WHITE SANDS SPACE HARBOR AREA 1
(Space Shuttle Landing Facility Area 1)
White Sands Missile Range
Range Road 10, approximately 4.2 miles northeast of intersection with
Range Road 7
White Sands vicinity
Doña Ana County
New Mexico

PHOTOGRAPHS

WRITTEN HISTORICAL AND DESCRIPTIVE DATA

Historic American Engineering Record
National Park Service
U.S. Department of the Interior
Intermountain Regional Office
12795 Alameda Parkway
Denver, CO 80225-0287
HISTORIC AMERICAN ENGINEERING RECORD

WHITE SANDS SPACE HARBOR AREA 1
(Space Shuttle Landing Facility Area 1)

HAER NO. NM-28

Location: White Sands Missile Range
Range Road 10, approximately 4.2 miles northeast of
intersection with Range Road 7
White Sands vicinity
Doña Ana County
New Mexico

U.S.G.S 7.5. Minute Las Cruces, New Mexico,
Quadrangle, Universal Transverse Mercator Coordinates:
E 32.93817 N 106.41016 Zone 13S, NAD 1983

Present Owner: Commander, U.S. Army White Sands Missile Range,
New Mexico 88002-5018

Present Use: Vacant

Significance: Space Shuttle Landing Facility Area 1 was an essential
component of the White Sands Space Harbor (WSSH) from
1976-2011. It has a direct association with the U.S.
Space Shuttle Program (SSP) as the site of the landing
of Space Transportation System (STS)-3 Columbia in
March 1982; this is the only STS landing to take place
outside Edwards Air Force Base in California and
Kennedy Space Center in Florida. The Space Shuttle
Landing Facility Area 1 is comprised of three runways,
a control tower, a weather tower, a helicopter staging
area, navigational aids and support facilities, a HUB
maintenance building, a fire station, portable storage
buildings, and a generator building.

Area 1 is considered to have national significance and
is eligible for listing in the National Register of
Historic Places (NRHP) under Criterion A for its
association with the NASA SSP with a period of
significance of 1976-2011. Because it achieved
significance within the past fifty years, Criterion
Consideration G also applies.
LIST OF ACRONYMS

ABGR Alamogordo Bombing and Gunnery Range
ABS Anti-lock Braking System
ACHP Advisory Council on Historic Preservation
ACI Archaeological Consultants, Inc.
AIAA American Institute of Aeronautics and Astronautics
APE Area of Potential Effects
ATC Air Traffic Control
BTT Basic Training Target
CCC Civilian Conservation Corps
CIT California Institute of Technology
CONEX Container Express
DC-X Delta Clipper, Experimental
DoD Department of Defense
GPS Global Positioning System
HAFB Holloman Air Force Base
HPO Historic Preservation Officer
HPWG Historic Preservation Working Group
HUB Harbor Utility Building
IGS Inter Glide Slope
IHA InoMedic Health Applications, LLC
JSC Johnson Space Center
KSC Kennedy Space Center
LC Launch Complex
MD McDonnell Douglas
MSBLS Microwave Scanning Beam Landing System
MSFC Marshall Space Flight Center
NASA National Aeronautics and Space Administration
NAVAIDS Navigational Aids
NEPA National Environmental Policy Act
NHL National Historic Landmark
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NSA</td>
<td>New South Associates</td>
</tr>
<tr>
<td>OCC</td>
<td>Operations Control Center</td>
</tr>
<tr>
<td>ORD</td>
<td>Army Ordinance Department</td>
</tr>
<tr>
<td>PAPI</td>
<td>Precision Approach Path Indicator</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>SCAPE</td>
<td>Self Contained Atmospheric Protective Ensemble</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SSP</td>
<td>Space Shuttle Program</td>
</tr>
<tr>
<td>SSRT</td>
<td>Single Stage Rocket Technology</td>
</tr>
<tr>
<td>STA</td>
<td>Shuttle Training Aircraft</td>
</tr>
<tr>
<td>STS</td>
<td>Space Transportation System</td>
</tr>
<tr>
<td>TACAN</td>
<td>Tactical Air Navigation</td>
</tr>
<tr>
<td>TAL</td>
<td>Transoceanic Abort Landing</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultrahigh Frequency</td>
</tr>
<tr>
<td>USAAF</td>
<td>United States Army Air Force</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>VITT</td>
<td>Vehicle Integration Test Team</td>
</tr>
<tr>
<td>WPA</td>
<td>Works Progress Administration</td>
</tr>
<tr>
<td>WSMR</td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td>WSNM</td>
<td>White Sands National Monument</td>
</tr>
<tr>
<td>WSPG</td>
<td>White Sands Proving Ground</td>
</tr>
<tr>
<td>WSSH</td>
<td>White Sands Space Harbor</td>
</tr>
<tr>
<td>WSTF</td>
<td>White Sands Test Facility</td>
</tr>
</tbody>
</table>
PART I. HISTORICAL INFORMATION

