PZT & CNT based SHM Systems for Impact Detection & Localization

Seth S. Kessler, Ph.D. | President/CEO
Metis Design Corporation | 15 July 2014
MD7-Pro Digital SHM System

- Metis Design developed & validated system through SBIR funding
 - AF03-T017 – Intelligent SHM Infrastructure (hardware)
 - AF06-097 – Adaptive Damage Detection (software)
 - USS Independence (N10-T042)
 - Triton UAS (N12-125)
 - Blackhawk (N12-T007, COST-A & others)

- System focus on low mass, low power, expendability, retro-fit
 - novel sensor/algorithm design for large-area coverage
 - distributed intelligence on a digital sensor bus
 - multifunctional capabilities at each node location
MD7-Pro Structural Sonar

- Analog sensor base for impact/damage detection
- Greatly reduces typically required sensor density
- 1 PZT actuator & 6 PZT sensors in small package
- Facilitates both active/passive beamforming
MD7-Pro Acquisition Node

- Digital node for distributed acquisition & local computation (15 g mass)
- Greatly reduces mass of cables & centralized hardware, eliminates EMI
- Facilitates both active (guided wave) & passive (AE) detection methods
- 8 breakout analog & digital channels + built-in triaxial accelerometer & temp
MD7-Pro Acquisition Node + Structural Sonar
MD7-Pro Low Speed Channel Validation

Strain Gauge Calibration & Validation

- MD7 Measurement (V) vs. Strain (µε)
- MD7080 vs. MD7081

Crack Gauge Calibration & Validation

- MD7 Measurement (V) vs. Number of Fractured Traces
- MD7080 vs. MD7081 vs. Model

Thermocouple Calibration & Validation

- MD7 Measurement (V) vs. Temperature (°C)
- MD7080 vs. MD7081

Thermistor Calibration & Validation

- MD7 Measurement (kΩ) vs. Temperature (°C)
- MD7080 vs. MD7081
MD7-Pro Accumulation Node

- Digital node for 64 GB data accumulation & global processing (20 g mass)
- Can support up to 100 Acquisition nodes on serial bus
- Hosts complex C++ embedded algorithms w/FPGA & 2 GB RAM
- Gigabit Ethernet + USB access to data, programmable interface

© 2014 Metis Design Corporation
Data Analysis & Reconstruction

Each node processes phase-coherent, location independent “sonar-scan”

Sum scans incoherently to form composite image

Logic imposed to compensate for view area obstacles

Color represents # of standard deviations above mean of damage-free data
Performance Evaluation

- Single MD7 node detection on 2mm thick Al plate with 20 rivets
 - 36 impact events of ~20 J of energy from falling 1 cm semi-spherical mass
 - half of impact on each side of rivet line

- Hybrid passive/active detection demonstrated
 - 36 passive/active auto-triggered measurement following impact events
 - 6 manually triggered active measurements with a fastener removed
 - 36 manually triggered active measurements without any impact or damage
Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin:

- 100% detection (36/36) following impact events
- No false triggers recorded at pre-set threshold levels
- Mean error for AE localization ~ 25 mm
- Predictions cluster relatively closely near origin relative to size of plate
- No trend observed for results obtained on one side of fastener line vs other
Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin

- 100% detection (36/36) of ~0.5 mm deep dents following AE detection
- no false positives indicated (0/36) following non-impact scans
- mean error for GW localization ~ 50 mm
- more scattered than AE, but predictions still group relatively close to origin
- no trend observed for results obtained on one side of fastener line vs other
Active Mode Fastener Detection Results

- Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin
 - 100% detection (6/6) of hand-tightened fasteners
 - no false positives indicated (0/36) following non-loosened scans
 - mean error for GW localization ~ 5 mm
 - least amount of scatter due to massive local stiffness change
 - essentially translates to localization within ±1 fastener position
Conformal Multi-functional Assemblies

- Conformal assemblies for composite & metallic host structures
 - central carbon nanotube (CNT) layer is core to these properties
 - surrounded by electrically insulating layers (film adhesive and/or GFRP)
 - selective electrodes integrated to steer current flow

- Little impact to physical structure, 100 - 200 µm & 5 - 10 g/m²
 - can be co-cured with composite laminate
 - can be installed over composite or metallic skin in secondary process

- Enable multi-functional capabilities: anti-icing, health monitoring
 Structural Health Monitoring (SHM)

- **SHM improves reliability, safety & readiness @ reduced costs**
 - sensors add weight, power consumption & computational bandwidth
 - cables add weight, complexity, as well as durability & EMI concerns
 - scaling SHM for large-area coverage has presented challenges

- **Advantages of proposed CNT-based SHM methodology**
 - CNT “sensors” can actually improve specific strength/stiffness of structure
 - can use thinner/lighter electrodes such as metal-mesh or direct-write
 - simple to scale over large structure, maintains good local resolution

© 2014 Metis Design Corporation

In-Space Inspection Workshop 14 of 24
Damage shifts CNT links in affected zone, increases resistivity
- Nearly linear increase in % resistance change with impact energy
- < 1% change in resistance away from impact zone

Surface & sub-surface images produced in post-processing
- 20 joule impact caused ~10-20% resistance change (no visible change)
- 40 joule impact caused ~20-30% resistance change (no visible change)
- 60 joule impact caused ~40-60% resistance change (no visible change)
Detection sensitivity is a strong function of CNT network aspect ratio:

- 2400 mm² CNT w/160 mm² damage yields ~25% in resistance increase.
- Same damage in a 1 m long strip of the same width would yield ~2% change.
- 10 mm² damage would still be over the noise floor.

Simple 2D network resistor model is in good agreement with data.
• Impacts below threshold of 30 J had <0.25% change in resistance
 - impacted surfaces exhibited >1% change in resistance after 30 J impacts
 - majority of specimens showed increase of ~15% after 110 J impacts
 - possible to increase CNT monitoring patch length to 1 m with 0.1% change
• Variability due to impact events, could be observed in “dents” too
Impact Test Acoustic Response (N111-067)

7 J Impact

108 J Impact

7 J Impact Zoomed-In

108 J Impact Zoomed-In
• Resistance is proportional to strain for low displacement
 ➢ load/displacement curves for all specimens are in close agreement
 ➢ tensile-side resistance increases due to CNT network being stretched-out
 ➢ compressive-side resistance decreases due to CNT being pushed together
• Permanent resistance increase after 25 mm deflection (>400 N)
Unloaded Bend Test Results (N111-067)
1m CFRP Submarine Propeller Test Specimen
4-Point Bend Results: Loaded vs Unloaded Results

- Same trends observed in 1 meter specimen as smaller coupons
 - tensile-side resistance increases linearly with enforced displacement
 - compressive-side resistance decreases linearly with enforced displacement

- Permanent resistance increase after 25 mm deflection (>4 kN)
Effect of CNT on Laminate Mechanical Properties

- 4 sets of ASTM tests performed professionally by testing house
- CNT surface layer statistically has no effect on any mechanical stiffness or strength properties in normal operating strain ranges

Impact ASTM-D256-10

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Average Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>33 ft-lbs/in</td>
</tr>
<tr>
<td>CNT on surface</td>
<td>37 ft-lbs/in</td>
</tr>
</tbody>
</table>

Tensile ASTM-D638-10

Compressive ASTM-D695-8
Technical & Business Contact

Seth S. Kessler, Ph.D. • President/CEO • Metis Design Corporation
617-447-2172 x203 • 617-308-6743 (cell) • skessler@metisdesign.com