JSC Senior Design Project and/or Intern Request Form

Project Title: Live Video Stitching Panorama

Project Description: NASA/JSC desires a general purpose software based solution for stitching live video from multiple cameras together to create a large field of view.

Choose most appropriate area of research:

- [x] Planetary Surface Systems
- [x] Ground Operations
- [] Propulsion
- [x] Spacecraft
- [x] Human Health Program

Program Applicability:

- [x] ISS
- [x] CEV/SLS
- [] Commercial Crew
- [] Asteroid
- [x] Adv. Technology (AES/STMD)

Choose one project:

<table>
<thead>
<tr>
<th>Role</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Design</td>
<td>I have coordinated with my management and I am able to support at least three (3) teleconferences (kick-off, mid-term, and final) with a Senior Design Project Team at a university that chooses my project. I understand that I shall not provide any sensitive or classified information to the Senior Design Project students of faculty. I will provide feedback to the project team if requested.</td>
</tr>
<tr>
<td>Internship</td>
<td>I have coordinated with my management and I am able to support an intern. If an intern is selected for my project, I will provide an environment where an intern can grow and we may have a mutually beneficial and successful internship. My project will be able to provide a desk space, work area, and computer for an intern. I will review any final report or presentation that the intern generates during his/her internship and submit it to Export Control (DAA) for approval. This project opportunity will be posted in OSS, through the office of Education (use exact same title). OSSI website: https://intern.nasa.gov</td>
</tr>
</tbody>
</table>

Check desired Timeframe for Internship:

- [x] Year long
- [x] Summer
- [x] Fall
- [x] Spring

Check desired Major/Minor(s) for Internship:

- [x] Aerospace Engineering
- [x] Aeronautical Engineering
- [] Astronautical Engineering
- [] Biomedical Engineering
- [] Chemical Engineering
- [] Civil Environmental Engineering
- [] Health Engineering
- [x] Electrical, Electronic Engineering
- [x] Computer Engineering
- [] Engineering Physics
- [] Industrial Manufacturing Engineering
- [] Materials, Metallurgical Engineering
- [] Mechanical Engineering, Mechanics
- [] Nuclear Engineering
- [] Astronomy, Astrophysics
- [] Chemistry
- [] Optics
- [x] Physics
- [] Atmospheric Sciences
- [] Geography
- [] Geosciences
- [] Oceanography
- [] Natural Resource Management
- [x] Mathematics, Applied Mathematics
- [x] Computer Science
- [] Astrobiology
- [] Biology
- [] Biochemistry/Biophysics
- [] Microbiology
- [] Bacteriology
- [] Chemical Engineering
- [] Other, please specify: |

Mentor Name: Maxell Haddock

Mentor’s E-mail: Maxwell.d.haddock@nasa.gov

Title & Organization: Engineer EV6

Phone #: 281 483-7241

Alternate POC/Mentor Name:

Alternate’s E-mail:

Education Office Signature and Date:

Intern Mentor’s Signature & Date:

As supervisor/manager, I approve of the above named individual as Senior Design Project POC of Intern Mentor.

Supervisor/Manager’s Signature & Date:

[For Intern Request Only] As Administrative Officer, I am aware that the above named Intern Mentor has submitted a request for an Intern.

Administrative Officer’s Signature & Date:
Senior Capstone Project

Project Title: Live Video Stitching Panorama

Description:

NASA/JSC desires a general purpose software based solution for stitching live video from multiple cameras together to create a large field of view. This would enable crews and mission control to see panoramic/landscape views outside the spacecraft for situational awareness and psychological well being.

Requirements/Constraints:

The solution should:

- initially address stitching 3 camera streams together but also be extensible to more cameras
- minimum camera resolution and frame rates should be 720p and 30FPS, respectively.
- require minimal overlap in individual camera field of views (FOV) such that the overall solution FOV is > 1.6*FOV/camera*number of cameras in solution
- the solution should work for near field and far field viewing situations; near field being ~10 meters
- the solution should work for reasonable alternatives in camera mounting positions (examples: cameras may not be mounted on exactly the same plane, camera spacing may vary, etc.)
- the resulting imagery should have low/no distortion and the blending from one camera stream to the next should not preclude object and feature identification in the near field case
- end-to-end latency of <0.5 seconds for the lab demonstration

Desired/Expected Outcome:

Desire a working prototype and demonstration. If successful we will want to replicate and build upon it at JSC. Resulting code and system specifications should be available for NASA to perform continued experimentation with no licensing fees. Cameras and computer can be loaned to the university as needed to keep cost down and ease the level of effort to replicate the solution at JSC.

Project Lead Contact Info:

Max Haddock
281-483-7241
maxwell.d.haddock@nasa.gov
Displays and Controls Engineer, EV3/Human Interface Branch
Preferred contact mode and times – telephone M-F reasonable hours; email anytime