The Microgravity Research Platform:
Novel Insights into the Mechanisms and
Treatment of Infectious Disease

Cheryl A. Nickerson, Ph.D.
Professor, Center for Infectious Diseases and Vaccinology
The Biodesign Institute, Arizona State University

How does our lab use the spaceflight platform to benefit human health?
New Insights into Disease Mechanisms Not Observed using Traditional Culture

The pathogen

In-flight infections
Risk assessment/Countermeasures

SPACE ACT AGREEMENT

The host

Fluidic environment relevant to conditions encountered by pathogens in human body

Physiologically relevant

Biomedical phenotypes not observed during conventional culture

Vaccines/Therapeutics/Tissue Engineering

Treatment and prevention

Why Infectious Disease?

Outpacing Infectious Disease!
Better understanding of the mechanisms of microbial pathogenesis leads to new strategies to combat infectious disease

Leading causes of death
63.9 million from all causes, worldwide, 2008

- Infectious disease - leading cause of death world-wide
- National and global social, economic, political, and security impact
- Total cost in US exceeds $120 billion annually - direct medical and lost productivity costs. Globally staggering costs.
- New and re-emerging infectious disease, antibiotic resistance, bioterrorism threat

Note: Causes, cardiovascular and respiratory/obstructive deaths can also be caused by infectious and are the percentage of deaths due to infectious disease alone more.
Investing in Infectious Disease Research

• Current estimates of bringing a new drug to market ~ $1 billion and requires extended development times of over a decade before it reaches patients

• Even incremental decreases in this cost and time are of tremendous importance

• Spaceflight holds tremendous promise to benefit infectious disease research

Commercial Development through Spaceflight

A unique environment for innovative discoveries to advance human health

Spaceflight culture induces novel changes in both human and microbial cells directly relevant to infectious disease development and its treatment

Virulence, Immune system function, Antibiotic resistance, Tissue engineering

Discovery of previously unknown molecular targets and mechanisms

Commercial product development

Incremental decreases in cost of drugs/vaccines and time to clinical bedside
The Reality of Spaceflight Research

Advances U.S. efforts to maintain technological leadership against international competition with a lasting impact on our scientific capability, economy, and quality of life

✓	Does provide novel vaccine and therapeutic targets for future research investigations on Earth
✓	Does provide a platform to modify existing vaccines and therapeutics
✗	Does not create a manufacturing platform for vaccine production
✗	Does not bypass current federal regulations, including clinical trial timelines
- Accelerated downstream vaccine approval should *not* be expected	
- FDA clinical trials ~8-10 years	

We Must Communicate Realistic and Scientifically Accurate Goals and Expectations!
This platform has *tremendous potential*
We must reject unsubstantiated claims!
Microgravity Culture Uniquely Alters Gene Expression, Stress Resistance and Virulence in Major Human Pathogens

Virulence

Salmonella typhimurium

Pseudomonas aeruginosa

Virulence gene expression
Quorum sensing, biofilm, adherence, cytotoxicity

Modulating ion levels turns off virulence

Hfq – Evolutionarily conserved master regulator of microgravity response in Salmonella and Pseudomonas

Gene Expression
• Virulence genes down-regulated
• Hfq Master regulator

Our Recent Spaceflight Experiments

First study to profile the infection process in human cells during spaceflight

Characterization of the host-pathogen interaction when both host and pathogen are simultaneously exposed to the microgravity environment of spaceflight.

Spaceflight experiment to enhance (Recombinant Attenuated Salmonella Vaccine) strain against pneumococcal disease in human clinical trials

Flown under ASU’s Space Act Agreement with NASA

Our discoveries led us to hypothesize the spaceflight environment could be used to accelerate genetic engineering of RASV strains as immunizing vectors against infectious disease by maximizing their ability to induce a protective immune response.
Our Future Spaceflight Experiments

- NASA funded SpaceX Experiment
 MICRO-5/PHOENIX
 Goal: Investigate susceptibility and associated cellular, molecular and innate immune responses in the human surrogate host, *Caenorhabditis elegans*, to infection when *both* host and pathogen are simultaneously exposed to spaceflight culture

-Utilization of ASU’s Space Act Agreement with NASA to use the ISS National Lab platform
 Goal: Identification of cellular and molecular responses to the microgravity environment with innovative biomedical and biotechnological applications to solve major human health challenges

An Additional Research Area for our Future Spaceflight Investigations:

GOAL: *In vitro* models of human tissues *which better approximate in vivo* to study host-microbe interactions, drugs and therapeutics

Explore
Better models = more relevant research outcomes

Validate
Reduce, Replace, Refine

Translate
Disease mechanisms, drug discovery, environmental health, organ generation

Benefit human health
OUR 3-D CELL CULTURE MODELS DEVELOPED FOR INFECTION STUDIES

- Neuronal tissue
- Small intestine
- Lung
- Colon
- Placental tissue
- Vaginal tissue

Engineering state-of-the-art 3-D tissue models under physiological low fluid shear: Mimicking immune response and underlying tissue microenvironment

