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This report documents the effects of photorefractive keratectomy (PRK) in an astronaut during
a 12-day Russian Soyuz mission to the International Space Station in 2008. Changing environ-
mental conditions of launch, microgravity exposure, and reentry create an extremely dynamic
ocular environment. Although many normal eyes have repeatedly been subject to such stresses,
the effect on an eye with a relatively thin cornea as a result of PRK has not been reported. This
report suggests that PRK is a safe, effective, and well-tolerated procedure in astronauts during
space flight.
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The utility and validity of photorefractive keratectomy
(PRK) is well established in the general aviation
community. Since PRK reduces dependence on glasses
and contact lenses, it is ideally suited for astronauts
who participate in space operations. Additionally,
PRK exhibits no significant diurnal fluctuation in
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visual acuity and has proven stability under hypobaric
conditions.1 Currently, PRK, aswell as laser in situ ker-
atomileusis (LASIK), is an approved procedure for avi-
ators in all branches of the military including pilots of
high-performance aircraft.

At the inception of the United States space program,
all astronauts were military test pilots and were
required to meet rigorous vision standards. As the
effects of space flight on vision became better under-
stood and as more astronauts were needed in the post-
Apollo era, vision standards were relaxed. For many
years, National Aeronautics and Space Administra-
tion’s (NASA) astronaut selection vision standards dic-
tated that uncorrected distance visual acuity (UDVA)
could not exceed 20/100 in either eye for pilot astronaut
candidates and 20/200 for mission specialist candi-
dates. However, in recent years, NASA has relaxed
the vision standards andno longer has aUDVArequire-
ment for astronaut selection. Instead, NASA adopted
a cycloplegic refractive error requirement not to exceed
G5.50 diopters (D) in any meridian, with 3.00 D of
cylinder for mission specialists and C3.50 to �4.50 D
in any meridian, with 2.00 D of cylinder for pilot astro-
naut candidates. As of September 2007, NASA has
approved PRK and LASIK for astronaut selection and
retention (preoperative cycloplegic refractive error
must be betweenC4.00 and�8.00 sphere, astigmatism
must be 3.00 D or less in minus cylinder format, and
0886-3350/$ - see front matter
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follow-upmust be no less than 6months [LASIK] and 1
year [PRK] [including enhancements] with no perma-
nent adverse sequelae). Although the successful use of
bilateral intraocular lenses in an astronaut during space
shuttle operations has been reported,2 to our knowl-
edge, no case documenting the stability of corneal
refractive surgery in an astronaut during spaceflight
has been reported.

The endof theU.S. SpaceShuttleprogrammarked the
beginning of the NASA–Soyuz era for transportation to
and from the International Space Station. Environmen-
tal conditions of launch, microgravity exposure, and re-
entry create an extremely dynamic ocular environment
in any spacecraft. However, due to its unique flight pro-
file, confined space, and rather poor lighting conditions,
this challenging ocular environment is particularly pro-
nounced during a Soyuzmission. Althoughmany Rus-
sian cosmonauts with normal eyes have been subjected
to such stresses, the effect onaneyewitha relatively thin
cornea as a result of PRK has not been documented.

On liftoff, gravitational (G)-forces reaching C3 to
4 Gx are produced by a 3-stage sequential rocket thrust
lasting 10 minutes. These positive G-forces push the
eye backward toward the rear of the bony orbit (eye-
balls in) and then dissipate as the astronaut enters
space and are replaced by the very different influence
of microgravity. Within seconds of reaching micro-
gravity, the human body undergoes changes that alter
ocular physiology. Specifically, there is a cephalad
shift of about 1.5 to 2.0 liters of blood, initially resulting
in altered vascular volume and ultimately in altered
interstitial volume of the lower body compared with
that in the chest and head.3 This shift results in a sud-
den rise in intraocular pressure (IOP) as well as a more
gradual onset of facial edema.4–8 Intraocular pressure
has been documented to increase 20% to 58% within
25 seconds of exposure to microgravity.7 The etiology
of the IOP rise has been hypothesized to result from in-
creased episcleral venous pressure, orbital pressure on
the globe, choroidal expansion, or a combination of the
three.6–8 Although long-duration studies of IOP in mi-
crogravity have not been performed, short duration
space shuttle and head-down studies suggest that
the eye may rapidly undergo adaptive changes to
blunt the initial spike in IOP.6,8

During descent, the Soyuz module falls toward
Earth, reaching a deceleration of C4.0 to 4.5 Gx (eye-
balls in). A series of 4 parachutes are then deployed,
slowing the rate of descent until 1 second before touch-
down, when 2 engines on the bottom of the descent
module ignite to further reduce the force of impact.

