Interface Region Imaging Spectrograph First Results

Alan Title, LMSAL, IRIS Principal Investigator

Bart De Pontieu, LMSAL, IRIS Science Lead

Mats Carlsson, University of Oslo, Norway, IRIS numerical modeling

Scott McIntosh, High Altitude Observatory
IRIS provides novel views of the mass cycle at the interface between the cool surface and hot atmosphere.
Strong Dopplershifts from IRIS spectra reveal multitude of violent events

S Mg II h/k spectra
15,000 K

IRIS Si IV spectra
65,000 K

IRIS Slit-jaw Image Si IV sensitive to plasma of 65,000 K
IRIS images and spectra reveal a bewildering complexity of turbulent motions in solar prominences.

IRIS Slit-jaw Image Si IV 1400

IRIS Si IV spectra sensitive to plasma of 65,000 K

IRIS Mg II h/k spectra 15,000 K
The complex motions and cooling/heating patterns provide a significant challenge to theoretical models.

IRIS Mg II h/k spectra 15,000 K

IRIS Slit-jaw Image Si IV 1400 sensitive to plasma of 65,000 K
Coordinated observations with other spacecraft (Hinode and SDO) help reveal the thermal evolution of spicules.
IRIS spectra and images reveal high velocities and rapid heating.

IRIS Mg II h/k spectra
15,000 K

IRIS Slit-jaw Image Si IV 1400
sensitive to plasma of 65,000 K
Strong transverse motions are common in spicules.

Mg II k

279.524 nm

-125.6 km s^{-1}
These observations provide significant challenge for numerical models:

- TR: Temperature
- High speed upflow >45 km/s
- Joule heating
- Hot loop (1.3 MK)
- Photospheric vertical speed: red-blue.
- Magnetic field: red & blue lines.