Agenda

• Background: Objectives, Constraints, Highlights
• Mission Design and Launch Vehicle Options
• Flight System Baseline and SEP Module Technology
• Capture Mechanism and Proximity Operations
• Implementation Approach, Schedules and Costs
ARRM Reference Mission Objectives

Architecture, mission design and flight system will deliver the following functionality:

• High performance, high throughput, solar electric propulsion system with power up to 40 kW operating beyond Earth orbit

• Capability to rendezvous, characterize and operate in close proximity to an Near Earth Asteroid (NEA)

• Capability of capturing and controlling an asteroid up to the 10m class with a mass of up to 1000t

• Capability of returning a NEA, into a stable, crew accessible lunar orbit by the early-mid 2020’s, and provide accommodations for a crewed mission to explore the NEA

• Ability to perform planetary defense capability demonstration(s) within mission timeline
ARRM Reference Mission Constraints

• Mission designed/operated to be inherently safe to planet Earth at all times

• Demonstrate rapid, lean, agile development under a cost driven paradigm

• Vehicle will be crew safe but not human rated

• For implementation planning evaluate launch options in 2019

• Capable of launch on SLS, Falcon Heavy, Delta IVH and Atlas 551, assumed direct launch on SLS, FH or DIVH

• Operational lifetime at least 6 years
Highlights Since MFR

• Evaluated mission options into 2019 for various launch vehicles
• Negotiated scope of TDM technology tasks to provide greatest possible alignment with ARRM needs
• Continuing development of capture system mechanism design and performance for slow and fast rotators
• Developed alternate implementation schedules with objective to use additional time to reduce risk while not driving up costs
 – MCR Feb ‘14 launch June ‘19
 – MCR Feb ‘15 launch June ’19
• Supported RFI Workshop, extensibility studies and the Robotic Concept Integration Team
Stakeholder Analysis

• Stakeholder analysis should be used for comparison of options (like risk analysis) and will be done by the RCIT

• Primary objectives should satisfy primary stakeholders NGOs and constraints
 – Administration, Congress
 – NASA

• Secondary objectives should only be included if they help, and not hurt, moving the mission forward through satisfying secondary stakeholders communities, within primary stakeholder constraints
 – Planetary Defense
 – Science
 – Commercial
 – International Partners
Current Reference Asteroids for Mission Design

- Each asteroid’s return date is fixed & dictated by natural close approach times
- Lunar Gravity Assist (LGA) capture for smaller objects allows higher V_∞ and lower V_∞ allows capture of larger objects)
- Mid 2019 or later launches assumed for return dates in table

<table>
<thead>
<tr>
<th>Asteroid</th>
<th>Asteroid Mass Est.</th>
<th>Asteroid V-infinity</th>
<th>Earth Return Date</th>
<th>Crew Accessible</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 BD*</td>
<td>30-145 t</td>
<td>1.2 km/s</td>
<td>Jun 2023</td>
<td>Mar 2024</td>
<td>Area/Mass ratio estimated, rotation period > 2 hrs, Spitzer upper bound on mass</td>
</tr>
<tr>
<td>2011 MD*</td>
<td>50-50,000 t</td>
<td>1.0 km/s</td>
<td>Jul 2024</td>
<td>Aug 2025</td>
<td>Rotation period 0.2 hrs, possible 2009BD-like Area/Mass Spitzer opportunity in Feb. 2014</td>
</tr>
<tr>
<td>2013 EC20</td>
<td>4-43 t</td>
<td>2.6 km/s</td>
<td>Sept 2024</td>
<td>Late 2025</td>
<td>Discovered March 2013, Radar characterized rotation period ~ 2 min 2024 return requires DIV H or FH launch 2020 return possible with Feb 2018 launch</td>
</tr>
<tr>
<td>2008 HU4</td>
<td>5-40,000 t</td>
<td>0.5 km/s</td>
<td>Apr 2026</td>
<td>Mid 2027</td>
<td>Close Earth flyby in April 2016</td>
</tr>
</tbody>
</table>

