

ADUM: Advanced Diagnostic Ultrasound in Microgravity

- PI: Dr. Scott Dulchavsky, Henry Ford Hospital, Detroit, MI
- Co-I: Dr. Douglas Hamilton, Dr. Ashot Sargsyan, Wyle, Houston, TX
- Project Manager: Shannon Melton, Wyle, Houston, TX

- Conducted on Expeditions 8-11
- Used the HRF Ultrasound Hardware

ADUM Research Goals

Determine accuracy of ultrasound in novel clinical conditions

Determine optimal training methodologies

Determine microgravity associated changes in physiology

Develop catalog of anticipated organ position size changes

CLINICAL PROTOCOLS INVESTIGATED

Ultrasound Protocols: ADUM 83 Hours of Scan Time

- Cardiac
- Abdominal
 - Spleen
 - Liver
 - Gallbladder
- Retroperitoneal
 - Kidneys
 - Pancreas
 - Abdominal Aorta
- Genitourinary
 - Bladder
 - Prostate

- Musculoskeletal
 - Rotator Cuff
 - Knee, Ankle, Elbow
- Thyroid
- Dental
- Sinus
- Eye
- Peripheral Vessels
 - Carotid/Jugular
 - Maneuvers
 - DVT R/O

Ultrasound Protocols: ADUM 83 Hours of Scan Time

- Cardiac
- Abdominal
 - Spleen
 - Liver
 - Gallbladder
- Retroperitoneal
 - Kidneys
 - Pancreas
 - Abdominal Aorta
 - IVC
- Genitourinary
 - Bladder
 - Prostate

- Musculoskeletal
 - Rotator Cuff
 - Knee, Ankle, Elbow
- Thyroid
- Dental
- Sinus
- Eye
- Peripheral Vessels
 - Carotid/Jugular
 - Maneuvers
 - DVT R/O

Echocardiography

Abdominal and Genitourinary Renal Stones / Ureter Patency

Musculoskeletal Ultrasound

Fincke EM, Padalka G, Lee D, van Holsbeeck M, Sargsyan AE, Hamilton DR, Martin D, Melton SL, McFarlin K, Dulchavsky SA. Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station. *Radiology*. 2005 Feb;234(2):319-22. Epub 2004 Nov 8.

Ocular Ultrasound

ADUM Training

- ~4 hours of pre-flight training 6-8 months prior to flight
- Just –in-time training on-orbit 2-3 days prior to session
- Remote guidance during session

Just-in-Time Training :On-board Proficiency Enhancer

ADUM Major Results

- Demonstrated that minimal crew training, just-in-time training and remote expert guidance, can be successfully used to complete complex diagnostic ultrasound exams.
- Ultrasound was rapidly and accurately performed by all crewmembers in a number of organ specific applications which have direct operational relevance
- Demonstrated that this approach could provide direct, important medical information to impact the diagnosis and treatment of inflight medical conditions
 - Eye protocol for ADUM modified for operational use to capture changes associated with the Visual Impairment Intracranial Pressure (VIIP) issue and is used on every increment
- Minimal resources, training, or crew time were required to complete these complex tasks; this served as a successful model for future spaceflight experiments.
- Based on this model other novel uses of ultrasound were identified and evaluated

SPIN OFF RESEARCH

ULTRASOUND CATALOG

Braslet Investigative Grant/Braslet DTO

FRACTURE

Shoulder	Set Up	Survey	Target Images	Pa
Indicator noteh to the patient's RIGHT in short exis. Indicator noteh UP in long exis.	SUPRASPINATUS	INFRASPINATUS	BICEPS	SUBSC

Supraspinatus Long Axis Patient Position: Dass - hand behind the back touching opposite shoulder blade

transchoer Position: long ack of suprespiratus (SS) Scan Sweep: part superior interior, and anterior posterior in a radial lashion

Supraspinatus Short Axis

Patient Position: Dasse Position Instructure: Position: short axis of SSL also showing long biopiol tender Sour Saway: Superior inferior and enterior posterior in a racial behin:

SPINE

Mouse over to see the overlay of cervical spine bones.

Mouse over to see the overlay of cervical spine bones.

TERRESTRIAL APPLICAITONS

Terrestrial Applications

LESSONS LEARNED THAT CAN BE APPLIED TO FACILITATE FUTURE RESEARCH

Training

- Crew time dilemma- not enough is still too much
 - Not enough crew time to train them to do what you want but you are asking for too much crew time
- Expertise on the ground
- Trade training time for remote guidance
- Just-in-time training

Remotely Guided Ultrasound

Remote Guidance Tools

Cue Card for Remote Guidance

Probe Application Points

New Ultrasound with Overlay

Reference Images

Crew Participation in Science

- Include crew as vested part of experiment team
- Crew feedback after each on-orbit session through direct communications between investigative team and crew
 - Cue cards were a recommendation from the crew
 - Crew recommended efficiencies in procedures and positioning that resulted in modified protocols

Split Team Support

Detroit PI directed scientific content

- Provided clinical input and expertise for protocols.
- Conducted crew briefings
- Supported on-orbit sessions from Houston
- Remote support from Detroit ISS Audio and 2-way video connected to Detroit

 Wyle team in Houston handled day-to-day experiment activities

- Developed requirements documents, ISS required documentation
- Developed training materials and conducted crew training
- Developed on-orbit procedures
- Allowed for rapid response for changing on-orbit schedules and other critical tasks that required in person

Summary: Lessons Learned

- Remote Guidance
 Specific Reference Tools
 Just-in-time training
 Get crew invested in science
 Be flexible continuous evaluation of protocol
- Boots on ground with knowledge of ISS operations is valuable

Questions

Shannon Melton, Wyle

Smelton@wylehou.com 281-212-1435