A. INTRODUCTION

The Space Shuttle Landing Facility, located on the U.S. Army White Sands Missile Range (WSMR) near Las Cruces in Doña Ana County, New Mexico, was an essential component of the White Sands Space Harbor (WSSH). The National Aeronautics and Space Administration (NASA) operated and managed the WSSH for astronaut training operations and as an alternate landing facility for the U.S. Space Shuttle Program (SSP) from 1976-2011. It has a direct association with the SSP as the site of the landing of Space Transportation System (STS)-3 Columbia in March 1982. The WSSH is located on the WSMR northeast of the NASA-operated White Sands Testing Facility (WSTF). The WSSH facility included the runways and support facilities (Area 1); the orbiter deservice area (Area 2); operations control center (Area 3); and original operations control center/deservice area/Delta Clipper site (Area 4). NASA formally ended the SSP on August 31, 2011, and in the summer of 2012 disposed of the WSSH and released use of the property to WSMR.

The WSSH Space Shuttle Landing Facility lies at the north end of the WSSH and contains approximately 4,900 acres. Area 1 is comprised of twenty-eight resources, including three runways, a control tower, a weather tower, a helicopter staging area, navigational aids and support facilities, a HUB maintenance facility, a fire station, portable storage buildings, and a generator building. The runways were constructed between 1976 and 1988. The HUB maintenance facility and support buildings are prefabricated and were located together between 1984 and 1992 to house training and landing needs. The Control Tower was purpose-built in 1979 and Weather Tower No. 4 was assembled in phases from 1982-2005. The WSSH Space Shuttle Landing Facility was vacated in 2011 and all electronic equipment, machinery, and furnishings were removed. In the summer of 2012, the U.S. Army initiated occupation and reuse of the facility and the Control Tower was relocated from WSSH to the WSMR Museum for storage and future exhibition.
B. PHYSICAL HISTORY OF WSSH AREA 1

1. DATE OF CONSTRUCTION

The first component of WSSH Area 1 to be constructed was Runway 17/35, completed in 1976. Runway 23/05 followed in 1977-78; it intersects Runway 17/35 near its center creating an “X” shaped footprint. The Control Tower was purpose built in 1979. The Weather Tower structures were assembled from 1982-2005. The Harbor Utility Building (HUB) complex is comprised of six prefabricated buildings created between 1984 and 1992. Runway 20/02, a Waterhole, and a Helicopter Staging Area were constructed in 1988. Navigational aids and support facilities were added from 1988-1995.

2. ARCHITECT/ENGINEER

Dennis G. Perrin, NASA WSTF engineer, is the engineer-of-record for the Control Tower. No other architects or engineers were identified.

3. BUILDER/CONTRACTOR/SUPPLIER

None identified.

