Status of the ISS USOS
NASA Advisory Council HEOMD Committee

Daniel W. Hartman
Deputy Manager, ISS Program
July 2014
ISS Flight Plan

Flight Planning Integration Panel (FPIP)

(Pre-decisional, For Internal Use, For Reference Only)

Crew Rotation

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Inc 39</td>
<td>R. S. Swanson (CDR-40) 168 days</td>
<td>R. N. Wiens (CDR-41) 168 days</td>
<td>335</td>
<td>Inc 41</td>
<td>R. A. Kud-Sverchkov 168 days</td>
<td>R. Y. Serova 168 days</td>
<td>335</td>
<td>Inc 42</td>
<td>R. A. Skvortsov 168 days</td>
<td>R. S. Maass (CDR-43) 168 days</td>
<td>335</td>
</tr>
<tr>
<td>2015</td>
<td>Inc 43</td>
<td>N. R. Jernberg 168 days</td>
<td>N. R. Wiseman 168 days</td>
<td>335</td>
<td>Inc 44</td>
<td>N. P. Tikhonov 290 days</td>
<td>F. A. Grigoriev 168 days</td>
<td>335</td>
<td>Inc 45</td>
<td>I. V. Vártola 167 days</td>
<td>435</td>
<td>I. V. Zimovets (CDR-47) 290 days</td>
</tr>
<tr>
<td>2016</td>
<td>Inc 46</td>
<td>167 days</td>
<td>435</td>
<td>I. V. Zimovets 167 days</td>
<td>435</td>
<td>I. V. Zimovets 167 days</td>
<td>435</td>
<td>I. V. Zimovets 167 days</td>
<td>435</td>
<td>167 days</td>
<td>435</td>
<td>167 days</td>
</tr>
</tbody>
</table>

Soyuz Landing

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>166 days</td>
</tr>
</tbody>
</table>

Stage EVAs

- Soyuz Lit: Landing
- Stage SW: Landing early (9/11)
- N1 Nadir: N2 Zenith
- N2 Nadir: 2/9/14
- N1 Nadir: 3/12/15

Solar Beta > 60

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>05/20</td>
<td>06/09</td>
<td>07/09</td>
<td>08/10</td>
<td>09/11</td>
<td>10/12</td>
<td>11/13</td>
<td>12/14</td>
<td>01/05</td>
<td>02/06</td>
<td>03/07</td>
<td>04/08</td>
</tr>
<tr>
<td>2015</td>
<td>05/29</td>
<td>06/14</td>
<td>07/10</td>
<td>08/11</td>
<td>09/12</td>
<td>10/13</td>
<td>11/14</td>
<td>12/15</td>
<td>01/01</td>
<td>02/02</td>
<td>03/03</td>
<td>04/04</td>
</tr>
<tr>
<td>2016</td>
<td>05/28</td>
<td>06/13</td>
<td>07/10</td>
<td>08/11</td>
<td>09/12</td>
<td>10/13</td>
<td>11/14</td>
<td>12/15</td>
<td>01/01</td>
<td>02/02</td>
<td>03/03</td>
<td>04/04</td>
</tr>
</tbody>
</table>

External Cargo

- SpX-3: HDEV, OPALS
- SpX-4: CATS, RapidScat, RS Adapter Bracket
- SpX-5: HTV5, CALET, MUSES
- SpX-6: CREAM
- SpX-7: IDA #1
- SpX-8: BEAM
- SpX-9: IDA #2

Launch Schedule

- 55P 4/9
- 39S 5/28
- 50P 7/23
- 40S 9/25
- 57P 10/29
- 41S 11/23
- 58P 2/3
- 42S 3/28
- 43S 4/30
- 56P 5/26
- 44S 200 2/20
- 45S 10/1 1/4
- 46S 10/14 3/16
- 47S 167 / 167

Port Utilization

- Dock/Barth
- FFd / MDM / N2 Zenith
- N1 Nadir: 11/17/18
- N2 Nadir: 12/13/14

MMR2 / SM Zenith

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
</table>

DC1 / MLM / RS Nadir

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>56P</td>
<td>57P</td>
<td>56/56</td>
<td>181/181</td>
<td>1/23</td>
<td>1/23</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>1/23</td>
<td>1/23</td>
<td>1/23</td>
</tr>
<tr>
<td>2016</td>
<td>61P</td>
<td>164</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SM Aft

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>58P</td>
<td>200</td>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>58P</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Port M3 / MDM / N2 Zenith

<table>
<thead>
<tr>
<th>Year</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
</table>

NASA: OC4/John Coggleshall

Chart Updated: July 15th, 2014

SSCN/CR: 14071 + 14145 + 14211 (In-Work)