* High-fidelity trajectory analysis performed for 2009 BD and 2011 MD
Launch Vehicle Decision Points

- Assuming launch opportunities in calendar 2019
- All current mission designs assume direct injection on a heavy lift LV
 - Use of Atlas V demos spiral out, adds ~1 yr to mission time, reduces return mass by ~200t, adds mission design, operations
- Desire decision on LV early enough to enable clear definition of interfaces, launch adapter and environments
 - Typically missions have decision on LV before system PDR (assuming mid-2016 for a 2019 launch)
 - Can carry multiple vehicles beyond PDR but will require engagement with multiple organizations to keep parallel options viable
 - Costs and risks of keeping decision open will need to be mitigated by design, mass and reserves
 - Better to make a choice and work with uncertainties in I/F and environments than try and keep multiple L/V choices open
- Contractual lead times
 - Typical lead time for procurement of NLS contracted Atlas V is 27 months
 - Lead time for Delta IVH is TBD (likely ~36 months)
 - Lead time for Falcon Heavy is TBD
 - Lead time for SLS is likely dictated by HEOMD manifest decisions and availability of a 5 m shroud
Planetary Defense Background

• Deflecting a threatening object by an Earth radii in 10 years would require a ΔV of order 1 cm/s or much less for deflecting from a keyhole.

• Deflection Strategies
 – Impulsive
 • Kinetic Impactor
 • Nuclear Explosive (ablation or disruption)
 – Gradual, Precise Deflections
 • Gravity Tractor (GT)
 • Ion Beam Deflector (IBD)
 • Laser Ablation, and other concepts

• Comparison of Deflection Strategies
 – Gradual technique can impart significant total impulse precisely which allows the asteroid trajectory to be accurately measured, but takes much more time than impulsive
 – IBD and GT would operate in situ but deflection capabilities are very slow. Unless there was a great deal of warning time, these are not really primary deflection techniques – more in the way of providing “trim maneuvers” following a more robust deflection technique like a kinetic impactor or nuclear explosion.

• Can reliably measure ΔV to an accuracy of <0.1 mm/s
Planetary Defense Demo

• Could demonstrate either the ion beam deflector or gravity tractor approaches on a small or large asteroid
• Could be done with minimal impact to the reference mission
 – No design changes
 – Mission design changes depending on the size of the object
• IBD/GT relative performance on a small NEA
 – IBD, <500 t (like 2009 BD) could impart: 1 mm/s in < 1 hour
 – GT, <500 t (like 2009 BD) could impart: 1 mm/s in < 30 hours
• IBD/GT relative performance on a large NEA
 – IBD, at Itokawa, could impart: 0.1 mm/s in ~50 days
 – Enhanced GT, on Itokawa, w/ 10 t boulder, could impart: 0.1 mm/s in ~130 days
Mission and Flight System Summary

• Key Driving Objective:
 – Minimize the cost and technology development risk for an asteroid redirect mission with extensibility to future missions

• Balanced risk across major elements
 – Asteroid discovery and characterization
 – Transportation technology development
 – Proximity operations time
 – Accessibility of storage orbits

• Developed a baseline flight system and conops approach
 – Modular Flight System: SEP Module, Mission Module, Capture System
 – Conops validated by model-based systems engineering analysis

• Flight system development is feasible and includes appropriate margins
Flight System Configurations

ROSA
- Stowed

MegaFlex
- Stowed

ROSA
- Deployed

MegaFlex
- Deployed

51 m

35 m

14
FY14 Plan Under Full-year CR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Array</td>
<td>• Completion of SAS Phase I (both contracts)</td>
</tr>
<tr>
<td>Thruster</td>
<td>• Thruster acquisition preparation</td>
</tr>
<tr>
<td></td>
<td>• In-house design, build & test of technology unit</td>
</tr>
<tr>
<td>PPU</td>
<td>• PPU acquisition preparation</td>
</tr>
<tr>
<td></td>
<td>• In-house design, build & test of technology unit</td>
</tr>
<tr>
<td>Propellant Tank</td>
<td>• Plan for tank development and certification</td>
</tr>
<tr>
<td>SEP Mission Study</td>
<td>• Study-level support of ARRM team</td>
</tr>
<tr>
<td></td>
<td>• Continuation of SEP TDM effort</td>
</tr>
<tr>
<td></td>
<td>• Project Office Support</td>
</tr>
</tbody>
</table>