4. ORIGINAL PLANS AND CONSTRUCTION

NASA WSTF Facility Manager and engineer Dennis G. Perrin drafted a set of engineering drawings with the assistance of Lockheed Martin contract employee J.A. “Andy” Dorris. Robert Maveety served as engineering supervisor and Ken Blair as drafting supervisor. There are four sheets of drawings, including a site plan, base foundation plan, plan view, elevations, and construction details. Plans were created around 1988 for construction of new asphalt directional markings for the runways. No other plans were identified.
5. ALTERATIONS AND ADDITIONS

Runway 17/35 was built in 1976 on the footprint of the earlier Northrup Strip. The original strip was upgraded, lengthened to 15,000', and widened to 100' with 50' shoulders. Around 1982, a cantilevered walkway was added to the Control Tower. Both Runways 17/35 and 23/05 were upgraded and lengthened between 1986 and 1989 to 35,000' in length and widened to allow 300' sidelines. Between 1988 and 1995, the runways were upgraded with modern navigational aids such as lighting and asphalt directional markings as well as prefabricated metal support buildings, portable synthetic sheds, and repurposed metal trailers. Around 2005, the covered vehicle bay attached to the Fire Station was enclosed and some navigational aids were upgraded. Many of the exteriors of the HUB buildings have been covered with spray foam insulation. The Weather Towers were upgraded as new technology became available. Once the WSSH Space Shuttle Landing Facility was vacated in 2011, all electronic equipment, machinery, and furnishings were removed. The U.S. Army initiated occupation and reuse of the facility in the summer of 2012. As a condition of a Memorandum of Agreement executed between NASA, the U.S. Army and the NM-SHPO in August 2012, the Control Tower was relocated from WSSH to the WSMR Museum in the summer of 2012 where it was placed in storage for future exhibition and public interpretation.
PART II. STRUCTURAL/DESIGN INFORMATION

A. GENERAL DESCRIPTION

1. ENVIRONMENT

The White Sands Space Harbor (WSSH) is located on the U.S. Army White Sands Missile Range (WSMR) near Las Cruces in Doña Ana County, New Mexico. This military post lies in the Tularosa basin along the upper edge of the Chihuahuan Desert, a vast eco-region straddling the U.S.-Mexico border in the central and northern portions of the Mexican Plateau. The Tularosa basin is an arid high-desert region covering approximately 6,000 square miles between the Rio Grande and Pecos River in south-central New Mexico with elevations ranging from approximately 3,800-4,200' feet above sea level. This stark desert is composed of the world’s largest surface deposit of gypsum, a very soft sulfate mineral made of sulfur and calcium. Gypsum is derived from the Greek word gypsos, which means “chalk” or “plaster.” Located between two towering mountain ranges, the gypsum sand dune is commonly known as “White Sands.”

The landlocked, bowl-shaped Tularosa basin is 150 miles long and 50-60 miles in width. It is located between the San Andres Range to the west and the Sacramento Mountains to the east. The unique sand dunes originated many millions of years ago when a shallow, glacial lake called Lake Otero covered south-central New Mexico. When the lake eventually evaporated, it left behind gypsum bearing marine deposits nearly 1,600' thick. The exposed northern region of the lakebed is a 1,600-square mile area called the Alkali Flat. The southern region contains an ephemeral lake, or playa, called Lake Lucero with a very high mineral content. Although summer temperatures can easily exceed 100 degrees, the unique white sand reflects the sun’s rays and the grains are so fine they are cool and silky to the touch. Gypsum is commonly

used to make plaster of Paris, fertilizers, drywall and Portland cement.\(^2\)

The near ceaseless desert winds, clocked at more than fifty miles per hour, push the fine gypsum grains to form crests as high as sixty feet on the upwind side, and under the pressure of gravity, the sand slides down steep slipfaces, giving the sands dynamic movement. Each year, the most active dunes advance to the northeast more than thirty feet, covering almost everything in their path; the more stable dunes move very little. The gypsum dunes are a harsh and dry environment with fierce sandstorms, flash floods, and temperatures ranging from below zero in winter to more than 110 degrees in summer. Only a few plants and animals have adapted to survive.\(^3\)

