National Aeronautics and Space Administration

ISS Environmental Control and Life Sur System (ECLSS) Future Development for Exploration

Robyn Carrasquillo NASA Headquarters robyn.l.carrasquillo@nasa.gov (202) 358-4593

2nd Annual ISS Research and Development Conference July 16-18, 2013

Earth Provides for Us

Air to breathe
Water to drink
Food to eat

As We Leave Earth, We Still Need...

Air to breathe
Vater to drink

• Food to eat

Average Human Metabolic Balance (lb/person-day)

xygen		1.84
Vater Drink	3.56	7.77
In food	2.54	
Food Prep	1.67	

F00	d Soli	ds	1.36
Ох	ygen	0.44	
Ну	drogen	0.08	
Ca	rbon	0.60	
Ot	her	0.24	

P.		MAR	XNN XX	and the second	
	•	Carbon	Dioxid	e 2	
°					
).	•	Water	A 3	8	3.5 3
		Urine		3.31	
		Sweat 8	k respiratio	on 5.02	
		Feces		0.20	

• Solids

In sweat In feces 0.13 0.04 0.07

• Total Out

10.97

Total In 10.97

Sustaining people in space requires managing all of their "ins and outs"

Functions Performed by ECLSS

TO REAL ROOM

Supply Oxygen

Remove Carbon Dioxide

Control Cabin Pressure

Control Cabin Atmosphere Composition & Purity

> **Control Temperature**, Humidity, & Particulates

Supply Water

Collect, Stabilize, Store, & Dispose of Wastes

Detect and Suppress 5.00.5

Fires

Monitor Cabin Environment

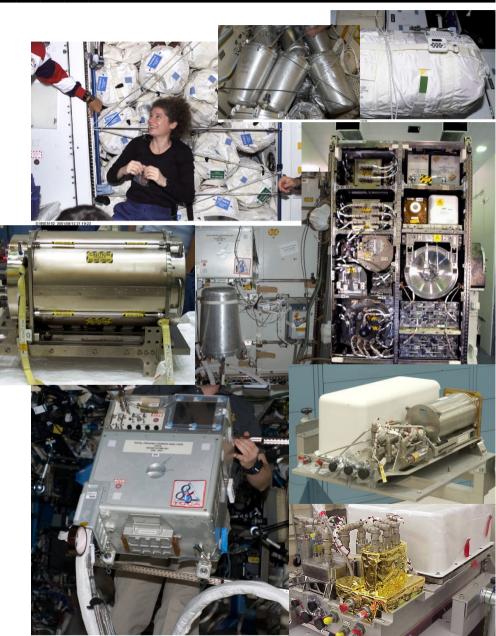
Ventilate Cabin

Recycle Water

Respond to and Recover from Environmental **Emergencies**

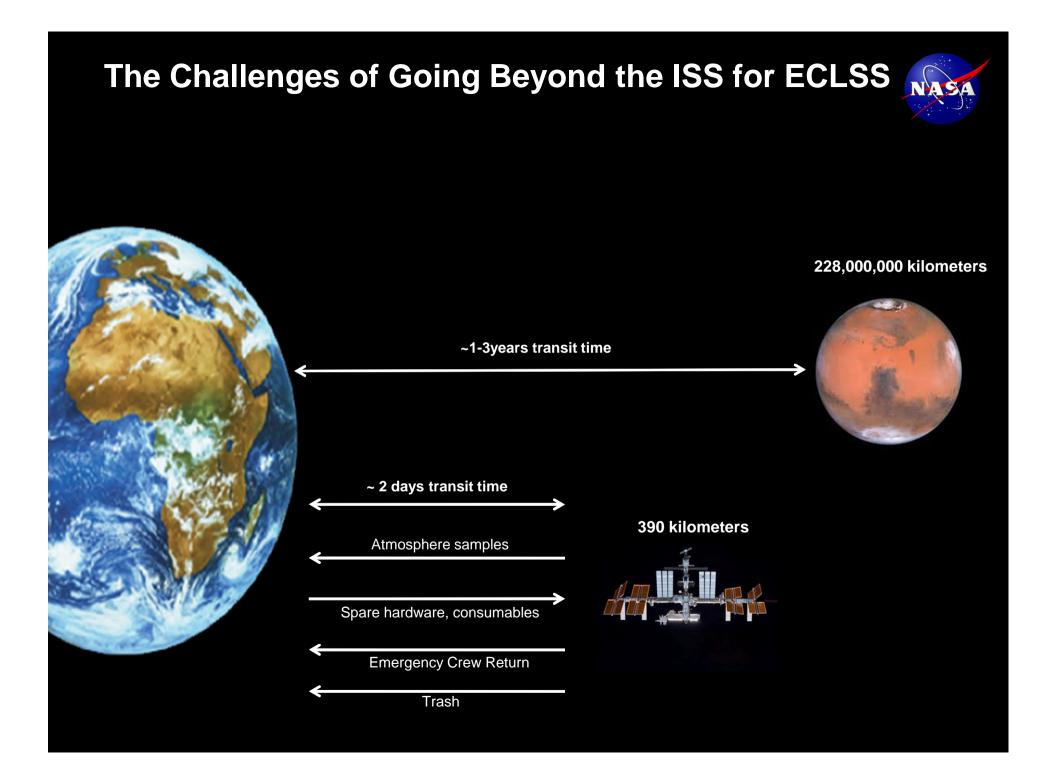
Recycle Oxygen

What ECLSS Capabilities Exist Today? Atmosphere Management

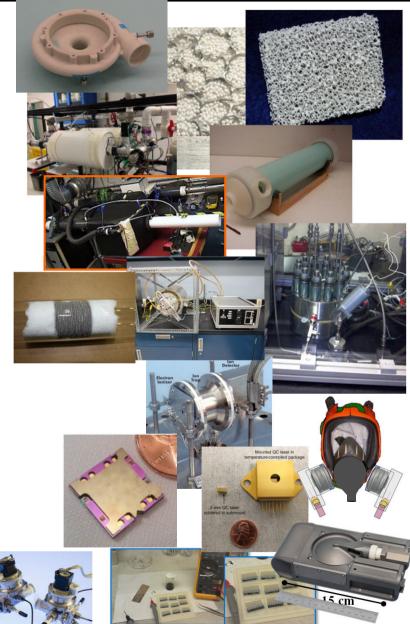