MAPI: OP/Kim Jobe

ID: TMA-17M
Vehicle: 39 Soyuz
Launch: May 28, 2014; (with 4 orbit rendezvous)
Docking: May 29, 2014;
Undock/Landing: November 10, 2014

38 Soyuz crew
Alexander Skvortsov, Soyuz Commander
Oleg Artemiev, Flight Engineer
Steve Swanson, Flight Engineer

39 Soyuz Crew
Maxim Suraev, Soyuz Commander
Reid Wiseman, Flight Engineer
Alexander Gerst (ESA), Flight Engineer
INCREMENTS 39 & 40

Pre-decisional, Internal Use Only

Updated 1 July 2014
All dates GMT
IDRD Rev A CR 14000
MIPD CR 14071 + 14145 + 14211 (in work)

<table>
<thead>
<tr>
<th>Increment 39</th>
<th>Increment 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar-2014</td>
<td>Apr-2014</td>
</tr>
<tr>
<td>May-2014</td>
<td>Jun-2014</td>
</tr>
<tr>
<td>Jul-2014</td>
<td>Aug-2014</td>
</tr>
<tr>
<td>Sep-2014</td>
<td>Pre-decisional, Internal Use Only</td>
</tr>
</tbody>
</table>

Stage 39-3
- **EVA, Robotics, Systems, Software**
 - National Geographic live events
 - SpX3 External: HDEV and OPALS install
 - SpX3: T-cells, crossover science
 - Human Research
 - Ocular Health
 - Survey: STP-H4 & SCAN

Stage 39-6
- **X2R12.1**
- **S3P KURS-NA Test**
- **USOS EVA 26: EXT-2**
- **MMR R&R**
- **Relocate SMILES**

Stage 40-3
- **JEM Airlock: CLPA install**
 - US EVAs 27/28: SSU 3A R&R, PM to ESP-2, WETA/VSSA relocate, ETVC & luminares, APFR/TS relocate
 - RS EVA 38 & 39: vehicle tasks, jettisons, science operations
 - NORS AIK install
 - SSC System 5 install
 - Casablanca Server and Network Monitoring System

Stage 40-6
- **E40 FE4 / E41 CD – K. Suraev (Inc 39 – 64 days)**
- **E40 FE4 / E41 CD – M. Gerst (Inc 40 – 105 days)**
- **E40 FE4 / E41 CD – R. Wiseman (Inc 40 – 105 days)**
- **E40 FE4 / E41 CD – S. Swanson (Inc 39 – 47 days, Inc 40 – 120 days)**
- **E40 FE4 / E41 CD – A. Artemyev (Inc 39 – 47 days, Inc 40 – 120 days)**

Stage 41-3
- **E40 FE3 / E40 FE4 – O. Kotov**
- **E40 FE3 / E40 FE4 – M. Hopkins**

Stage 38-6 (17 Days)
- **Stage 39-6 (47 Days)**
- **Stage 40-3 (15 Days)**
- **Stage 40-6 (105 Days)**

Updated 1 July 2014

IDRD Rev A CR 14000

MIPD CR 14071 + 14145 + 14211 (in work)

Pre-decisional, Internal Use Only
Expedition 40 Objectives
(May 2014 – September 2014)

- **Support planned visiting vehicle traffic:**
 - SpX-3 Unberth May 18
 - 39S Launch and Docking May 28/29
 - 53P Undock June 9
 - Orb-2 Launch July 13
 - Orb-2 Berth July 16
 - Orb-2 Unberth Aug 15
 - 55P Undock July 22
 - 56P Launch July 23
 - 56P Docking July 24
 - ATV-5 Launch July 29 (in work)
 - ATV-5 Dock August 12
 - 38S Undock and Landing September 10/11

- **Significant tasks:**
 - RS EVAs 38 (6/21) and 39 (8/18): vehicle tasks and science tasks
 - USOS EVAs, pending return to nominal EVA operations
 - August, EVA 27-SSU (8/21): Remove and replace Sequential Shunt Unit and other tasks
 - August, EVA 28-PM (8/29): Pump Module move, preparation for docking hardware installation
 - Joint US/Russian utilization: SPHERES Zero Robotics, Sally Ride EarthKAM, IVA Clothing
 - JEM Airlock payloads: Nanorack Cubesat deploys (after Orb-2), RRM2
 - SSC System 5 Upgrade
Inc 39-40 Utilization Crew Time

Color Key:
- Completed
- Final OOS
- FPIP Plan
- US EVA

<table>
<thead>
<tr>
<th>Color</th>
<th>3-Crew</th>
<th>6-Crew</th>
<th>3-Crew</th>
<th>6-Crew</th>
<th>3-Crew</th>
<th>6-Crew</th>
<th>3-Crew</th>
<th>6-Crew</th>
</tr>
</thead>
</table>