2. CHARACTER

Isolated, spacious, and built on the Northrup Strip within a federal installation, the location of 100-square mile WSSH at the WSMR offered some definite advantages for the expansive runways needed for the SSP. Area 1 of the Space Shuttle Landing Facility is comprised of three runways, a control tower, a weather tower, a helicopter staging area, navigational aids and support facilities, a HUB maintenance facility, a fire station, portable storage buildings, and a generator building. The immense “X” shaped intersecting runways are its dominating feature. The few support buildings and structures are organized around the runways. The control tower and the HUB buildings are clustered together on the east side of the intersection. The navigation aids and support facilities are located along the runways. The Space Shuttle Landing Facility is surrounded by open desert and ringed by mountain ranges.

3. CONDITION OF FABRIC

\(^3\) Andreoli, 1998: Section 3.1.2.2; Andreoli, 1998: Section 3.2.3; Welsh, 1995: Chapter 1; Bennett & Wilder, 2009: 7-18.
When documented in March 2012, the Space Shuttle Landing Facility had been abandoned and vacated, but was in overall fair to good condition. The exterior of some of the facility’s buildings exhibited some minor rust and deferred maintenance. The portable interior equipment within the HUB Maintenance Facility had been removed, but the attached furnishings were in place. Due to the harsh desert environment and lack of maintenance, the runways had quickly deteriorated due to shifting sands, flash floods, and extreme temperature variations.

B. CONSTRUCTION

The Space Shuttle Landing Facility is composed of a variety of buildings and structures. Documentation of each component follows in HAER Nos. NM-28-A through NM-28-T.

C. MECHANICAL/OPERATION

Several buildings featured electricity to power interior lights, electronic navigational equipment, radios, and wall-mounted air conditioning units. Non potable water was supplied by a freestanding water tank at the HUB Maintenance Facility. A manmade Waterhole provided water for maintaining the runways. Generators provided back-up power at the HUB complex. The Weather Towers are monitored and maintained by the U.S. Army. The Fire Station was maintained by the U.S. Air Force. The Navigational Aids and Support Facilities were powered by portable generators or underground electrical cables connecting to the HUB Maintenance Facility.
PART III. SOURCES OF INFORMATION

A. ENGINEERING PLANS AND DRAWINGS

NASA engineers prepared four sheets of Control Tower drawings, including a site plan, base foundation plan, plan view, elevations, and construction details in the spring of 1979. There are no original engineering plans or drawings for the HUB Maintenance Facility, Runways, or the majority of the Navigational Aids and Support Facilities. Plans were created around 1988 for construction of new asphalt navigational markings for the Runways. NASA staff created an as-built, not-to-scale site plan of the HUB Maintenance Facility, which was used as a base map for this report.

B. EARLY VIEWS AND HISTORICAL DATA

Historic photographs and maps of the WSSH are very limited. A body of recent aerial photographs were located and photocopied for inclusion in the HAER document to supplement the current ground photography. Those photographs are located on pages 21 through 31 of this document. The other historical data comes from a variety of sources cited in the Bibliography below.

C. INTERVIEWS

The following NASA and WSMR employees were interviewed for this documentation.

Robert E. Mitchell, WSTF Manager, September 2011.

Frank Offutt, WSSH Manager, September 2011.

Timothy Davis, WSTF Historic Preservation Officer, September 2011 and March 2012.

Bill Godby, WSMR Historic Preservation Officer, September 2011.
D. BIBLIOGRAPHY

United States Army. “Final Environmental Impact Statement for Development and Implementation of Range-Wide Mission and Major Capabilities at White Sands Missile Range,

E. LIKELY SOURCES NOT YET INVESTIGATED

Research was conducted at WSSH and WSTF using primary and secondary sources. Sources that were not investigated that may contain secondary information are archived at the Lyndon B. Johnson Space Center in Houston, Texas.

