NASA’s Space Launch System: A Revolutionary Capability for Science

Bill Hill
Deputy Associate Administrator
Exploration Systems Development Division
NASA Headquarters

Stephen Creech
Deputy Manager
SLS Spacecraft/Payload Integration and Evolution

July 2014
SLS: An Evolving Capability

Orion, Multi-Purpose Crew Vehicle (MPCV- LMCO)

Interim Cryogenic Propulsion Stage (ICPS) (EELV 5m DCSS – Boeing/ULA)

Core Stage/Avionics (Boeing)

5-Segment Solid Rocket Booster (SRB) (ATK)

Core Stage Engines (RS-25) (Aerojet Rocketdyne)

Launch Abort System

Commonality of Payload Interfaces
- Mechanical
- Avionics
- Software

Upper Stage & Core Stage Commonality
- Same diameter (27.5 ft.) and basic design
- Manufacturing facilities, tooling, materials, & processes/practices
- Workforce
- Supply chain/industry base
- Transportation logistics
- Ground systems/launch infrastructure
- Propellants

Commonality of Core Stage

Commonality of Engines

Evolutionary Path to Future Capabilities
- Minimizes unique configurations
- Allows incremental development

Block 1
Initial Capability, 2017-21
70 metric ton Payload

Block 2 Capability
130 metric ton Payload

Cargo Fairing
33 ft (10m)

Upper Stage

Advanced Solid or Liquid (i.e., RP Engines) Boosters

Space Propulsion 2014_G. Lyles.2
SLS’ Primary Mandate

HUMAN EXPLORATION
NASA’s Path to Mars

- **EARTH RELIANT**
 MISSION: 6 TO 12 MONTHS
 RETURN TO EARTH: HOURS
 - Mastering fundamentals aboard the International Space Station
 - U.S. companies provide access to low-Earth orbit

- **PROVING GROUND**
 MISSION: 1 TO 12 MONTHS
 RETURN TO EARTH: DAYS
 - Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit
 - The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft

- **MARS READY**
 MISSION: 2 TO 3 YEARS
 RETURN TO EARTH: MONTHS
 - Developing planetary independence by exploring Mars, its moons and other deep space destinations

www.nasa.gov/sls
Human Spaceflight and Space Science
SLS Availability for Space Science

- **SLS is on schedule and within budget** for to be available for launches beginning in 2017.

- **5-meter payload fairings** allow for payload envelopes compatible with current EELVs.

- **Cargo-launch variants** offer the reliability of a human-mission launch and power in excess of any launch vehicle in history.
SLS Development Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCR</td>
<td>SRR/SDR</td>
<td>PDR</td>
<td>CDR</td>
<td>SIR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program Progress

- **2011**: SLS Design Chosen, Booster Development Test
- **2012**: Engines Delivered to Inventory
- **2013**: Manufacturing Tooling Installation, Wind Tunnel Testing
- **2014**: Production of First New Flight Hardware, STA Production Begins
- **2015**: Main Engine Test-Firing, Orion Flight Test
- **2016**: Core Stage Assembly, Booster Assembly at KSC
- **2017**: Core Stage Test-Firing, Vehicle Stacking at KSC, First Flight

<table>
<thead>
<tr>
<th>Concept Studies</th>
<th>Concept & Technology Development</th>
<th>Preliminary Design & Technology Completion</th>
<th>Final Design & Fabrication</th>
<th>System Assembly, Integration & Test, Launch & Checkout</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR: System Requirements Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDR: System Definition Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDR: Preliminary Design Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SLS Benefits to Space Science

- **Greatest mass lift capability** of any launch vehicle in the world.
- **Largest payload fairings** of any launch vehicle produce greatest available volume.
- **High departure energy** availability for missions through the solar system and beyond.
SLS initial configuration offers 70 t to LEO.

Future configurations offer 105 and 130 t to LEO.

Mass capability benefits mean larger payloads to any destination.
Case Study: Mars Sample Return

- **Mars Sample Return** was identified as a high priority in the “Visions and Voyages” planetary science decadal survey.

- **SLS offers single-launch option** for Mars Sample Return, versus three launches with EELVs.

- **Additional benefits of SLS** for Mars Sample Return include reduced mission time, increased sample mass, and reduced mission cost, complexity and risk.
Benefit: Unrivaled Payload Volume

- SLS is investigating utilizing existing fairings for early cargo flights, offering payload envelope compatibility with design for current EELVs.

- Phase A studies in work for 8.4m and 10 m fairing options.

<table>
<thead>
<tr>
<th>Size</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>4m x 12m</td>
<td>100 m³</td>
</tr>
<tr>
<td>5m x 14m</td>
<td>200 m³</td>
</tr>
<tr>
<td>5m x 19m</td>
<td>300 m³</td>
</tr>
<tr>
<td>8.4m x 31m</td>
<td>1200 m³</td>
</tr>
<tr>
<td>10m x 31m</td>
<td>1800 m³</td>
</tr>
</tbody>
</table>
Case Study: ATLAST

- Large-aperture spectroscopic telescope was identified as a vital step in the “Enduring Quests, Daring Visions” astrophysics roadmap.