Augmentations to provide more direct application to flight:
Thruster: materials specifications (magnetic, boron-nitride), high temp magnets, thermal modeling with plasma power, cathodes, mechanical design for flight (loads, fasteners, manufacturability)
PPU: dual stage PPU using parts with path to flight (e.g. SiC MOSFETs)

Ref: C. Taylor for MG OMB Presentation, Sep 2013
Capture Mechanism and Proximity Operations

Miguel San Martin, G&C Lead, JPL
Brian Wilcox, Capture Mechanism Lead, JPL
Rendezvous and Proximity Operations Phases

- Orbit Refinement and Rendezvous (Radio and Optical)
 - Characterization
 - Pre-Capture Capture System Deploy
 - Final Approach
 - Attitude Control Disabled
 - Capture Mechanical Capture
 - Capture Bag Retraction
 - Attitude Control Enabled
 - Characterize, Spin down, and Detumble
Asteroid Rendezvous & ProxOps Instruments

- Minimum Instrument suite to minimize cost is consistent with AR&D study conclusions
 - Narrow Angle Camera (NAC) used for both optical navigation and, at asteroid range > 2km: for mapping, generating shape model (including rotation/dynamics and inertia properties)
 - Scanning LIDARs (2): for mapping, updating shape model and closed loop control
 - Wide angle cameras (e.g. RocketCams) for additional information and outreach (could be HD quality)

- Deep Space Network (DSN) Doppler and Range measurements for asteroid mass estimation
Key Characteristics of Asteroid for Capture

- For capture, the primary concerns are composition/strength and spin state.
- So far all candidate targets are slow rotators.
- Capture system and capture process is much simpler for all asteroids except the few that may be fast tumblers.
- For fast rotators have developed a passive control approach that limits forces on the spacecraft/solar arrays to <0.1 g peak.
Capture Mechanism Concept Status

• Capture bag designed to capture/control worst case rubble pile, using inflatable exoskeleton forming a cylindrical barrel and conical section, current bag diameter is 15 m to capture irregular 10 m NEA but actual size will depend on target (can be smaller or larger)

• Design is evolving based on discussions with potential vendors about materials, manufacturability and costs.

• RFI inputs provide other options for capturing slow rotators that will be studied in coming months

• Performed two independent dynamics analyses to assure robust system for capture at slow and fast rotation states while limiting forces on S/C.

• Monte Carlo analyses show good performance over wide range of asteroid size and mass properties
Slow and Fast Rotator Capture Sequence

- For slow rotator (<0.1 rpm): approach, envelop, close top and winch bag down onto S/C, re-establish full attitude control
- For fast rotator (>0.1 rpm): approach, envelop, match rotation state about combined spin vector, close top, inflate pie shaped inner bags for rapid capture, despwin NEA using RCS system, winch closed bag to S/C, re-establish full attitude control
Capture Mechanism Concept Status (cont.)

• Built first generation 1/5 scale testbed
 – To help characterize stiffness and damping, forces on
 the bag, and general control of the bag and fabric
 – Images show capture sequence demo in facility at JPL

• Upgrades to system to include
 more flight-like configuration and
 materials, including pie-shaped
 inner bags for fast rotation
 capture, planned for spring 2014
 if funding available.
• Asteroid inertial and spin properties determined by observation and state accurately projected into the future by many minutes to hours

• Asteroid instantaneous spin vector circulates around angular momentum vector

• Spinning S/C approaches along projected instantaneous spin vector and grabs when vector matches S/C location to minimize bag scuffing
Passive Capture, Unmatched Transverse Spin

- ADAMS model with assumed soft spring/damper characteristics for capture airbags and torroidal cone modeled as a Stewart Platform.