This report documents the stability of PRK in an as-
tronaut during a 12-day Russian Soyuz mission to the
International Space Station in 2008. The astronaut
served as a spaceflight participant during this mission
J CATARACT REFRACT SURG -
and performed several research projects and medical
experiments, which demanded good near and far
visual acuity.9
CASE REPORT

The astronaut (Richard A. Garriott), a 47-year-old white
male, had bilateral PRK for myopia in 1994. A conventional
ablation profile and a presumed 6.0 mm optical zone were
used. The preoperative refractive errors were �4.00 D and
�3.75 D in the right eye and left eye, respectively. The post-
operative course was uneventful.

The pre-mission eye examination, performed 10 weeks
before flight (Launch-72 days), documented a UDVA log-
MAR of 0.14 (20/25–) and 0.02 (20/20–) in the right eye and
left eye, respectively, which corrected to 20/15 in each eye
with cycloplegic refractions of �1.00 C1.25 � 28 (right eye)
and �0.75 C0.50 � 155 (left eye). Corneal topography was
consistent with a post-PRK shape in both eyes, and keratom-
etry was 41.50/41.87� 180 (right eye) and 42.00/42.12� 180
(left eye). Wavefront analysis was also consistent with a re-
fractive surgery optical profile. The IOP measured with
Goldmann applanation tonometry was 12 mm Hg in the
right eye and 10 mmHg in the left eye. The right central cor-
neawas clear; therewas a faint scar at the 4 o’clock position in
the left cornea as a result of ocular trauma approximately
8 years before the mission. The central corneal thickness
(CCT) was 508 mm in the right eye and 504 mm in the left
eye. The remainder of the ocular examination, including
visual fields and dilated fundus examination, was normal.
The UDVA and near visual acuity measurements were per-
formed under simulated inflight test conditions 2 days and
1 day before launch (Launch-2 and Launch-1) and were the
same as those planned during flight. The median logMAR
was 0.08 (20/25C) in the right eye and �0.06 (20/16–) in
the left eye for distance and 0.1 (20/25) in the right eye and
0 (20/20) in the left eye for near. The pre-mission question-
naire documented very slight photophobia with slight eye
fatigue (Launch-2 days).

The launch took place onOctober 12, 2008, from the Baiko-
nur Cosmodrome in the Republic of Kazakhstan. The Soyuz
capsule docked with the International Space Station 2 days
after launch. The atmospheric pressure and O2 partial pres-
sure throughout the mission were steady at 14.7 PSI and
160 to 170 mm Hg (20% O2), respectively.

Inflight testing of visual performance was performed
(Figure 1) and a questionnaire completed daily. Distance
(3 m) and near visual acuity (40 cm) were tested using
logMAR charts (Figure 2), and results were recorded by the
subject. Ocular and visual symptoms were evaluated using
a comprehensive questionnaire. Measurements taken on
days 1 and 2post launchwere performed on the Soyuz space-
craft and on days 3 to 11 on the International Space Station.

Compared with preflight visual acuity, both distance and
near visual acuity remained stable on-orbit and post-flight, as
illustrated in logMARunits in Figure 3. The right eyeUDVAre-
mained stablewith amean logMARof 0.11 (20/25–) and the left
eye UDVA remained stable at �0.06 logMAR (20/16–). The
subtle daily changes observedwere within the retest reliability
limits for visual acuity testing (G1 line). The effect of both
a C1.00 D and �1.00 D handheld lens on vision was tested
throughout flight. The subject consistently reported distance
vision was worse with the C1.00 D lens and better with the
�1.00 D lens. This suggests that a hyperopic shift in refractive
error greater than or equal to 1.00Ddid not occur during flight.
VOL 38, AUGUST 2012



Figure 2. The logMAR visual acuity chart designed for testing at 3
meters.