- Circulation
 - Fans (cabin & intermodule), valves, ducting, mufflers, filter elements
- Conditioning
 - Remove CO2 (expendable, regenerative open, regenerative closed)
 - Remove humidity (regenerative open, condensing heat exchangers closed)
 - Control temperature (non-condensing heat exchangers)
 - Recovery of ~50% O2 from CO2 (Sabatier process)
 - Supply O2 (stored gas, expendable perchlorate candles, H2O electrolysis)
- Emergency Services
 - Fire detection (optical) & suppression (CO2, N2)
 - Fire recovery (emergency return, scrub or vent cabin)
 - Toxic spills & medical response (respirators, O2 masks)
- Monitoring
 - Major constituents (mass spectrometry)
 - Trace constituents (primarily grab sample return with experimental onboard instruments)
- Pressure Management

What ECLSS Capabilities Exist Today? Water Management

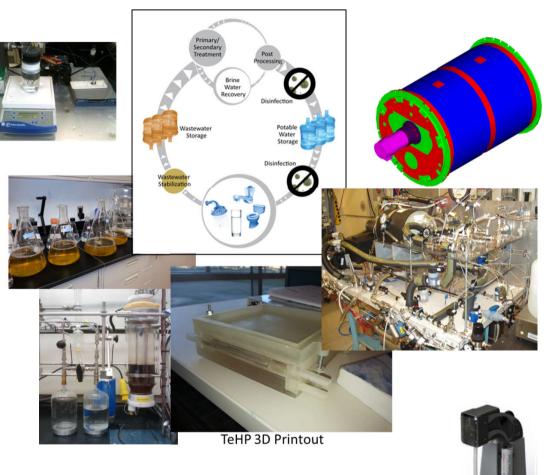
NASA


- Manage Potable Water
 - Stored water (earth-supplied, bellows tanks, collapsible bags)
 - Microbial control (iodine)
- Manage Waste Water
 - Collect wastewater (urine and humidity condensate air/liquid spin separators)
 - Stabilize wastewater (urine pretreatment)
 - Recover water from urine (vapor compression distillation)
 - Recover water from humidity condensate (filtration, adsorption, ion exchange, catalytic oxidation, gas/liquid membrane separators)
 - Dispose of unrecovered wastewater "brine" (store and disposal)
- Monitoring
 - On-line conductivity
 - Off-line total organic carbon, iodine
 - Samples returned to earth

