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ISS FLEX Experiments - Background

e  Microgravity droplet combustion experiments aimed at
understanding the flammability boundaries of liquid
fuels in a variety of ambient conditions — spacecraft fire
safety

e Sooting and non-sooting fuels are burned in nitrogen,
helium, carbon dioxide, and xenon environment at
various oxygen concentrations at different pressures
(effectiveness of fire suppressants in spacecraft
environments — CO, is used in ISS)

e Conventional understanding has been that the droplet
flame can extinguish via two modes:
e Diffusive extinction (high Oxygen, small droplet) or
e Radiative extinction (low oxygen, large droplet)
e  Pure evaporation following extinction

Existing theories and numerical simulations supported
this view




ISS FLEX Experiments

e Example of two modes of extinction: Droplet combustion experiment (DCE)
Space Lab Mission MSL-1
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n-heptane in 30-70% oxygen-helium environment at 1 atm



ISS FLEX Experiments

e Droplet combustion experiment (DCE) Space Lab Mission (MSL-1)
Backlit images of te droplet

Radiative extinction UV images of the flame

Diffusive extinction UV images of the flame

n-heptane in 30-70% oxygen-helium environment at 1 atm



ISS FLEX Experiments

e Anomalous Combustion



ISS FLEX “Anomalous” Combustion
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ISS FLEX “Anomalous” Combustion
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Three examples of 2" stage combustion: heptane in air, 18-82%02-N2, 18-67-15% 02-N2-CO2

More recent test show similar behavior in n-octane, and n-decane fuels



ISS FLEX “Cool Flame” Combustion

Over 50 years of microgravity droplet combustion experiments (drop-
towers, parabolic-flights, and space shuttle) and the 2"d stage low-
temperature combustion has never been observed
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Initial attempts at explaining this behavior using pure vaporization could
not agree with quasi-steady d-square law behavior. Diffusion controlled
surface catalytic reaction models required unacceptably high diffusion
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Passes “the duck test” — it must be cool-flame supported combustion!



ISS FLEX “Cool Flame” Combustion
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Can cool flames support quasi-steady alkane droplet burning?
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Article history: Experimental observations of anomalous combustion of n-heptane droplets burning in microgravity are

Received 17 May 2012 reported. Following ignition, a relatively large n-heptane droplet first undergoes radiative extinction, that

i’-’ce“’e&g '"7’9"1'*2‘10f°2"“ 25 June 2012 is, the visible flame ceases to exist because of radiant energy loss. But the droplet continues to experience

eceptet 1 ],u y 201 vigorous vaporization for an extended period according to a quasi-steady droplet-buming law, ending in
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a secondary extinction at a finite droplet diameter, after which a vapor dloud rapidly appears surrounding

the droplet. We hypothesize that the second-stage vaporization is sustained by low-temperature, soot-

gg‘;;dz; mbustion free, “cool-flame” chemical heat release. Measured droplet burning rates and extinction diameters are
Cool flames used to extract an effective heat release, overall activation energy, and pre-exponential factor for this
Alkane chemistry low-temperature chemis[ry,. and the values of the resu_lting parameters are found to be cl.oser to those
Microgravity of “cool-flame” overall reaction-rate parameters, found in the literature, than to corresponding hot-flame
Extinction parameters.

© 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Published after critical reviews from skeptical reviewers!



Cool Flames

Traditional view of cool flames (reason for skepticism)

e Historically cool flames are associated with premixed combustion leading to
ignition of hot fuel/air mixtures. (commonly encountered in car-engine knock)
cool flames -> ignition
hot flames -> cool flame combustion! (Never — until now!)
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Cool Flames

 Combustion of hydrocarbons is a complex process and involves multiple
reactions involving free radicals

* The exact nature of the chemical pathways depend on molecular structure of
the fuel, pressure, and temperature among others

A simple model:

’

cool flame NTC

heat release R

>

temperature T



ISS FLEX “Cool Flame” Numerical Validation

e Numerical simulations and confirmation
of “cool-flame” combustion



ISS FLEX “Cool Flame” Numerical Validation

 Numerical simulations by the Princeton Group (Farouk & Dryer)

- Full detailed chemical kinetics (Curran et al., 2002: Lawrence Livermore)
- Involves 1038 species and 2739 reactions
- Reduce mechanism with 128 species and 565 reactions using path flux analysis

TABLE Al
n-Heptane Mechanism for Diffusion Flames
ELEMENTARY REACTION A n E. REF
-J.K-rﬂ.m' Jrmeol