Pre-Decisional, For Internal Use Only

- OC/OZ reconciliation is not complete for Week 18

- Executed through Increment Wk (WLP Week) 18 = 16.4 of 24.8 work weeks (66.13% through the Increment)
- USOS CSRD Allocation: 976.2 hours (39.4 hrs/wk; Allocation increased from 960.5 to 976.2)
- OOS USOS Planned Total: 963.58 hours
- USOS Actuals: 622.17 hours
 - 63.73% through CSRD Allocation
 - 64.57% through OOS Planned Total
- Total USOS Average Per Work Week: 37.94 hours/work week
- Voluntary Science Totals to Date: 0 hours (Not included in the above totals or graph)
- RSA/NASA Joint Utilization to Date: 2.92 Hours (not included in the above totals or graph)
Total ISS Consumables Status

<table>
<thead>
<tr>
<th>Consumable – based on current, ISS system status</th>
<th>T1: Current Capability (Includes Orb-2)</th>
<th>T2: Current Capability + 56P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date to Reserve Level</td>
<td>Date to zero supplies</td>
<td>Date to Reserve Level</td>
</tr>
<tr>
<td>Food – 100%</td>
<td>October 18, 2014</td>
<td>December 9, 2014</td>
</tr>
<tr>
<td>Filter Inserts</td>
<td>May 11, 2015</td>
<td>July 2, 2015</td>
</tr>
<tr>
<td>Toilet (ACY) Inserts</td>
<td>September 23, 2015</td>
<td>November 2, 2015</td>
</tr>
<tr>
<td>Pre-Treat Tank</td>
<td>November 7, 2014</td>
<td>December 29, 2014</td>
</tr>
<tr>
<td>Consumable - based on system failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water, if no WPA (Ag & Iodinated)</td>
<td>September 2, 2014</td>
<td>November 17, 2014</td>
</tr>
<tr>
<td>LiOH (CDRAs and Vozdukh off)</td>
<td>~0 Days</td>
<td>~14 Days</td>
</tr>
<tr>
<td>Consumable – based on current, ISS system status</td>
<td>U1: Current Capability (Includes Orb-2)</td>
<td>U2: Current Capability + 56P</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Date to Reserve Level</td>
<td>Date to zero supplies</td>
<td>Date to Reserve Level</td>
</tr>
<tr>
<td>Toilet (ACY) Inserts</td>
<td>April 15, 2016</td>
<td>June 10, 2016</td>
</tr>
<tr>
<td>Utilization</td>
<td>> December 2014</td>
<td>> December 2014</td>
</tr>
<tr>
<td>Consumable - based on system failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water, if no WPA (Ag & Iodinated)</td>
<td>July 28, 2014</td>
<td>September 26, 2014</td>
</tr>
<tr>
<td>O₂ if neither Elektron or OGA</td>
<td>August 19, 2014</td>
<td>November 2, 2014</td>
</tr>
<tr>
<td>LiOH (CDRAs and Vozdukh off)</td>
<td>~0 Days</td>
<td>~13.3 Days</td>
</tr>
</tbody>
</table>
Pertinent ISS Vehicle Issues

- EMU Investigation status to follow in special topics

<table>
<thead>
<tr>
<th>Issue</th>
<th>Impact to Stage Ops</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSU 3A Anomaly</td>
<td>Yes</td>
<td>On 5/8 DCSU 3A RBI-1 experienced a negative trip, indicating current flowing out of RBI 1 towards the SSU.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Downstream loads have been recovered and channel 3A has been cross-tied to channel 3B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Direction from SSPCB on 6/11 to planned EVA to R&R SSU (8/21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SSU issue not related to MMOD damage to SAW</td>
</tr>
<tr>
<td>SSRMS LEE Latching Anomaly</td>
<td>Yes</td>
<td>Degradation has been seen on both LEEs, aborted latching has been seen on LEE A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trending shows that LEE lubing and/or replacement will be necessary in the future</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LEE B used for Orb-2 Capture (LEE A at base on Node 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LEE maintenance options under discussion (lubing)</td>
</tr>
</tbody>
</table>
Pertinent ISS Vehicle Issues (cont.)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Impact to Stage Ops</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| Sequential Shunt Unit (SSU) 3B Power On Resets (PORs) | No | 8 recent events, averaging every 4 days
• All occur within first 90 seconds of ISS sunrise, and have typical SSU POR telemetry signatures
• SSU PORs are seamless from ISS perspective – no impact to loads
• No indications of degradation or impending failure of SSU
• Will continue to monitor & trend in attempt to further resolve fault tree to root cause |
| RPCM LAD62B-A, RPC 12 Trip (Lab CDRA Valves) | No | 5 overcurrent trips have occurred while the Lab CDRA is in Standby state.
• First tripped on 4/4 and again 6/25.
• 2 additional re-closure attempts were made and resulted in trips ~12-13 hours from time of closure
• Ops Tag-up on 7/8 agreed to perform nominal Lab CDRA activation to satisfy 30 day requirement on 7/9
• RPC did not trip while in operational for ~24 hrs, but tripped again after being returned to Stby for ~8.5 hrs |
Resolution of several WHC components