Figure 1. Astronaut in position for distance visual acuity testing.
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An assessment of accommodation was performed by measur-
ing the closest distance before blur when viewing small letters
on the near vision card. This was measured throughout the
flight and remained stable at 4.8 D G 0.5 (SD) before, during,
and after the flight.

The questionnaire assessed ocular symptoms including
eyes feeling dry, irritated, itchy, tired, light sensitive, teary,
or painful. The astronaut was also questioned regarding
the occurrence of headaches that he thought were related
to vision. Specifically, he was asked whether he had experi-
enced any of these symptoms in the past 24 hours using 6 re-
sponse options: (1) no, not at all; (2) perhaps, very slightly; (3)
yes, slightly but not troublesome; (4) yes, and it is a little trou-
blesome; (5) yes, and it is troublesome; (6) yes, and it is ex-
tremely troublesome. The responses are graphed in
Figure 4. Symptoms increased during spaceflight but were
no worse than “a little troublesome” with respect to tired
eyes. “Slight but not troublesome” symptoms of irritated
Figure 3.Distance and near visual acuity plotted against day relative
to launch. Testingwas performed 72 and 2 days prior to launch (L-72
and L-2 days), during the 12 days of the mission, and 27 days after
returning to Earth (RC27 days). Visual acuity is given in logMAR
form (20/20 Z 0) and is fundamentally stable, although there is
a suggestion of slight worsening during the first few days in space
followed by a gradual improvement.

J CATARACT REFRACT SURG -
and painful eyes were also noted during flight. The severity
of other symptoms were in the “perhaps very slightly” cate-
gory. Dry eyes, visual discomfort, and headaches attributed
to vision were not experienced. Headaches were reported
but attributed to “fluid shifts” and not to vision.

The questionnaire also addressed visual symptoms such as
trouble seeing: blurry, cloudy, or foggy vision; distortion of
vision: ghost images, double images, or double outline of
images; trouble seeing indim light; fluctuation of vision; halos
around lights, starbursts, difficultywith glare, objects looking
different out of one eye versus the other, and difficulty with
depth perception. None of these visual symptoms were
reported at any time. The astronaut was asked to look out
aportholeduring thenight time to find thebrightest star easily
visible. Then he evaluated the quality of the image of the star
using each eye. The goal was to note any ghosting, doubling,
flare, or rays off the star or rings or halos around the star.None
of these symptomswere reportedat any time.Visualdisability
Figure 4. Responses to the ocular symptoms questionnaire, prior to
(L-2 days), during (days 1 to 12), and after the flight (R C27 days).
The astronaut experienced few symptoms, reporting tired eyes
that were “a little troublesome” (category 4) and “slightly” (category
3) irritated or painful eyes during the flight. He reported no dry
eyes, visual discomfort, or headaches attributable to vision at any
stage.

VOL 38, AUGUST 2012
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questions were designed to detect a change in refractive error
and included a reduced ability to read up close, read at arm’s
length, perform any tasks involving near vision (seeing up
close), perform any tasks involving seeing at arm’s length,
and perform any tasks involving distance vision. No reduc-
tion in performance was noted during flight.

The return trip from the International Space Station to
Earth occurred on day-12 post-launch and took fewer than
3.5 hours. Post-flight testing was performed 2 days and 27
days after landing (ReturnC2 and ReturnC27, respectively).
At ReturnC2, ocular parameters were largely unchanged
from the pre-flight examination including IOP (13 mm Hg
in the right eye, 12.5 mm Hg in the left eye), cycloplegic re-
fraction (�1.00 C1.00 D in the right eye, �0.50 C0.50 D in
the left eye), keratometry (41.37/41.75 � 27 in the right
eye, 41.75/42.00 � 163 in the left eye), corneal topography,
andwavefront aberrations. LogMAR visual acuity and ques-
tionnaire datawere not collected on this visit. At ReturnC27,
all ocular parameters showed negligible change from the
preflight examination including IOP (11 mm Hg in the right
eye, 10 mmHg in the left eye), CCT (510 mm in the right eye,
505 mm in the left eye), and cycloplegic refraction (�0.50
C1.25 � 20 in the right eye, �0.25 C0.75 � 150 in the left
eye). LogMAR visual acuity and questionnaire data were
collected on this visit (Figures 3 and 4).
DISCUSSION

Since the start of the Russian and American manned
space programs, cosmonauts and astronauts have
used glasses and contact lenses for the correction of
refractive errors and presbyopia during space opera-
tions. Since glasses in a 1-G (Earth) environment are se-
cured to the face largely by gravity, they canbe difficult
to correctly position in microgravity and are prone to
fogging, especially during extravehicular activities
(spacewalks). Contact lenses are commonly used but
can be difficult to clean, store, and insert in the micro-
gravity environment. As on Earth, contact lens use in-
creases the risk for ulcerative keratitis that could prove
devastating on a space mission. These mission-related
difficulties with traditional methods to correct vision
suggest refractive surgery as a practical alternative.