- Softness of capture extends over ~45 degrees of rotation.

- Time history shows moment force limit at hinge of solar array is met at worst case transverse rate of 2 rpm.
Capture Bag and Inflatables Are Scalable

- Could be applied to Pick-Up-Boulder (PUB), orbital debris, others

- Assumptions for PUB:
 - Boulder is partially imbedded
 - Boulder is ~ 2m
 - Boulder may not be structurally strong and could break apart at any time.

- Uses optical or LIDAR discrimination of the boulder from its surroundings
- Surface velocity precisely matched by the ARV
- During capture, system operates in a critical event mode in which the S/C control will assure a safe state in the face of most faults.
Boulder Capture and Fly-Away

- RCS thrusters are pulsed to maintain pressure on surface
- S/C maintains attitude inertially using reaction wheels
- Inflation of “pneumatic jacks” provides controlled force to free boulder (if needed)
- Allows V&V in Earth environments
ARRM Reference Implementation and Schedule Options

Brian Muirhead, ARRM Study Lead, JPL
Rick Manella, ARRM Deputy Study Lead, GRC
MFR Reference Mission Schedule Basis

• MFR assumptions and features
 – MCR : February, 2014
 – Launch readiness date (LRD): June 2018
 – FY14 funding per President’s budget request
 – Appropriate system-level schedule margins included (and funded)

• Schedule features to meet timeline:
 – Parallel developments of modules
 – Short procurement initiation cycles (working with the institutions)
 – Early focus on critical path risks (e.g. structure and solar array)
 – Enabled by existing investments and heritage (e.g. technology, avionics, SW)

• Launch date most likely driven by programmatic (funding profile) and availability of launch vehicle, but SEP and target choices provide flexibility
 – Final choice of target could be made within months of the launch, assuming all equivalent from a capture and mission design point of view.
MFR Key Implementation Assumptions

• CBE is based on the following assumptions:
 – Lean, innovative, technology demonstration mission approach
 – Single HQ program POC providing direction and funding
 – To meet reference project schedule need requested NOA funding profile
 – No termination liability (as directed by Steering Committee)
 – Mission module designed within the capability of the JPL heritage (MSL, SMAP) build-to-print Reference Bus
 – Observation Campaign costs not included (at Steering Comm. direction), SE workforce to interface to Observation Campaign included
 – Cost for the crewed mission interface and HW integration included, based on current understanding of the scope
 • All crew I/F HW assumed to be GFE
 • Cost for the crew interface integration
Two Options for LRD June 2019

- ARRM reference implementation (LRD June 2018)

• Two options for LRD June 2019

Option 1

ATP Jan. 2014
Launch June 2018

1. Mitigate the schedule risk (critical path items) using one additional year
2. Flatten the NOA profile

Option 2

ATP Jan. 2015
Launch June 2019

1. Mitigate the schedule risk using early tech. maturation (FY14)
2. Reduce Life Cycle Cost (not including FY14 funding)

For both options, minimize the overall Life Cycle Cost increase.
Forward Work and Risk Reduction Items

- System design, system engineering and mission design:
 - Continue to assess/refine candidates delivery performance
 - Evaluate specifics for GNC sensors, specifically LIDARs
 - Update proximity operations MBSE model
 - Evaluate feasibility and impacts of ARV changes for extensibility
 - Evaluate specific cost reduction opportunities (e.g. contributions/partnerships)
 - Implementation planning

- SEPM:
 - Augment SEP technology efforts (specifically thruster and PPU) if funding available to get more direct path to flight-HW
 - Continue structure and tanks design and conduct loads/environments analyses

- Capture system:
 - Upgrade capture system testbed and analyses, including HW in the loop simulations
 - Engage industry (including RFI inputs), possibly through a BAA, on slow spin capture systems