- Pump separator R&R’d on 6/29 due to numerous “check sep” light indications
- Flush tank fill early terminations (34 ml vs 50 ml), effects quality of pre-treat during dosing and downstream UPA operations
 - Water valve block R&R performed July 2nd
- Flush fill tanks nominal
- System returned to nominal operations
Pertinent ISS Vehicle Issues (cont.)

<table>
<thead>
<tr>
<th>Issue</th>
<th>Impact to Stage Ops</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4 PVR MMOD Strike</td>
<td>No</td>
<td>Imagery review revealed a MMOD impact occurred between 5/12 and 6/20 on panel 3 of the P4 PVR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• S&M initial assessment shows no apparent structural damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unclear if damage would impact ability to retract PVR radiator, but currently no plans to do so</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• P4 ammonia mass trending shows no flow tube rupture (Small leaks will need to be trended long term)</td>
</tr>
</tbody>
</table>

- **Area was over flow tube**
- **Face sheet petal**
- **Flow tube**
- **Epoxy with honeycomb pattern**
- **Honeycomb**
- **Epoxy with honeycomb pattern or honeycomb on face sheet**
<table>
<thead>
<tr>
<th>Issue</th>
<th>Impact to Stage Ops</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| Water Processing Assembly (WPA) Total Organic Compound (TOC) Breakthrough | Yes | TOCA readings from the WRS indicate that the WPA Multi-filtration beds are seeing TOC breakthrough. MF bed R&Rs are scheduled as TOC approaches 2000 µg/L and are required prior to the 3000 µg/L.
- TOC reading from the WPA was 975 µg/L on 7/9
- Readings appear to have plateaued over the last few weeks.
- Likely cause of plateau is due to the N3 CCAA not experiencing a dry cycle since the recent R&R
- DMSD accumulation happens during dry cycles
- N3 CCAA went through a dry cycle on 7/9, so it is expected that TOC readings will start increasing.
- Currently 1 spare on-orbit, 1 manifested on SpX-4, and 2 manifested on Orb-3. |
Increment 39/40

Research Complement Snapshot

Human Research

<table>
<thead>
<tr>
<th>Area</th>
<th>Projects/Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone & Muscle Physiology</td>
<td>Bisphosphonates (Control), Functional Task Test (P), Intervertebral Disc Damage (P), Spinal Ultrasound, Force Shoes, Sprint, Cartilage (P), Hybrid Training</td>
</tr>
<tr>
<td>Cardiovascular & Respiratory Systems</td>
<td>Cardio Ox, BP Reg Vision</td>
</tr>
<tr>
<td>Immune System</td>
<td>Salivary Markers</td>
</tr>
<tr>
<td>Nervous & Vestibular Systems</td>
<td>Manual Control (P), Blind & Imagined (↑), Reversible Figures, Space Headaches, V-C Reflex (P)</td>
</tr>
<tr>
<td>Human Behavior & Performance</td>
<td>Comm Delay Assessment, Journals, Reaction Self Test</td>
</tr>
<tr>
<td>Radiation Impacts on Humans</td>
<td>ALTEA (↓)</td>
</tr>
<tr>
<td>Habitability & Human Factors</td>
<td>Body Measures</td>
</tr>
<tr>
<td>Crew Healthcare Systems</td>
<td>Skin-B</td>
</tr>
<tr>
<td>Human Microbiome</td>
<td>Microbiome</td>
</tr>
</tbody>
</table>

Biology and Biotechnology

<table>
<thead>
<tr>
<th>Area</th>
<th>Projects/Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Biology</td>
<td>Rodent Research-1, Nanoracks Module 26, Space Pup, Zebrafish Muscle</td>
</tr>
<tr>
<td>Vaccine Development</td>
<td>VA-Clinic, NLP-Vaccine-21</td>
</tr>
<tr>
<td>Plant Biology</td>
<td>BRIC-18-2, BRIC-19, Veg-01, Petri Plants, Biotube MICRO, Seedling Growth 1 (↓), Seedling Growth2, GRAVI-2 Aniso Tubule, Resist Tubule, Plant Gravity Sensing 1, CsPIns</td>
</tr>
<tr>
<td>Macromolecular Crystal Growth</td>
<td>CASIS PCG GCF-1 & GCF2 (↑), CASIS PCG-2 CASIS PCG HDPCG-1&2, CPCG-HM, Merck PCG, NR19, JAXA PCG (#7)</td>
</tr>
</tbody>
</table>