Additional oral history interviews with other engineers and technicians could also prove useful.
PART IV. PROJECT INFORMATION

In 2011-2012, New South Associates (NSA), under contract with InoMedic Health Applications, LLC (IHA) of Kennedy Space Center, Florida, and in coordination with NASA and the U.S. Army, conducted background research and a historic architecture survey of resources at the NASA WSSH. The survey included the documentation and evaluation for NRHP eligibility for seventy-two resources located in four distinct areas. Based on this research, NSA determined that no properties remained at WSSH from the period prior to NASA acquisition in 1963 except for the footprint of the packed gypsum Runway 17/35.4

NSA recommended that the three NASA WSSH Runways and the Control Tower in Area 1 were individually eligible for listing in the NRHP and eligible as contributing resources to the “WSSH Shuttle Landing Facility District” under Criterion A and Criterion Consideration G for their association with the NASA SSP. None of the other sixty-eight inventoried properties were recommended individually eligible for listing in the NRHP due to lack of historical association with the NASA SSP or other historic contexts, lack of unique design or construction features, or insufficient integrity; however, nineteen of these properties, all of which lie within Area 1, were recommended as contributing resources to “WSSH Shuttle Landing Facility District,” even though they were not recommended individually eligible for the NRHP. The historic district contained a total of twenty-eight resources: twenty-three are contributing and five are non-contributing.

After formally ending the SSP on August 31, 2011, NASA disposed of the WSSH and released use of the property to the U.S. Army WSMR. The property transfer was a federal undertaking on federally-owned property and subject to compliance with Section 106 of the NRHP Act of 1966, as amended. The undertaking

resulted in an Adverse Effect to the NRHP-eligible WSSH Shuttle Landing Facility District. To mitigate the adverse effects, NASA completed HAER Level II documentation of the historic district and relocated the Control Tower to the WSMR Museum for conservation, exhibition, and public interpretation.

The mitigation plan was defined in a Memorandum of Agreement (MOA), executed between NASA, the U.S. Army, and the NM-SHPO in August 2012. The properties within the historic district were documented with large format photography in March 2012.
Range roads north of U.S. Highway 70 are closed to the public except for special events.
Figure 1. Map of White Sands Military Reservation showing White Sands Space Harbor (Source: U.S. Army).
Figure 2. Map of White Sands Space Harbor showing location of Area 1, which delineates the approximately 4,900-acre NRHP boundaries of the WSSH Space Shuttle Landing Facility (Source: NASA WSTF).
Figure 3. Plan view detail of the HUB Complex, Area 1.
Figure 4. Aerial View of Runway 17/35 and Waterhole (left) looking northwest towards San Andres Mountains, 2007. Source: NASA White Sands Test Facility, New Mexico.
Figure 5. Aerial View of Runway 23/05 looking southwest towards San Andres Mountains, 2007. Source: NASA White Sands Test Facility, New Mexico.
Figure 6. Aerial View of Runway 23/05 (foreground) and Runway 20/02 (left background) looking northwest northeast, 2007. Source: NASA White Sands Test Facility, New Mexico.
Figure 7. Aerial View of Runway 20/02 looking northeast towards runway 17/35 and San Andres Mountains, 2006. Source: NASA White Sands Test Facility, New Mexico.
Figure 8. Aerial view of Runway 17/35 (foreground) and Runway 20/02 (background), looking southwest towards the San Andres Mountains, 2006. Source: NASA White Sands Test Facility, New Mexico.
Figure 9. Aerial View of Runway 17/35 (foreground) and Runway 20/02 (background), showing detailed view of runway landing aid markings, looking southwest towards the San Andres Mountains, 2007. Source: NASA White Sands Test Facility, New Mexico.
Figure 10. Aerial View of the intersection of Runway 17/35 (top to bottom) and Runway 23/05 (left to right), looking southeast, 2007. Source: NASA White Sands Test Facility, New Mexico.
Figure 11. Aerial View of the intersection of Runway 17/35 (left) and Runway 23/05 (right), looking southeast towards the San Andres Mountains, 2006. Source: NASA White Sands Test Facility, New Mexico.
Figure 12. Aerial View of the Helicopter Staging Area looking north towards the San Andres Mountains, 2006. Source: NASA White Sands Test Facility, New Mexico.
Figure 13. Aerial View of the HUB Maintenance Facility (foreground) and Runway 23/05 (background) looking northwest towards San Andres Mountains, 2007. Source: NASA White Sands Test Facility, New Mexico.
Figure 14. Aerial View of Control Tower, HUB Maintenance Facility, Fire Station (left), and Weather Tower (foreground) looking southeast, 2006. Source: NASA White Sands Test Facility, New Mexico.
WHITE SANDS SPACE HARBOR AREA 1
(Space Shuttle Landing Facility Area 1)
White Sands Missile Range
Range Road 10, approximately 4.2 miles northeast of intersection with Range Road 7
White Sands vicinity
Doña Ana County
New Mexico

