Commercial Crew Program Status for the NAC

Philip McAlister
Acting Director, Commercial Spaceflight Development
NASA HQ

August 2, 2011
• The objective of the proposed commercial crew initiative is to facilitate the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low-Earth orbit (LEO) and the International Space Station (ISS).

• The Commercial Crew Program (CCP) intends to use a non-traditional acquisition and partnering approach.

• Competition is a fundamental aspect of the strategy: incentivizes performance, supports cost-effectiveness, and eliminates NASA dependence on a single provider.

• The 2010 NASA Authorization Act established commercial crew as the primary means for ISS crew transportation.
Commercial Crew Development CCDev2

- Four Partners.
- ~$270M in Space Act Agreements.
- 12 of 40 milestones completed to date.
- Planned completion by May 2012.
- 3 of the 4 Partners will achieve an internal integrated PDR level of maturity.
- 1 of the 4 Partners will achieve an internal SRR level of maturity.
Acquisition Strategy Evolution

• Initial indications established Space Act Agreements (SAAs) as a potential instrument to meet Commercial Crew Program and industry needs.

• CCDev1 and CCDev2 utilized funded SAAs to allow for Government investment in early commercial concept development and element design.
 – These SAAs were awarded to stimulate efforts to further commercial human spaceflight services
 – Allowed Industry to make progress while NASA determined best approach for detailed design, development, and certification

• In developing a recommendation for the Agency, the CCP evaluated every possible option to use SAAs.
 – Several key limitations of SAAs were discovered
 – Mitigations were thoroughly examined
 – Recognized industry concern with Cost Accounting Standards and other requirements prescribed by Federal Acquisition Regulations (FAR)
NASA SAA Limitations

• Requirements and Certification
 – Inability to levy certification requirements – could only be reference
 – Even as reference, NASA could NOT:
 • Tie milestone progress and payments to compliance
 • Formally evaluate compliance or non-compliance
 • Approve tailoring, exemptions, or waivers for future phases
 – Ultimately, NASA could not formally accept the verification of requirements using SAAs, which is necessary for certification

• Proposed mitigations could not be fully implemented
 – ‘Gap analysis’ and ‘risk assessments’ for NASA missions deemed to go beyond ‘public purpose’ under a funded SAA

• Data rights limitations under an SAA made a phased competition problematic
COTS Cargo and CCP Differences

• None of the COTS Cargo objectives includes anything about NASA’s ISS cargo delivery requirements.
 – Implement the U.S. Space Exploration policy with investments to stimulate the commercial space industry
 – Facilitate U.S. private industry demonstration of cargo and crew space transportation capabilities with the goal of achieving safe, reliable, cost effective access to low-Earth orbit (LEO)
 – Create a market environment in which commercial space transportation services are available to Government and private sector customers.

• In contrast, the CCP objective explicitly states NASA’s need for ISS crew transportation.

• In addition, the 2010 NASA Authorization Act established commercial crew as the primary means of ISS crew transportation, further strengthening NASA’s requirements as an objective of the Program.
Proposed Program Strategy

• The current proposed strategy would use a contract instrument that combines the best elements of SAAs with the features of a contract that allow NASA to approve tailoring of requirements and certify the vehicle for NASA missions
 – Milestone based payments with fixed government investment
 – Utilize FAR exemption for all Cost Accounting Standards requirements
 – Maximize industry retention of intellectual property rights
 – Encourage partners to market products to other customers
 – NASA control at the “Certification Requirements” level only
 • Provide approval, tailoring, and exceptions/waivers of Industry’s implementation in a crew transportation system
 • NASA will not dictate design solutions

• This proposed strategy matches the work scope and risk posture within budget and schedule constraints
Current Proposed Strategy

<table>
<thead>
<tr>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCDev 1 Element Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Origin</td>
<td>Boeing</td>
<td>Paragon</td>
<td>Sierra Nevada</td>
<td>ULA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCDev 2 Element Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Origin</td>
<td>Boeing</td>
<td>Sierra Nevada</td>
<td>SpaceX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and Early Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTEC & ISS Initial Mission Contract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development/Test/Evaluation/Certification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial ISS Missions
Differences in Approach

Traditional NASA Development
- Goal: ISS Crew Mission
- Extensive Government Oversight
- Detailed Design Requirements
- Large Sustaining Engineering
- Full Reporting Requirements
- Unlimited Data and Deliverables
- Higher Costs

Non-Traditional Development
- Goal: Commercial Human Transport
- Limited Insight/Oversight
- Tailored Human-Rating Requirements
- Streamline Sustaining Engineering
- Minimal Reporting Requirements
- Limited Deliverables
- Lower Costs

Traditional Contract
- No Cost Sharing
- Requirements & Certification Mgmt
- Government Cost/Schedule Risk
- Full Cost Reporting
- Government Owns IP
- Full Government Involvement

Non-Traditional Contract
- Cost Sharing
- Requirements & Certification Mgmt
- Shared Cost/Schedule Risk
- Minimal Cost Reporting
- Negotiable IP
- Tailored Government Involvement

Space Act Agreement
- Cost Sharing
- No Requirements & Certification Mgmt
- Shared Cost/Schedule Risk
- No Cost Reporting
- Provider Owns IP
- Limited Government Involvement
Acquisition Strategy – Path Forward

<table>
<thead>
<tr>
<th>May 2011</th>
<th>Jun</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan 2012</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Crew Requirements Workshop</td>
<td></td>
</tr>
<tr>
<td>Program Strategy Forum</td>
<td></td>
</tr>
<tr>
<td>Draft RFP for the Integrated Design Phase (industry review/comment)</td>
<td></td>
</tr>
<tr>
<td>Requirements Baselined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integrated Design Phase Proposal Evaluations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final RFP for the Integrated Design Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integrated Design Phase Award</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCDev2 Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Infuse Phase 1 lessons learned into Phase 2 procurement (ongoing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• All the original key program attributes are being maintained in the new proposed acquisition strategy

• There are currently two organizations in the world that can transport people to low Earth orbit – the governments of Russia and China.

• As the primary means for the U.S. to launch crew to low-Earth orbit, the Commercial Crew Program will:
 – End the gap in U.S. human access to space and NASA’s dependence on Soyuz
 – Give us assured access to the International Space Station
 – Strengthen America’s leadership in space
 – Allow NASA to focus on exploration, enabling us to go further, faster

• By pushing the boundaries of private enterprise and commerce into