Earth & Space Science

<table>
<thead>
<tr>
<th>Area</th>
<th>Projects/Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics/ Heliophysics</td>
<td>AMS-02 (E), Solar-SOLACES/SOLSPEC (E), MAXI (E), MCE (E)</td>
</tr>
<tr>
<td>Earth Remote Sensing</td>
<td>ISS RapidScat (E), HREP-HICO RAIDS(E), MAX (↑), CEO, ISERV, Windows on Earth, SMILES (E)</td>
</tr>
<tr>
<td>Near-Earth Space Environment</td>
<td>SEDA-AP (E)</td>
</tr>
<tr>
<td>Astrobiology</td>
<td>ExHAM (↑), MCE(A-IMAP)</td>
</tr>
</tbody>
</table>

Educational Activities

<table>
<thead>
<tr>
<th>Area</th>
<th>Projects/Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Demos</td>
<td>JAXA Commercial Education Competitions SPHERES Zero Robotics</td>
</tr>
<tr>
<td>Student Experiments</td>
<td>ISS Ham Radio, Cosmo Shoot (↓), JAXA EPO 12 (JAXA Video & JAXA Report)</td>
</tr>
</tbody>
</table>

Educational Demos

<table>
<thead>
<tr>
<th>Area</th>
<th>Projects/Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Satellites & Control Technologies</td>
<td>Slish, VERTIGO, NRCSD (Dove/Planet Labs), TechEdSat-4, GEARRS, Micro-MAS, LamadaSat)</td>
</tr>
<tr>
<td>Spacecraft & Orbital Environment</td>
<td>IVA Clothing Study, SPACETEX(↑)</td>
</tr>
<tr>
<td>Food & Clothing Systems</td>
<td>IVA Clothing Study, SPACETEX(↑)</td>
</tr>
<tr>
<td>Characterizing Experiment Hardware</td>
<td>SpinSat, Cyclops NanoRacks Module-27, METERON OpsCom-2, LIRIS, MVIS Controller-1</td>
</tr>
<tr>
<td>Radiation Measurements & Shielding</td>
<td>Radiation Environment Monitoring (REM), HiMassSEE, DOSIS-3D, Area PADLES 12, Radi-N2</td>
</tr>
<tr>
<td>Robotics</td>
<td>HET-Smartphone, Robonaut, RRM-Phase 2 (E), Smartphone MM, Haptics-1 (↑)</td>
</tr>
<tr>
<td>Avionics & Software</td>
<td>SNFM</td>
</tr>
<tr>
<td>Communications & Navigation</td>
<td>DTN, OPALS (E), SCAN Testbed (E), Rings, Vessel ID</td>
</tr>
<tr>
<td>Imaging Technology</td>
<td>3DA1 Camcorder, HDEV (E), ESA NightPod, AMO TOCA, AMO EXPRESS, UBNT</td>
</tr>
<tr>
<td>Life Support Systems & Habitation</td>
<td>Repair & Fabrication Technologies 3D Printing in Zero G (↑)</td>
</tr>
<tr>
<td>Air, Water, Surface Monitoring</td>
<td>Multi-Gas Monitoring, WISENET (↑)</td>
</tr>
</tbody>
</table>

Physical Sciences

<table>
<thead>
<tr>
<th>Area</th>
<th>Projects/Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Science</td>
<td>FCF/FLEX-2, BASS-2, Atomization</td>
</tr>
<tr>
<td>Material Science</td>
<td>NR.24, DECLIC DSI-R, EML, MAGVECTOR, MSL SQF, MICAST-2/CETSOL-2, Soret Facet, Alloy Semiconductor, Ice Crystal 2, Hicari</td>
</tr>
<tr>
<td>Complex Fluids</td>
<td>ACE-M2, ACE-M3, BCAT-4 (↓), BCAT-KP, BCAT-C1</td>
</tr>
<tr>
<td>Fluid Physics</td>
<td>CFE-2, CCF, DECLIC HTI-R* Dynamic Surf 1, 2, 3, Marangoni UVP2R FASTER, FASES</td>
</tr>
</tbody>
</table>

Key

- NASA
- CSA
- ESA
- JAXA
- NASA – Commercially Funded (↑ ↓) Launch or Return only
- (P) Pre/Post BDC only, no In-flight ops
- (E) External Payload
- * CEF approval pending

Last Update: 7/11/14

Gina Calderon (OP), Vic Vargas (OP)
Newly added country:
• Lithuania (NanoRacks)