Barrila et al., 2010, Nat Rev Microbiol; Radtke et al., 2010, PLoS ONE; Crabbe et al., 2011, Cellular Microbiology

Pathogens Establish Infection of 3-D Cells in Ways that Model Important Aspects of an in vivo Infection

In vivo-like validation of infectious disease mechanisms not mimicked by conventional cell culture models

- Tissue Pathology
 - Adherence, invasion, apoptosis
 - Innate immune responses
- Host biosignatures – transcriptomics, proteomics, metabolomics
- Microbial virulence mechanisms
- Growth of pathogens not previously culturable
- Mimic human responses to antimicrobial therapeutics
A unique environment for innovative discoveries to advance human health

- Novel environment offers insight into fundamental biological response parameters from both the host and pathogen perspective that are directly relevant to infectious disease - and which cannot be observed using traditional experimental approaches
- Scientific advances and commercial potential for innovative solutions toward treatment and control of infectious disease.

Acknowledgements

Arizona State University
Jennifer Barrila
Aurelie Crabbe
Shameema Sarker
Andrea Radtke
Rebecca Forsyth
Richard Davis
Roy Curtiss III

Villanova University
James Wilson

Vaccine Research Institute of San Diego
Michael McClelland
Steffen Porwollik

NASA Johnson Space Center
Mark Ott
Duane Pierson
Mayra Nelma-Gonzales
Sarah Castro

Heidi Stefanyshyn-Piper and the crew of STS-115
Commander Domic Gorti and the crew of STS-123
Naoko Yamazaki, Stephanie Wilson and the crew of STS-131
Sandra Magnus and the crew of STS-135

Tulane University
Kerstin Honer zu Bentrup
Lisa Morici
Rajee Ramamurthy

University of Colorado HSC
Michael Schurr

Oklahoma City University
Kent Buchanan

Purdue University
Eric Nauman

Universities Space Research Association
Neal Pellis

Max Planck Institute
Jorg Vogel

University of Arizona
George Tsaprailis
Objective

To characterize the host-pathogen interaction when both host and pathogen are simultaneously exposed to the microgravity environment of spaceflight.

Implications for understanding how human cells function normally - how physical forces and mechanical stress influence balance between normal tissue homeostasis and disease progression

- Profiling cellular responses of human intestinal cells before and after infection with *S. typhimurium* during spaceflight
 - Changes in immune function and cellular stress responses
 - Changes in cellular differentiation
 - Targeted gene expression profiling

First study to profile the infection process in human cells during spaceflight
Discovery Timeline Investigating Effect of Spaceflight on Microbial Virulence

STS-115

STS-123

Ion concentration controls regulatory and virulence response of *Salmonella* in **true spaceflight** culture (Wilson et al, PLoS ONE, 2008)

STS-115

Summary Part 1

Lessons Learned from Spaceflight Culture of Microbial Pathogens

- Spaceflight culture alters molecular genetic and phenotypic characteristics of pathogens, including virulence in novel ways not observed using traditional experimental approaches on Earth.

- Genes differentially expressed during spaceflight can be targeted for vaccine development

- Modulation of different ion concentrations to counteract/inhibit the enhanced virulence of pathogens in spaceflight

- Hfq is a conserved global molecular regulator that may be used by other bacterial pathogens (in addition to *Salmonella* and *Pseudomonas*) to respond to microgravity conditions

Importance for both Earth- and spaceflight-based studies for new strategies to combat infectious disease
Infectious Disease Research and Spaceflight

- Major advances in our knowledge about biological systems - studying their responses to extreme environments - (ex. temp, pH, etc) - led to major advances in global human health breakthroughs

- Spaceflight is another extreme environment which offers tremendous potential to provide new insight into biological responses - including infectious disease

- Spaceflight produces an environment that is relevant to conditions encountered by the pathogen during infection in the human host – but gravity masks key cellular responses on Earth.

- Pathogens experience wide fluctuations in fluid shear in vivo during infection.

- Most studies have not cultured bacteria under physiological fluid shear conditions encountered during infection.

- Fluid shear affects bacterial gene expression, physiology, pathogenesis - but mechanism(s) not well understood.

- Entire classes of microbial genes/proteins involved in host interactions not previously identified during growth under conventional culture conditions.

- New targets for vaccine/therapeutic development.
A Comparison of Cell Culture Environments

- Gravity
- Laminar fluid flow
- Microgravity

Physical forces play a central role in dictating both normal cell/tissue function and disease progression.

Cells sense and respond to mechanical force.

Physical basis of disease:
- Infectious Disease
- Immune Disorders
- Cardiovascular Disease
- Cancer
VISION FOR COMMERCIALIZATION
FROM DISCOVERY TO THE CLINICAL BEDSIDE

FLIGHT EXPERIMENTS

INTELLECTUAL PROPERTY

INNOVATIVE SOLUTIONS TOWARD TREATMENT AND CONTROL OF INFECTIOUS DISEASE

PATENTABLE VACCINES, THERAPEUTICS, AND DIAGNOSTICS