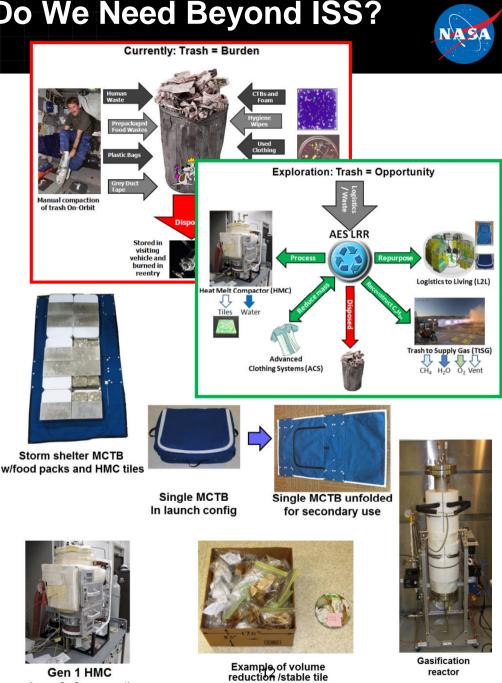
What ECLSS Capabilities Exist Today? Waste Management


- Manage Logistical Waste (packaging, containers, etc.)
 - Gather & store
 - Dispose (in re-entry craft)
- Manage Trash
 - Gather & store
 - Dispose (in re-entry craft)
- Manage Metabolic Waste
 - Collect (air-flow assisted)
 - Contain
 - Vent odor & bacterial control (sorbent, filter, vent overboard)
 - Dispose (in re-entry craft)

What ECLSS Capabilities Do We Need Beyond ISS? Atmosphere Management


- Circulation
 - Fans: quiet
 - Filtration: high capacity, low maintenance, surface dust filtration
- Conditioning
 - Remove CO2 : durable sorbents & substrates (non-dusting)
 - Remove humidity: durable desiccants, energy-efficient water save, combined CO2 & humidity removal (open loop)
 - Control temperature: durable heat exchanger coatings, lightweight heat exchangers & coldplates
 - Recover O2 from CO2: >50% recovery
 - Supply O2: more reliable and simpler O2 generator, high pressure electrolysis (3600 psia), O2 scavenging from cabin air
- Emergency Services
 - Fire detection: acid gases, CO (replace obsolete ISS tech long duration & withstand vacuum exposure)
 - Fire suppression: non-toxic water mist for small spacecraft
 - Fire recovery: "smoke eater"
 - Toxic spills & medical response: filtering mask, non-venting O2 masks
- Monitoring
 - Reliable Major Constituent device
 - On-board trace constituents: miniaturized, with front end for H2O sample prep
 - On-board microbial with species identification & quantification
- Pressure Management
 - Variable pressure regulator (for space suits)

What ECLSS Capabilities Do We Need Beyond ISS? Water Management


- Manage Potable Water
 - Microbial control: biocide, safe for consumption, on-orbit replenishment
- Manage Waste Water
 - Stabilize wastewater: non-toxic urine pretreat, prevent solids precipitation
 - Recover water from urine: simplified, reliable 85% recovery
 - Recover water from humidity condensate: robust moderate temperature oxidation catalyst, high capacity sorbents & resins
 - Water recovery from concentrated brine
- Monitoring
 - Total organic carbon
 - Biocide
 - Microbial: viable, speciation
 - Organic constituents: front-end sample processor for atmosphere monitor
- Dormancy
 - System must be able to operate after extended periods of dormancy at destination

What ECLSS Capabilities Do We Need Beyond ISS? Waste Management

(proof of concept)

