How many tests do we need?
	Can we use test data in estimating?
	Slide Number 4
	The Interaction Rule
	Combinatorial Coverage Measurement �
	Graphing Coverage Measurement �
	Adding a test
	Adding another test
	Additional test completes coverage
	Combinatorial Coverage Measurement �
	Minimum coverage value
	Fault coverage
	Why does this matter?
	Decision predicates
	Branch coverage condition
	Why does this matter?
	Implications for testing
	Factors in determining test set size
	Est. fault coverage achieved �with t = 2..5-way tests�
	Assurance level and range of uncertainty
	Summary
	Slide Number 23