- SLS is uniquely enabling for largest-diameter telescopes due to fairing-width requirements.

- Additional benefits of SLS for ATLAST include opportunities for human assembly and/or servicing at deep space destinations.
Even the Initial configuration of SLS offers orders of magnitude greater payload-to-destination energy compared to existing launch vehicles; future configurations improve C3 performance even further.

Departure energy offers faster transit time to destination, including 4-7 year reduction to Saturn or 6 years to Uranus.

Higher departure energy offers more launch opportunities.

Trade space exists between departure energy and mass capability; a Jovian mission could see 3-year transit reduction or 13 t mass increase.
SLS Evolved Performance

Net Payload System Mass (mt)

Characteristic Energy, C3 (km²/s²)

- Lunar
- Mars
- Jupiter/Europa
- Saturn
- Saturn/Uranus Direct
- Europa Class Mission

- SLS Block 1 - Orion + iCPS
- SLS Block 1 - 5.0m Fairing + iCPS
- SLS Block 1B - 5.0m Fairing + EUS (TBD)
- SLS Block 1B - 8.4m Fairing + EUS
- SLS Block 2B - 8.4m Fairing + EUS + Advanced Boosters (min-max)
- SLS Block 2B - 10m Fairing + EUS + Advanced Boosters (TBD)
- Delta IV Heavy - 2007 PPG
- Atlas V 551 NASA LSP
- Europa Class Mission

- EM-1
- Europa

5m x 19m (300 m³)
8.4m x 19m (620 m³)
10m x 31m (1800 m³)
Case Study: Europa Clipper

- **Europa exploration** was identified as a high priority in the “Visions and Voyages” planetary science decadal survey.

- **SLS can provide direct injection to Jupiter**, eliminating several years of planetary gravity assists to reduce flight time to Europa from 6.3 years to 2.7.

- **Additional benefits of SLS** for Europa Clipper include reduced operational costs, reduced mission risk, and greater mass margin.
Outer Planet EELV Trajectories

Galileo Trajectory To Jupiter

Cruise: 6.1 yr.

Cassini Trajectory to Saturn

Cruise: 6.7 yr.

JUNO Trajectory To Jupiter

Cruise: 4.9 yr.

Atlas V Clipper Trajectory

Cruise: 6.4 yr.
Europa Trajectory Comparison

Atlas V 551: VEEGA

- VGA (5/14/22)
- EGA-1 (10/24/23)
- EGA-2 (10/24/25)
- Launch (11/21/21)
- JOI (4/4/28)

Jupiter’s Orbit

SLS: Direct

- JOI (5/23/24)
- DSM (7/10/22)
- Launch (6/5/22)

REDUCES TRANSIT TIME TO EUROPA FROM 6.5 TO 2.7 YEARS
SLS Secondary Payload Capability

- SLS is providing accommodations for secondary payloads on EM-1 and subsequent launches.

- Secondary payloads will be accommodated in the Orion-MPCV Spacecraft Adapter (MSA) on EM-1.

- 6U equivalent volume/mass is the current standard; 12U volume can be accommodated.
 - 12U mass still being evaluated.
 - Additional mounting locations are being evaluated.

- SLS provides secondary payload science opportunities beyond EELVs capabilities (Lunar and beyond).
The Asteroid Redirect Robotic Mission is an early step on NASA’s Path to Mars.

SLS offers reduced transit time, providing earlier redirection of target and/or greater launch opportunities.

Additional benefits of SLS for ARRM offer the potential for redirecting a larger object and for enabling a wider variety of targets.

SLS could launch an ARRM spacecraft as early as 2019.
Summary

◆ SLS provides capability for human exploration missions.
 • 70 t configuration enables EM-1 and EM-2 flight tests.
 • Evolved configurations enable missions including humans to Mars.

◆ SLS offers unrivaled benefits for a variety of missions.
 • 70 t provides greater mass lift than any contemporary launch vehicle; 130 t offers greater lift than any launch vehicle, ever.
 • With 8.4m and 10m fairings, SLS will over greater volume lift capability than any other vehicle.
 • Initial ICPS configuration and future evolution will offer highest-ever C3.

◆ SLS is currently on schedule for first launch in December 2017.
 • Preliminary design completed in July 2013; SLS is now in implementation.
 • Manufacture and testing are currently underway.
 • Hardware now exists representing all SLS elements.
Somewhere, something incredible is waiting to be known.
— Carl Sagan

For More Information

www.nasa.gov/sls
www.twitter.com/nasa_sls
www.facebook.com/nasasls