NASA, Photographer
Various Dates

NM-28-1 PHOTOCOPY OF AERIAL VIEW OF RUNWAY 17/35 AND WATERHOLE (LEFT) LOOKING NORTHWEST TOWARDS SAN ANDRES MOUNTAINS, 2007. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-3 PHOTOCOPY OF AERIAL VIEW OF RUNWAY 23/05 (FOREGROUND) AND RUNWAY 20/02 (LEFT BACKGROUND) LOOKING NORTHEAST, 2007. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-4 PHOTOCOPY OF AERIAL VIEW OF RUNWAY 20/02 LOOKING NORTHEAST TOWARDS RUNWAY 17/35 AND SAN ANDRES MOUNTAINS, 2006. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-5 PHOTOCOPY OF AERIAL VIEW OF RUNWAY 17/35 (FOREGROUND) AND RUNWAY 20/02 (BACKGROUND) LOOKING SOUTHWEST TOWARDS SAN ANDRES MOUNTAINS, 2006. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-6 PHOTOCOPY OF AERIAL VIEW OF RUNWAY 17/35 (FOREGROUND) AND RUNWAY 20/02 (BACKGROUND) SHOWING DETAILED VIEW OF RUNWAY LANDING AID MARKINGS, LOOKING SOUTHWEST TOWARDS SAN ANDRES MOUNTAINS, 2007. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-7 PHOTOCOPY OF AERIAL VIEW OF INTERSECTION OF RUNWAY 17/35 (TOP TO BOTTOM) AND RUNWAY 23/05 (LEFT TO RIGHT)
LOOKING SOUTHEAST, 2007. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO

NM-28-8 PHOTOCOPY OF AERIAL VIEW OF INTERSECTION OF RUNWAY 17/35 (LEFT) AND RUNWAY 23/05 (RIGHT) LOOKING SOUTHWEST TOWARDS SAN ANDRES MOUNTAINS, 2006. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-9 PHOTOCOPY OF AERIAL VIEW OF HELICOPTER STAGING AREA LOOKING NORTH TOWARDS SAN ANDRES MOUNTAINS, 2006. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-10 PHOTOCOPY OF AERIAL VIEW OF HUB MAINTENANCE FACILITY (FOREGROUND) AND RUNWAY 23/05 (BACKGROUND) LOOKING NORTHWEST TOWARDS SAN ANDRES MOUNTAINS, 2007. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.

NM-28-11 PHOTOCOPY OF AERIAL VIEW OF CONTROL TOWER, HUB MAINTENANCE FACILITY, FIRE STATION (LEFT), AND WEATHER TOWER (FOREGROUND) LOOKING SOUTHEAST, 2006. SOURCE: NASA WHITE SANDS TEST FACILITY, NEW MEXICO.