OPALS: Optical Payload for Lasercomm Science

A COTS-Based Technical Demonstration of Optical Communications

Bogdan Oaida

OPALS Project Systems Engineer

Jet Propulsion Laboratory, California Institute of Technology

[bogdan@jpl.nasa.gov]

27 June 2012

With contributions from:

Jessica N. Bowles-Martinez, Baris I. Erkmen, Parker A. Fagrelius,
Marcus Wilkerson, Robert J. Witoff

A Different Kind of Opal

OPALS Summary

Gimballed Transceiver

<u>Objective</u>: Deliver video from ISS to optical ground terminal via an optical communications link.

- ☐ JPL Phaeton/Early Career Hire (ECH) training project
- ☐ Implemented as Class-D payload
- ☐ Downlink at ~30Mb/s

Flight System:

□Optical Head

- Beacon Acquisition Camera
- Downlink Transmitter
- 2-axis Gimbal

☐ Sealed Container

- Laser
- Avionics
- ■Power distribution
- ■Digital I/O board

Flight Releasable Attachment Mechanism (FRAM)

Implementation:

Ground Station - Optical Communications Telescope Laboratory at Table Mountain Facility

- ☐ Flight System mounted to ISS
 - FRAM as standard I/F
 - Attached externally on Express Logistics Carrier

Major Milestones:

ΔMCR – 10/19/2009

SRR - 02/23/2010

VDR1 – 06/24/2010

DR2 – 08/31/2011 TRR – 05/15/2012

• PSR – 9/25/2012

• Delivery – 9/28/2012

Launch: July, 2013

Vehicle: SpaceX Dragon CRS3

ISS Increment: 35/36

Operational Lifetime: 90 days

Mission Architecture

Operations Scenario

(5) Active tracking of beacon continues and video data is looped throughout the pass.

(2) The ISS rises above tree-line elevation (approx. 25 degrees)

- (6) Contact lasts approximately 100 seconds
- (7) Flight and Ground Systems commence their post-Demonstration activities at a predetermined tire

(4) Communication laser is modulated with the video data as soon as the pass starts.

using orbital predictions (no active tracking on the ground)

Optical Communications Facet of OPALS

- Optical link performance characterization & validation
- Atmospheric turbulence characterization
 - Obtain downlink aperture-averaged fading statistics by recording received power
 - Obtain uplink scintillation statistics by recording beacon power on flight system
- Link availability studies
 - Geometry, atmospheric & environmental, day vs. night
- Pointing performance
 - OCTL Open loop tracking
 - Flight System acquisition, tracking, stability

High-rate Downlink Ground Fransceiver (1-m Diameter)	

DOWNLINK CHARACTERISTICS			
SIGNALING			
Modulation	OOK	-	
Uncoded BER	1.00E-04	-	
ECC	Reed-Solomon	-	
Modulation Rate	30-50	Mb/s	
TRANSMITTER			
Downlink wavelength	1550	nm	
Beam Divergence (1/e^2)	1.65	mrad	
Average laser power	2.5	W	
Power transmitted from FS	>0.833	W	
POINTING			
Pointing Bias	150.0	μrad	
Pointing Jitter (RMS)	125.0	μrad	
LINK GEOMETRY			
Max Zenith Angle	65	deg	
Max Range	700	km	

BEACON CHARACTERISTICS			
Uplink wavelength	976	nm	
Average Laser power	5	W	
Beam divergence	1.7	mrad	
Power transmitted from OCTL	1.26	W	

Laser Safety Limitations On Pass Geometry

- Range of Motion (wrt to nadir) limited to:
 - 75° to -35° in AZ (~ along track)
 - -40° to -1° in EL (\sim cross track)
- Favorable Passes ~ 1 every 2-3 days

Downlink Interfaces

Flight System Interface Diagram

Sealed Container Design

From Paper to Metal

Radiator

Sealed Container

Optics

Gimbal EL

Gimbal AZ

Avionics & Laser Assy

Quantifying the ISS Interface

Programmatic

- JSC
 - TDO Tech Demo Office
 - OZ Payloads
 - ON Launch
 - OB ISS
 - PSRP Safety
- KSC
 - UB Utilization
- MSFC
 - HOSC Operations
 - Simulator Support
- SpX
 - Mission Management
- 200+ individuals from 35 teams
 - GFE & GSE [14 total pieces]
 - Flight ExPA
 - Electrical + C&DH Simulators
 - Mechanical manipulation tools

Technical

- Resources
 - Mass: using 340 of the 490 lbs allocated (excludes ExPA)
 - Power: using ~200W (peak) of the 500W allocated
 - Volume: 33.2" x 45.86" x 26.87" allocated
- Requirements
 - 694 Levied by 57003-ELC
 - 411 Applicable (52% of project requirements)
 - 81 Requirement changes since CDR (12%)
 - 117 Levied by 57012
 - 41 Applicable (5.2% of project requirements)
 - 22 Requirement Changes since CDR (39%)
- Testing
 - Preliminary electrical interface testing required 50+ Support Staff (KSC, JSC, MSFC Travelers)
 - Most power & data verifications must be done on ELC simulator at KSC

BACKUP

MOS/GDS Interfaces

FRAM Interface

OPALS Transfer Range

OPALS Location on ISS

Design Validation of Force Convection

- Used Computational Fluid Dynamics (CFD) to optimize arrangement of elements within sealed container, size heat exchanger, evaluate flow rates, and trade possible gasses
- Performed flow test in lab to validate CFD values
- Dye pen inspection to ensure ring forging has no cracks after machining