83 countries and areas
Rodent Research-1: “The lack of an animal facility for rodents on the ISS suitable for long-duration studies on adult animals is a major research impediment that will hamper the ability to obtain information important for maintaining astronaut health and fitness for duty.” - *NRC Decadal Survey, 2011.*

- 10 NASA mice: Evaluation of hardware and on-orbit operations
- 10 CASIS mice: Pharmaceutical company evaluating muscle atrophy

- Based on existing AEM design
 - Flown 27 times on Shuttle
 - Modified to meet ISS needs (reduced acoustics, added cameras, improved airflow)
- Single MLE unit houses 10 mice or 3 – 6 rats (20 mice on SpaceX-4)
- Temperature and RH monitoring, no active thermal control
- Transfer animals to a clean Rodent Habitat with a full complement of food and water after 20 - 30 days to achieve longer duration missions
- Improved science and animal husbandry through video monitoring and in-flight access
- Animals housed in two groups of five on either side of the Habitat
- Animals loaded in the Transporter at L-25 hrs
 - Support up to 2 launch attempts before change out with a new Transporter
Generic RR Concept of Operations

1. **Late Load Transporters**
 - SpX
 - Transporter w/ animals (20 mice, 10 days support)

2. **Launch**
 - SpX
 - Empty AEM-T (same or next) SpX

3. **Ascent**
 - ~ 3 days

4. **ISS Dock and Animal Transfer**
 - NLT Dock + 48 hours,
 - transfer animals from Transporters to Rodent Habitats (w/ AAU).
 - Stow Transporter for return.

5. **On-Orbit**
 - SpX
 - Rodent Habitat w/ animals (10 mice, 30-45 days support)
 - Mouse Transfer Box
 - Animal Processing System

6. **Transfer Remaining Live Animals and samples**
 - SpX
 - (same or next) SpX
 - Empty AEM-T
 - Stabilized samples
 - Activities may require MSG

7. **Descent**
 - (same or next) SpX

8. **Sample Recovery**

On-Orbit ConOps: Animal Processing System

- Dissections and DXA using the Animal Processing System and Bone Densitometer
- Activities may require MSG
- Frozen Samples
- Refrigerated
- Stabilized
ISS Top Program Risk Matrix
Post April 16, 2014 PRAB

Corrective/Preventative Actions
None

Watch Items
No Watch Items Elevated

Continual Improvement
None

Risks (L x C)

Score: 5 x 5
▲ 6352 - Lack of Assured Access to ISS - (OH) - (C,S,T,Sa)

Score: 5 x 4
▲ 6370 - ISS Pension Harmonization - (OH) - (C)
▲ 6344 - ISS Operations Budget Reduction - (OH) - (C)

Score: 4 x 4
▲ 6372 - Full ISS Utilization at 3 Crew - Level 1 - (OZ) - (C,S)
▲ 6439 - EPROM Memory Leakage - (OD) - (C,S,T,Sa)

Score: 3 x 5
▲ 6484 - ORDEM 3.0 Orbital Debris Model - CA, OB, OC, OD, OE, OK, OM, ON, OX - (S,T,Sa)

▲ 6444 - ISS Cascading Power Failure - (OM) - (C,S,T,Sa)
▲ 6450 - Potential Inability to Support ISS Critical Contingency (other) EVA Tasks - (XA) - (C,S,T,Sa)
▲ 6382 - Structural Integrity of Solar Array Wing (SAW) Masts due to MMOD Strikes - (OB) - (S,T,Sa)

Score: 3 x 3
▲ 5269 - The Big 13 Contingency EVA’s - (OB) - (S,T,Sa)
▲ 6169 - Visual Impairment / Intracranial Pressure - (SA) - (C,S,T,Sa)
▲ 6438 - C2V2 Comm Unit Vendor Misinterpreting ISS Requirements - (OG) - (C,S,T)

Score: 3 x 2
▲ 6452 - Lack of Sufficient Sparing for the Ku-Band Space to Ground Transmitter Receiver Controller (SGTRC) to reach 2020 - (OD) - (C,S,T)
▲ 6420 - NDS Qualification Schedule - (OG) - (C,S,T)
▲ 6408 - FGB Sustaining Contract and FGB spares plan post 2016 undefined - (OB) - (C,S,T,Sa)

Score: 2 x 2
▲ 6039 - Carbon Dioxide Removal Assembly (CDRA) Function - (OB) - (C,T,Sa)

▲ 5184 - USOS Cargo Resupply Services (CRS) Upmass Shortfall - 2010 through 2016 - (ON) - (S,T)

▲ – Top Program Risk (TPR)

Added: 6484

Removed: 2810 - RS MM/OD Shielding and 5688 - ISS Solar Array MGNT

Rescored: 6169
Visiting Vehicles Status
Orb-2 Mission Success!