1__H Y = OH__+ O 0.2000E+12 o 0.7030E+03 20-24
2__ 0 T _H2 = OH__+ H 0.5120E+02 267 0.2630E+05 20-24
3 _OH _+ H2 -~ H0_ + H 0.1000E+06 16 0.1380E+05 20-24
4 __OH__+ OH = H0 _ + O 0.1500E+07 114 0.4200E+03 20-24
5 02+ H + M = HOZ + M 0.6165E+14 142 0.0000E+00 2024
6 _Ho2 _+ W -~ OH__+ OH 0.1680E+12 0 0.3660E+04 2024
7 __HO2 + H - W2+ o2 0.4270E+11 0 0.5900E+04 20-24
8 HO2 + OH = H2O0 + O2 0.2890E+11 0 0.2080E+04 20-24
9 HO2 + H -~ H20_ + O 0.3000E+11 0 0.7200E+04 20-24
10 HO2 + 0O =  OH + 02 03190E+11 0 0.0000E+00 20-24
11___HO2 + HO2 - H202_+ 02 0.1860E+10 0 0.6440E+04 20-24
12__H202 + H -~ H20__+ OH 0.1000E+11 0 0.1500E+05 20-24
13 H202 + H = HO2 + H2 0.1700E+10 0 0.1570E+05 20-24
14__H02 + O -~ HO2_ + OH 0.6600E+09 0 0.1660E+05 20-24
15___H202_+ OH = H20__+ HO2 0.7830E+10 0 0.5570E+04 20-24
16__H02 + M -~ OH__+ O+ M 0.1200E+15 0 0.1900E+06 20-24
17_H ¥ H + M= H__+ M 0.1000E+13 1 0.0000E+00 2024
18 H + H + M = H2 + M 0.9200E+11 0.60 0.0000E+00 20-24
19 _H Y H + M - H__+ M 0.6000E+14 125 0.0000E+00 20-24
20 H + H + M = H__+ M 0.5490E+15 2 0.0000E+00 20-24
21 H + OH+ M = H20 + M 0.2200E+17 2 0.0000E+00 20-24
220 v 0 + M- 02+ M 0.6170E+10 0.5 0.0000E+00 20-24
23__Co__+ OH - coz_+ H 0.4400E+04 L5 0.3100E+04 20-24
24 CO + HO2 = CO2 + OH 0.1500E+12 0 0.9893E+05 20-24
25 _CO__+ O + M - CO2_=+ M 0.2510E+08 0 0.1901E+0S 20-24
26 cO + 02 = CO2 + O 0.2500E+10 0 0.2000E+06 20-24
27 CH + 02 = CHO + O 0.3300E+11 0 0.0000E+00 20-24
28 CH + CO2 = CHO + CO 0.3400E+10 0 0.2900E+04 20-24




Numerical simulations

ﬁ)t chemistry only
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Captures the low-temperature combustion — but how good is it?



Numerical simulations

Predicted droplet diameter and burning rate evolution compared experiments
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Model => Curran chemistry with PFA reduction

Revised model => The reaction rates for the most sensitive reactions are modified

QOOHO, -> QOO0H + 0, (was increased: A factor increased by 2)
QOOHO,-> Ketohydroperoxide + OH (was decreased: A factor decreased by 2).



Numerical simulations

Ignition delay time, 1 (us)

Revised kinetics improves ignition delay and reactivity predictions in the low-
temperature region
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Droplet combustion improves predictions of results from other universally used
experimental techniques



Numerical simulations

e Further confirmation of “cool-flame” 2"d stage burning by Italian researchers

XXXVI Meeting of the Italian Section of the Combustion Institute

COOL FLAMES IN DROPLET COMBUSTION

A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi
alberto.cuoci@polimi. it
Department of Chemistry. Materials. and Chemical Engineering “G. Natta™
Politecnico di Milano (Italy)
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ISS FLEX Experiments

 Potential applications of “cool-flame” combustion



Potential applications

* Advanced low temperature combustion engines*
* Homogeneous charge compression ignition engine (HCCI)
* Provides low emissions and improved efficiency (~¥15% fuel savings)
* Major technical challenge is control of ignition timing

Gasoline Engine Diesel Engine HCCl Engine
(Spark Ignition) (Compression Ignition) (Homogeneous Charge ® vy
spark plug fuel injector Compression Ignition) CcDC 3 sseananag

Rich limit

10 | R si

Lean limit

Hot-Flame Region: Hot-Flame Region: Low-Temperature Combustion:
NOx NOx & Soot Ultra-Low Emissions (<1900K) 0

v

*Reitz, R.D., Combustion and Flame, 2013



Potential applications

e Fuel reforming technologies*
e Heavy fuels are partially oxidized (using “cool flame”) and used in
gaseous burners with reduced emission and good power modulation
and hydrogen for fuel cells

Catalytic diesel reformer

* New burner technologies
e The possibility to use cool-mode combustion of individual droplets may lead
to entirely different design concepts of spray burners (A. Cuoci, et al., 2013)

*Hartman et al., J. of Power Sources, 2003



Potential applications

* Fire safety
* On Earth spontaneous combustion and explosion of liquid fuel
vapors in chemical industry is a major concern
* |In space “cool flame” can persist after hot flame extinction and

generate combustible vapor that can reignite (similar to smoldering
combustion in solid fuels)

* Recent results show re-ignition with decane



Concluding Remarks

e A new phenomenon where a hot flame extinction leads
to a low-temperature, “cool-flame” burning in
microgravity has been observed for the first time

e These cool flames produce partially oxidized fuel and
potentially re-ignite to hot flames posing fire safety
concerns in spacecraft environments

e Existing, widely-used detailed chemical kinetic models
do not accurately predict the 2"d stage cool flame
extinction and need further improvement

e Improved low temperature chemistry will have wide
ranging applications including advanced internal
combustion engine design and development

e The new phenomena may lead to new innovative
burner designs and fuel reforming technologies
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