There has been a gradual evolution in the overall
safety and effectiveness of laser vision correction using
the excimer laser.10–26 Initial optical zone diameters
were relatively small (4.0 to 5.0 mm) and led to
frequent reports of glare and halos around lights at
night.27 Larger optical zones reduced, but did not
eliminate, the incidence of night-vision disturbances.28

Wavefront-guided treatment profile further improved
quality of vision and contrast sensitivity compared
with previous types of surgery.29,30 Although rare,
visual and ocular surface symptoms may occur and,
when severe, can cause visual disability31

The visual environment in space predisposes even
a normal eye to glare and reduced contrast sensitivity.
A previous inflight study performed on 23 space shut-
tle crewmembers with normal eyes reported evidence
J CATARACT REFRACT SURG -
of reduced contrast sensitivity.32 There is at least a 15%
reduction of incoming solar radiation at the Earth’s
surface because of atmospheric absorption.33 Thus, at
an altitude of 220 miles, objects outside the Interna-
tional Space Station are much brighter under solar illu-
mination than on Earth. Lighting conditions inside the
International Space Station are suboptimal. During
some portions of the International Space Station mis-
sion, the astronaut experienced a range in light inten-
sity from the glare of sunlight to the blackness of
space. Given that he had PRK in 1994 with a presumed
6.0 mm ablation zone, the astronaut had the potential
for visual difficulties with exposure to this broad
spectrum of lighting conditions. However, inflight he
reported no change in visual ability from what he ob-
served on Earth.

Although the astronaut’s eyes were subjected to
a wide spectrum of physiologic changes, no measur-
able changes in distance or near visual acuity, no hy-
peropic shift in refraction, or change in the amplitude
of accommodation were documented during launch,
12 days of microgravity, and reentry. This information
suggests that his post-PRK corneawas not significantly
affected by these conditions. The astronaut did experi-
ence some ocular symptoms, most notably tired eyes
reported as “slight but not troublesome” to “a little
troublesome” during the first half of the flight. He
also noted irritated and painful eyes to a “slight but
not troublesome” level, and tearing and itchiness to
a “perhaps very slightly” level. He reported no dry
eyes, light sensitivity, visual discomfort, or headaches
related to vision. These symptoms are probably best in-
terpreted as very low level and possibly more related
to sleep deprivation than any space-related ophthal-
mic changes or any refractive surgery–specific issue.
The astronaut reported facial edema and pressure in
his face, eyes, and sinuses within minutes of reaching
microgravity. These symptoms are commonly re-
ported and are thought to be caused by cephalad mi-
crogravity fluid shifts. He also noted several episodes
of multiple pixel-like bright light flashes during the
mission. The phenomenon of light flashes, thought to
be caused by radiation, was observed by Apollo astro-
nauts and has also been reported during space shuttle
and International Space Station missions.34–36 Al-
though short-duration exposure to such radiation
appears harmless, some evidence suggests that long-
term exposure may lead to cataract formation.37–39

In the early days of the space program, potential
space-flight candidates were subjected to extremely
rigorous physical criteria for selection as an astronaut
or cosmonaut. This rigid selection process largely
eliminated the need for optical correction. Over time,
the selection criteria has become less rigid and more
inclusive as scientists, payload specialists, and other
VOL 38, AUGUST 2012
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spaceflight participantsmake up a larger proportion of
those flying in microgravity. The implementation of
more relaxed eye standards has by necessity led to
the need for glasses and contact lenses in space trav-
elers. Since these devices have proven suboptimal for
use in a microgravity environment, refractive surgery
would appear to be a logical alternative. We believe
that this case report suggests that PRK is a safe, effec-
tive, and well-tolerated procedure for use by astro-
nauts during spaceflight.
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