Orbital successfully launched to ISS on 7/13/14
Orbital-2 Mission Status

- **Mission Planning**
 - Manifest assessment 1660 kg upmass; 1346 kg disposal
 - Results and findings of AJ26 test anomaly reviewed for impacts to Orb-2 (engines passed 3 ATP tests)
 - Successful Launch occurred on 7/13/14
 - Berthed to the ISS on 7/16/14

- **Pressurized Cargo complement**
 - Four passive lockers (including two double cold bags)
 - Research hardware includes:
 - Nanosatellites designed to take images of Earth
 - Smart Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) features a sensor and multiple cameras to enable 3-D mapping and robotic navigation
 - Student experiments are on board as part of the Student Spaceflight Experiment Program

- **Cygnus Status**
 - Initial cargo loading was completed on 3/31/14
 - Service Module (SM) mated to PCM on 4/4/14
 - Mate with Antares was completed on 7/3/14
 - Late and final cargo loads were completed on 7/6/14 and 7/8/14

- **Antares Status**
 - Rollout to pad was completed on 7/10/14 (weather delays, Antares issue resolution)
ATV5 Mission Status

- **ATV5: Georges Lemaitre**
- **Mission Planning**
 - Manifest assessment > 6000 kg upmass/disposal
 - Delta Phase III SRP was held in early Mar. A new Hazard Report on the rendezvous experiment hardware (LIRIS) mounted on ATV5 front cone was also reviewed with no issues
 - Stage Operations Readiness Review (SORR) was held on 7/16/14
 - Post SORR, issue with Ariane’s 3rd stage ACS prop fill (in work), Launch NET 7/29, maintains docking on 8/12

- **Cargo**
 - Nominal cargo load complete
 - Late load cargo at launch site complete

- **On-orbit Status**
 - Performing an ISS fly-by a few days before docking to allow experimental rendezvous sensors to collect data
 - On-orbit duration for ATV5 is currently scheduled through late Jan 2015; extension into February is under discussion in order to monitor re-entry in optimal conditions
Mission Planning
- Manifest assessment 2272 kg upmass; 1734 kg return cargo

Pressurized cargo
- GLACIER, Commercial Generic Bioprocessing Apparatus (CGBA), Rodent Transporter and Habitat, SpinSat, Cyclops, Bone Densitometer, Microgravity Science Lab (MSL), and 6 Cold Bags

External Cargo
- ISS RapidScat (RapidScat Nadir Adapter and RapidScat Instrument) for installation on Columbus Starboard Deck-X (SDX)

Dragon Status
- Cargo Integration Review (CIR) was completed on 5/21/14
- RapidScat trunk installation was completed on 6/26/14
- Dragon trunk arrived at the Cape on 6/25/14. Capsule arrived on 7/9/14
- Software end-to-end test is planned for late Jul/early Aug

F9v1.1 Status
- First and Second Stage shipping to the Cape is scheduled for mid-Aug
- Interstage receipt at the Cape is scheduled for mid to late Aug
Orbital-3 Mission Status

- **Mission Planning**
 - Manifest assessment 2290 kg upmass; 1714 kg disposal
 - Safety Review Panel (SRP) Phase 3 Part 1 review was conducted on 6/25/14 with Part 2 scheduled for 7/24/14
 - Post Qualification Review (PQR) is scheduled for 8/12/14 (TBC)
 - Mission Readiness Review (MRR) is scheduled for 8/27/14
 - Launch being assessed for 10/1

- **Pressurized Cargo complement**
 - ISS cargo manifest was delivered to Orbital in May

- **Cygnus Status**
 - Cargo Integration Review (CIR) was completed on 6/4/14
 - Pressurized Cargo Module was delivered to WFF on 6/11/14
 - Passive Common Berthing Mechanism (PCBM) 1410 testing was completed on 6/27/14
 - Final Integrated Systems Test (FIST) was completed on 7/2/14

- **Antares Status**
 - Stage 1 Core was delivered to WFF on 2/2/14 and is in the HIF
 - Engines E15 and E16 were delivered to WFF on 3/21/14 and 7/7/14
 - Castor 30 XL was delivered to WFF on 5/16/14
 - 270 degree fairing half was delivered on 7/1/14; 90 degree half is expected in Aug
 - First flight of Castor 30XL and longer upper stack and the first enhanced Antares launch vehicle
SpaceX-5 Mission Status

- **Mission Planning**
 - Manifest assessment 2073 kg upmass; 1580 kg return cargo
 - Launch planned for December 2014

- **Pressurized Cargo**
 - NASA delivered L-5 month manifest update on 5/12/14
 - GLACIER, Commercial Generic Bioprocessing Apparatus (CGBA), Polar (GLACIER successor), Bioculture System, and 5 Cold Bags