- Manage Logistical Waste (packaging, containers, etc)
 - Gather & store: reduce
 - Dispose: re-purpose
- Manage Trash
 - Gather & store: reduce
 - Dispose: re-purpose, stabilize, recover water & resources
 - Including crew radiation protection & planetary protection
- Manage Metabolic Waste
 - Collect: common system suitable for broad range of exploration vehicles & habitats
 - Contain
 - Dispose: re-purpose, stabilize, recover water & resources
 - Including crew radiation protection & planetary protection

for mixed trash (Gen 1 HMC tile)

Current ECLSS Evolution Plans and Projects

- The ECLSS community has developed a detailed roadmap for evolution needs, with detailed plans and budgets for closing gaps using the ISS as a testbed
- Current activities include:
 - Flight this year of new "CDRA-4" CO2 removal beds for improved sorbent robustness and containment
 - Ground development of various atmosphere and fire product monitors; flight demonstration of GC-DMS-based and GC-MS-based trace gas monitors
 - Development and planned flight of water mist fire extinguisher on ISS
 - Development and flight of emergency mask (dual cartridge) on ISS
 - Development of improved major constituent monitor for ISS and Orion
 - Development of a candidate microbial monitor for possible flight demonstration on ISS
 - Development of an alternate ISS urine pretreatment to address precipitation issues
 - Redesign of ISS water processor multifiltration bed for extended life
- Also in planning stages:
 - Upgrades to ISS urine processor, oxygen generator, and water processor for improved reliability and life extension
 - Universal commode
 - Development of other potential CO2 removal improvements
 - Assessment of dormancy impacts
 - Ground development of silver biocide
 - Technologies to recover >50% O2 from CO2 (low TRL)
 - Technologies to recover water from urine brine (low TRL)

ECLSS Benefits to Humanity

- Microbial check valve resin originally developed for Space Shuttle and adapted for use in ISS Water Processor.
- Commercial rights sold to Water Security Corporation, Reno, NV
 - Water Security involved in development of water filtration solutions for worldwide water quality problems.
- MCV disinfection offers advantages of low maintenance, reliable and consistent delivery, no electricity required, and ability to leave residual disinfection.
- World Wide Water Company has delivered thousands of their Survival Bag to many regions of the world for disaster relief and disaster preparedness situations.
 - One survival bag weighs 2 kg and provides 9000 liters of purified water

Vera Cruz, Mexico

• October, 2008 flood relief

Kendala, Northern Iraq

- System mounted on truck services multiple Kurdish villages, cleaning well water
- Sponsored by Concern For Kids, non-profit charity in collaboration with U.S. Army

Mexico Rural Villages

 Over 800 systems deployed in small remote villages providing only potable water

 Chiapas, Mexico school – students refill water bottles from "hydration station" mounted on the side of the filtration system

Kampang Salak, Malaysia

- Pedal-powered unit providing only safe drinking water to community of 600 people
- Pursuing development of network of systems in 11 Southeast Asia countries.

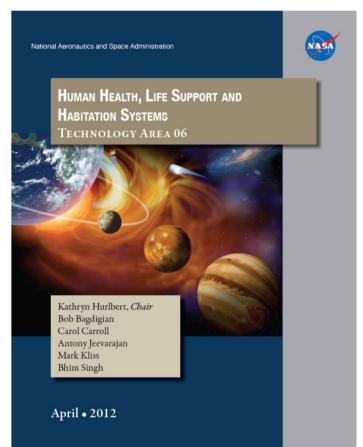
Sabana San Juan, Dominican Republic

- 300 person mountain village
- Nearest drinkable water 5 miles away
- Permanent unit cleans contaminated spring water, using solar power

Balakot, Pakistan

- Earthquake relief
- Water gravity fed from mountain stream

Smithsonian Folklife Festival, June/July '08



For additional information.....

NASA Technical Area Roadmaps, 2012

- covering 14 different technical areas
- Available at <u>http://www.nasa.gov/offices/oct/home/road</u> <u>maps/</u>

Global Space Exploration Conference, May 2012

- ECLSS Roadmap, GLEX-2012_10_1_1x12284
- Available at <u>https://www.aiaa.org</u>

National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

Bob Bagdigian Robyn Carrasquillo Jordan Metcalf NASA Global Exploration Conference May 22-24, 2012 www.nasa.gov