- **External Cargo**
 - Cloud Aerosol Transport System (CATS) Interface Control Document (ICD) baseline for external payload is planned to be completed by Cargo Integration Review (CIR) in Aug

- **Dragon Status**
 - Trunk avionics checkouts are scheduled to run through mid Jun
 - Electromagnetic Interference/Compatibility (EMI/EMC) testing is scheduled for late Jul
 - Trunk and capsule are scheduled for shipment in mid Aug

- **F9v1.1 Status**
 - First Stage tank/octaweb integration is planned to begin in early Aug
 - Second Stage integration ongoing with plan to ship to TX in late Aug
 - Interstage proof test is expected in late Aug
 - Delivery of hardware to the Cape is planned for late Sep
EMU Suit Investigation Status

- Fan pump separator returned from 3011 in December 2013, clogged drums holes, cause of water in the suit issue (silica agglomeration)
- 3 of 10 Ion exchange beds returned, completely saturated and releasing
 - All suits exposed via numerous ALCLR runs
 - JSC Bldg 7 water quality of Ion bed processing not up to DI quality water standards, source of contamination
- New processes put in place to produce clean Ion exchange beds (charcoal cleansing/rinse, water quality monitored continuously)
 - 2 new beds flown on 38S (late March), 2 more on SpaceX-3, 4 on Orb-2
- Based on water samples and Ion Exchange Beds returned on 36S, water system was flushed 3 times (EMU suits and the airlock water loop) and refilled with WPA water
 - Post flush water samples returned on SpaceX-3, reflecting compliant water quality (new specification)
 - Monitoring system water quality for silica leach back
- New fan pump separators installed into suits 3010 and 3005 post water flush
 - 3011 FPS R&R’d in December – additional R&R of 3011 FPS scheduled
 - Returned FPS from 3010, 3005, and 3015 relatively clean (minor particle in 1 of 8 drum holes on 2 FPS)
- New 3003 suit flown on SpaceX-3 and successfully checked out
 - Suit 3015 returned on SpaceX-3 (sublimator issue)
- All indications of major contamination pointing toward Ion Bed Processing (over the years)
 - Additional escapes in properly controlling water quality “touching” the suit corrected. Previous over application of Braycote on 3011 seals may have aided in silica agglomeration
 - Water audits conducted at all sites/sources, mitigation plans implemented, grease now applied with wipes
- In the midst of the investigation and corrective actions, 3 contingency EVAs were conducted with nominal suit performance (HAP incorporated)
- Summary of Status :
 - Water loop returned to nominal conditions post flush, follow on sample plan in place (leach back monitoring)
 - Suits 3005, and 3010 have new FPS installed post water cleanup (flush and new Ion Exchange beds)
 - Suit 3003 completed successful checkout on orbit post water cleanup
 - Suit 3011 to have its December exposed FPS R&R’d land “old” unit will return on 38S (crew time permitting)
 - Suit 3015 sublimator presently undergoing TT&E, anomaly still under investigation
EVA Suit Investigation Status

- 49 EMU Mishap Investigation Board Recommendations aggressively worked
 - MIB identified priority recommendations for return to nominal EVA
- To address numerous MIB findings, the EMU was evaluated against ISS design and safety standards to identify areas of higher risk that may have been previously accepted or missed
 - Fundamental Approach on EMU fault tolerance (zero fault tolerant plus ability to safely terminate EVA = 1 FT)
- Seven hazard reports related to the water in helmet hazard have been updated for planned EVA
 - Seven NCRs generated against these 7 Hazard Reports
 - Maximum Design Pressure is single fault tolerant
 - Water System Seals utilizing single seals
 - Inability to ingress
 - Inadequate Water Quality – residual risk with quality control
 - Electrical Systems – single string, fail safe approach with terminate
 - CO2 removal – single CO2 removal system, margin maintained for safe terminate
 - Fracture Control – assessment in work
- All EMU hazard reports will be revised (completed April 2015)
- Flight rules and procedures updated, real time and backroom support teams integration/coordination greatly enhanced
- Water sample plan put in place (onboard and return) and increased emphasis on forensic review of returned hardware items (beds, filters, EVA ORU components, etc)
- ISS Program now managing EVA Management Office similar to other CAMs (roles and responsibilities clearly defined)
- Special EVA Operations Readiness Review planned for August 11th with an EVA Flight Readiness Review (FRR) to follow
 - Complete review of findings, root cause determination status, safety hazard analyses, updates to procedures and operations products, and formal MIB closures to be addressed with the goal of determining readiness for restoring nominal ISS EVA capability
 - Review is a formal gate to support planned EVAs on August 21st and 29th